第四讲:有机太阳能电池
- 格式:pdf
- 大小:4.76 MB
- 文档页数:61
有机太阳能电池特点有机太阳能电池是一种新型的太阳能电池技术,与传统的硅基太阳能电池相比,具有许多独特的特点。
有机太阳能电池具有轻薄灵活的特点。
有机太阳能电池使用有机材料作为光电转换层,这种材料可以制备成薄膜形式,因此有机太阳能电池的厚度可以做到非常薄,甚至可以制备成可弯曲的柔性电池。
这使得有机太阳能电池可以应用于一些传统太阳能电池无法涵盖的领域,比如可穿戴设备、智能手机等。
有机太阳能电池具有低成本的特点。
传统的硅基太阳能电池需要昂贵的硅材料和复杂的制备工艺,而有机太阳能电池使用的有机材料具有制备简单、成本低廉的优势。
有机材料可以通过溶液法、印刷法等低成本的工艺制备,这降低了制备有机太阳能电池的成本,使得其在大规模生产方面具有巨大的潜力。
第三,有机太阳能电池具有颜色可变的特点。
有机材料可以通过合成不同的有机分子来调控其能带结构,从而实现对光谱响应范围的调控。
这意味着有机太阳能电池可以通过调整材料的能带结构来吸收不同波长的光,从而实现对光电转换效率的提高。
同时,有机太阳能电池可以根据需求设计出不同的颜色和透明度,使得其在建筑一体化、智能窗户等领域具有广泛的应用前景。
有机太阳能电池还具有低毒性和环境友好的特点。
传统的硅基太阳能电池使用的是稀有金属材料,而有机太阳能电池使用的有机材料通常是由碳、氢、氧等常见元素构成,不含有重金属等有害物质。
这使得有机太阳能电池在生产和使用过程中对环境的影响更小,更符合可持续发展的要求。
在最后,有机太阳能电池还具有快速响应和宽光谱应答的特点。
有机材料的能带结构可以调控,使得有机太阳能电池对光的响应速度更快,能够实现更快的光电转换。
同时,有机太阳能电池对光的波长范围也更宽,可以吸收更多的光能,并将其转化为电能。
有机太阳能电池具有轻薄灵活、低成本、颜色可变、低毒性和环境友好、快速响应和宽光谱应答等特点。
这些特点使得有机太阳能电池在可穿戴设备、智能手机等领域具有广阔的应用前景,并为可持续能源的发展提供了新的选择。
铸态有机太阳能电池1. 引言1.1 什么是铸态有机太阳能电池铸态有机太阳能电池是一种新型太阳能电池技术,采用铸态有机半导体材料来转换光能为电能。
相较于传统硅基太阳能电池,铸态有机太阳能电池具有更高的柔韧性和轻量化特性,可以更好地适应各种不规则的表面形态,如建筑物外墙、车身等。
铸态有机太阳能电池的材料成本相对较低,生产工艺简单,可以大面积灵活制备,助力太阳能光伏产业的快速发展。
铸态有机太阳能电池的工作原理是利用有机半导体材料中的光敏色素对太阳光进行吸收,激发电荷的分离和传输过程,最终产生电流输出。
这种技术在提高太阳能电池的光电转换效率和稳定性方面具有独特的优势,对于解决能源短缺和减少环境污染具有重要意义。
铸态有机太阳能电池的发展将推动太阳能光伏产业向更加智能化、绿色化方向发展,为社会可持续发展提供更多清洁能源选择。
1.2 铸态有机太阳能电池的重要性铸态有机太阳能电池可以利用太阳辐射产生电能,在光能转化中无需燃烧燃料,不会产生二氧化碳等有害气体,因此对减缓气候变化具有积极作用。
铸态有机太阳能电池具有可再生性,太阳能取之不尽、用之不竭,是一种持续可供利用的能源形式。
其高效能的特点,使得铸态有机太阳能电池成为解决能源短缺和环境污染问题的重要手段,有助于推动人类社会朝着绿色、低碳、可持续发展方向迈进。
铸态有机太阳能电池的重要性不言而喻,对推动新能源革命、实现节能减排目标具有巨大意义。
2. 正文2.1 铸态有机太阳能电池的工作原理铸态有机太阳能电池是一种新型的光伏设备,其工作原理主要是利用有机分子在光照下吸收光能并将其转化为电能。
具体来说,铸态有机太阳能电池由多层材料组成,包括透明导电层、光敏层、电子传输层和金属电极等。
当太阳光照射到铸态有机太阳能电池表面时,光敏层中的有机分子会吸收光子并激发出电子-空穴对。
这些电子-空穴对会在光敏层内发生分离,即电子向电子传输层移动,而空穴则向金属电极移动,从而产生电流。
有机太阳能电池摘要有机太阳能电池因具有成本低、质轻、柔韧性好、可大面积印刷制备的优点而受到广泛关注,对电池原理,结构,材料的研究对提高有机太阳能电池的性能有重大意义。
