九年级数学二次函数的应用1(201908)
- 格式:ppt
- 大小:223.50 KB
- 文档页数:7
二次函数的应用【引例】求下列二次函数的最值:(1)求函数223y x x =+-的最值. (2)求函数223y x x =+-的最值.(03)x ≤≤★方法归纳:如果自变量的取值范围是全体实数,那么函数在 处取得最大值(或最小值).如果自变量的取值范围是12x x x ≤≤,分两种情况:①顶点在自变量的取值范围内时,以0>a 为例,最大值是 ;最小值是 ②顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性专题一 应用之利润最值问题【例1】某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少时每个月可获得最大利润?最大利润是多少?●变式练习:某商品的进价为每件20元,售价为每件30,每个月可买出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x 元(x 为整数),每个月的销售利润为x 的取值范围为y 元。
(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?★解题回顾:总利润= * ;找出价格和销售量之间的关系,注意结合自变量的取值求得相应的售价.【例2】某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式;(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不得高于32元.如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元?★解题回顾:先利用“成本不高于多少,利润不低于多少”等条件求得自变量的,然后根据函数性质并结合函数图象求最值.【例3】某科技开发公司研制出一种新型产品,每件产品的成本为2400 元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)★解题回顾:分段函数求最值时,要根据各段函数自变量的求相应的最值。
新北师大版九年级数学二次函数的应用二次函数是数学中重要的概念之一,在九年级数学课程中也有广