本文主要综述了有机太阳能电池的工作原理,电池结构以及电极材料。
并对有机太阳能电池的应用前景做了展望。
关键词原理;结构;材料;应用前景1.有机太阳能电池简介有机太阳能电池,顾名思义,就是由有机材料构成核心部分的太阳能电池。
主要是以具有光敏性质的有机物作为半导体的材料,以光伏效应而产生电压形成电流, 实现太阳能发电的效果.由于无机硅太阳能电池的材料生产成本高,污染大、能耗高,寻找新型太阳能电池材料和低成本制造技术便成为人们研究太阳能电池技术的目标。
有机太阳能材料和电池制备技术有望成为低成本制造的选择之一。
世界上第一个有机光电转化器件是由Kearns和Calvin在1958年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。
1986年,行业内出现了一个里程碑式的突破——有机半导体的发明。
器件的核心结构是由四羧基苝的一种衍生物(PV)和铜酞菁(CuPc)组成的双层膜。
双层膜的本质是一个异质结,其思路是用两种有机半导体材料来模仿无机异质结太阳能电池。
1992年,土耳其人Sariciftci在美国发现,激发态的电子能极快地从有机半导体分子注入到C60分子中,而反向的过程却要慢得多。
1993年,Sariciftci 在此发现的基础上制成PPV/C60双层膜异质结太阳能电池。
随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(体异质结)。
而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。
给体和受体在混合膜里形成一个个单一组成的区域,在任何位置产生的激子,都可以通过很短的路径到达给体与受体的界面(即结面),从而电荷分离的效率得到了提高。
2.有机太阳能电池工作原理2.1激子概念在有机半导体材料中,分子之间只有很弱的范德华作用力,不能形成连续的能带,电子被光激发后只能停留在原分子轨道内,不能转移到其他分子上。
有机太阳能电池原理有机太阳能电池是一种利用有机分子作为光电转换材料的光伏器件。
它的工作原理是通过光的照射,激发有机分子中的电子,使其跃迁到导带中,从而产生电流。
有机太阳能电池具有柔性、轻薄、低成本等特点,因此备受关注,并在可穿戴设备、光伏建筑等领域有着广泛的应用前景。
有机太阳能电池的工作原理可以简单概括为以下几个步骤:1. 光吸收,有机太阳能电池的关键部分是光吸收层,其中包含有机分子。
当太阳光照射到光吸收层时,有机分子中的某些电子会被激发,跃迁到导带中,形成电子-空穴对。
2. 电子传输,在有机太阳能电池中,激发的电子会在光吸收层中传输,最终到达电子传输层。
在这个过程中,电子会释放出能量,从而产生电流。
3. 电荷分离,在电子传输到达电子传输层后,电子和空穴会被分离,形成正负电荷。
这种电荷分离的过程是有机太阳能电池能够产生电流的关键步骤。
4. 电荷收集,分离的正负电荷会被分别收集到电极上,形成电流。
这样就完成了光能转化为电能的过程。
有机太阳能电池的工作原理相较于传统的硅基太阳能电池有着独特的优势。
首先,有机太阳能电池可以采用柔性基底,因此可以制备成柔性、轻薄的器件,适用于曲面、弯曲的电子设备。
其次,有机太阳能电池的制备工艺简单,成本低廉,可以实现大面积、快速生产,有着较大的产业化潜力。
再者,有机太阳能电池还具有颜色可调性,可以根据实际需求设计出不同颜色的太阳能电池,满足建筑一体化、装饰一体化的需求。
然而,有机太阳能电池也存在一些问题,如光稳定性差、寿命短、效率低等。
因此,目前仍需要进一步的研究和改进,以提高其稳定性和效率。
总的来说,有机太阳能电池作为一种新型的光伏器件,具有许多优势和应用前景。
通过不断的研究和创新,相信有机太阳能电池将会在未来得到更广泛的应用,并为人类社会的可持续发展做出贡献。
有机太阳能电池的工作原理及其在可再生能源中的应用随着全球能源消耗量的不断增加,传统能源资源日益减少,人们也开始注重寻找新的能源形式,其中,太阳能作为一种可再生能源资源受到广泛关注。
而有机太阳能电池则是一种新型的太阳能电池技术,相对于传统硅基太阳能电池,有机太阳能电池具有更低的成本以及更好的可塑性和可加工性。
本文将详细介绍有机太阳能电池的工作原理以及在可再生能源中的应用。
一、有机太阳能电池的工作原理有机太阳能电池主要由两个半导体层组成,其中一个半导体层为电子受体层,另一个半导体层为电子给予层。
在有机太阳能电池中,光能将输入到电子受体层中,电子受体分子会吸收光子并激发电子从基态跃迁到激发态。
这样激发的电子会从电子受体分子中释放出来,被电子给予层中的有机分子接受,并在电子给予层中发生传导。
因为有机物分子间距离较近,所以电子给予层中传导电子的速度也很快,电子最终会到达电极表面。
当电子到达电极表面时,就可以通过电极导线传输产生电能。
有机太阳能电池中的电子给予层和电子受体层的组成十分重要。
在电子受体层中,可发挥光伏效应的分子必须具有双键或三键构成的大共轭体系,能够吸收太阳光谱的前沿辐射能,最常见的分子是全氟化铜酞菁(CuPc)和异三苯基铝(Alq3)。
而电子给予层中的分子则需要具有良好的电子给予性能和适当的能级间距,常见的有机分子包括聚苯胺(PANI)、多壁碳纳米管、氧化铟等。
电子受体层和电子给予层之间的光敏界面的匹配也至关重要,因为光敏界面能够决定光水平光电性能的表现。
二、有机太阳能电池在可再生能源中的应用作为一种新兴的太阳能电池技术,有机太阳能电池具有广泛的应用前景。
目前,有机太阳能电池已经广泛应用于光伏发电、新能源汽车、移动电源、充电宝等领域。
在光伏发电方面,有机太阳能电池具有更低的成本以及更好的可塑性和可加工性,能够充分利用城市空心化建筑中常常被浪费的屋顶、外墙面、雨棚等拓展电力发电空间,同时也能够为大规模建筑、公路、停车场等设施提供绿色能源解决方案。
有机太阳能电池的基本理论和参数表征1.1 太阳光谱所谓太阳能电池,就是将太阳能转化成电能的设备,要研究太阳能电池,首先要清楚地认识太阳光谱,才有利于做针对性的选择电池材料。
首先太阳能是由H He核聚变放出的,其表面温度约6000K,因此,太阳光谱可看做是6000K 的黑体辐射谱。
人类将太阳辐射到达地球的部分定义为三种,分别是AM0、AM1.0和AM1.5。
AM0表示垂直于大气层外的太阳辐射,AM1.0表示垂直于大气层内地壳表面的太阳辐射,AM1.5表示入射方向与地表垂直方向成48.2度夹角的太阳辐射。
在大气层外,太阳垂直入射的辐照功率基本是个常数,称为AM0辐照,现最为认可的数值是1.353kw/m2。
因为AM0表示大气层外的辐射,与黑体辐射很相似,尤其是在长波范围,近乎相同。
但是在短波范围有一些差距,主要是由太阳大气层对辐射的吸收造成。
太阳辐射进入地球大气层,还会损失约30%的能量。
所以普遍的地面太阳光谱是AM1.5,总功率密度约832w/m2。
就AM1.5来看,光谱包含红外区以外的部分,但绝大多数是可见光和300~950nm的红外波段,其中以波长为600~900nm最佳。
太阳能辐射放出的能量巨多,用之不竭,但目前利用率最好的电池,转换效率也仅有30%,其主要原因就是一般材料对光谱的吸收具有选择性,我们需要宽带吸收光谱的电池活性材料。
1.2 有机太阳能电池的主要表征参数当我们拿到一个太阳能电池时,我们要评价它性能是否优良。
我们就需要知道一些关于它的参数作参考,通常,我们需要测量太阳能电池的开路电压、短路电流、内外量子效率、填充因子、光转换效率及吸收光谱等参数,来对该电池进行性能评价。
为清楚地说明,各项参数意义,我们做太阳能电池在光照条件下的经典I-V 曲线图。
如图2-1,各表征参数定义如下:开路电压(VOC ): 在有机材料两端处于开路状态时,I=0,此时的端电压称为开路电压。
该电压主要决定于光敏材料的禁带宽度。
有机/聚合物太阳能电池1. 有机/聚合物太阳能电池的大体原理:有机/聚合物太阳电池的大体原理是利用光入射到半导体的异质结或金属半导体界面周围产生的光生伏打效应(Photovoltaic)。
光生伏打效应是光激发产生的电子空穴对一激子被各类因素引发的静电势能分离产生电动势的现象。
当光子入射到光敏材料时,光敏材料被激发产生电子和空穴对,在太阳能电池内建电场的作用下分离和传输,然后被各自的电极搜集。
在电荷传输的进程中,电子向阴极移动,空穴向阳极移动,若是将器件的外部用导线连接起来,这样在器件的内部和外部就形成了电流。
对于利用不同材料制备的太阳能电池,其电流产生进程是不同的。
对于无机太阳能电池,光电流产生进程研究成熟,而有机半导体体系的光电流产生进程有很多值得商议的地方,也是目前研究的热点内容之一,在光电流的产生原理方面,很多是借鉴了无机太阳能电池的理论(比如说其能带理论),可是也有很多其独特的方面,现介绍如下:一般以为有机/聚合物太阳电池的光电转换进程包括:光的吸收与激子的形成、激子的扩散和电荷分离、电荷的传输和搜集。
对应的进程和损失机制如图1所示。
图1 聚合物太阳能电池光电转换进程和入射光子损失机理光吸收与激子的形成当太阳光透过透明电极ITO照射到聚合物层上时,不是所有的光子都能被聚合物材料所吸收的,只有光子能量hν大于材料的禁带宽度E g时,光子才能被材料吸收,激发电子从聚合物的最高占有轨道(HOMO)跃迁到最低空轨道(LUMO),留在HOMO中的空位通常称为“空穴”,这样就形成了激子,通常激子由于库仑力的作用,具有较大的束缚能而绑定在一路。
对于入射到地面的太阳光谱从其能量散布来看,大约在700nm处能量是最强的,因此所利用的激活层材料其吸收光谱也应该尽可能的接近太阳的辐照光谱,而且在700nm处达到最强的吸收,这样有力于激活层材料对光的吸收和利用。
可是从目前研究的聚合物材料来看,其吸收光谱均不能与太阳光谱很好的匹配。
有机太阳能电池工作原理
有机太阳能电池是一种利用有机材料将太阳能转换为电能的装置。
其工作原理可以分为以下几个步骤:
1. 光吸收:有机太阳能电池通常采用含有共轭结构的半导体材料作为光吸收层,如聚合物、富勒烯等。
当光照射到这些材料上时,光子会被吸收并激发出一个电子-空穴对。
2. 电荷分离:在光吸收层中,激发出的电子-空穴对会迅速分离,形成一个正极性载流子和一个负极性载流子。
这一过程是由于半导体材料中存在的势垒和界面缺陷引起的。
3. 载流子输运:正负载流子在光吸收层内向两端移动,形成电流。
这一过程需要通过导电性较好的电极将载流子引出。
4. 电荷重组:当正负载流子到达另一个端口时,它们会重新结合成一个中性原子,并释放出能量。
这一过程也称为复合反应。
5. 输出电压:由于光吸收层两端存在不同的电势差,正负载流子在移动过程中会产生电压。
这一电压可以通过连接外部电路来输出。
总的来说,有机太阳能电池的工作原理是利用有机材料吸收光子并将其转换为电流和电压的过程。
其优点包括制备简单、成本低廉、柔性可弯曲等,但其效率相对较低,仍需要进一步提高。
有机纳米功能材料
魏志祥
国家纳米科学中心Email: weizx@; Tel: 82545565
有机电致发光器件
Multiple emission colors achieved by Covion
Sony OLED TV
有机光伏器件(太阳能电池)
Boeing spectrolab
NREL
10% efficiency!
Liquid electrolyte!
太阳能电池制备与封装设备
溶液甩膜与前处理部分蒸镀电极
与修饰层
测试与封装
Solar Spectrum
Air Mass
I-V
Characteristics Analyzer
Principle: Test Parameters: Isc (short-circuit current) , Voc (open-circuit voltage) , FF (fill factor) , η(power conversion efficiency)
Test the photocurrent under
simulated sunlight via different
bias voltages to evaluate the
overall characteristics of a
solar cell.
开路电压
短路电流max max max O C SC light light light
P I V V I FF PC E P P P ×××===能量转化效率
FF =V OC ×I SC
填充因子
General scheme for
organic photovoltaic
effect.
(1)Incident photons
(2)Exciton Generation
(3)Bulk diffusion
(4)Separation at D/A
Interfaces
(5)Hole transport in D
(6)Electron transport in A
(7)Hole collection at the
anode
(8)Electron collection at
the cathode
Polym Int55:583–600 (2006)
Photovoltaic Charge Generation Visualized at the Nanoscale:
A Proof of Principle
--
by Kelvin probe force microscopy
AFM KPFM
(I) Isolated PDI clusters
(II) PDI clusters contact with P3HT
(III) P3HT phase Liscio, A.; De Luca, G.; Nolde, F.; Palermo, V.; Mu ¨llen, K.; Samor ı`, P. J. Am. Chem. Soc. 2008, 130,780–781.
the molecular aggregates of the two
species show different SPs
KPFM allows quantitative mapping of the
electronic properties of nanostructures, that is,
determination of the surface
potential (SP)
only the ones which are in contact with P3HT show an obvious charge transfer because of the
existence of the electron donor phase.
Nanostructures
finely dispersed PCBM: suppress P3HT crystallite formation Redistribute the
PCBM component
mixture solvent
approach
The P3HT originally strong
vibronic shoulders diminish significantly
Yang Y. etc. Adv. Funct. Mater.2008, 18, 1783–1789
strong inter-chain interactions
films spin-coated from dichorobenzene with( c) and without (d))1,8-octanedithiol.ordered fibrillar crystalline domains random
Yang Y. etc. Adv. Funct. Mater.2008, 18, 1783–1789
The solubility of PCBM in OT plays
a important role in the spin-coating
process
3. Broad absorption _ low bandgap
Processing Additives for Improved Efficiency from
Bulk Heterojunction Solar Cells
selective removal of C71-PCBM
Spin-coat a mixture of
PCPFTBT and C71-PCBM
G.C. Bazan. Nature Mater.2007
4. Matched HOMO and LUMO
Ideal Donor Material for PCBM
Voc
5.1%
Nature Mater., 2008
6.1% JACS, 2008, Nature Photonics, 2009
7.7 % JACS, 2009, Nature Photonics,。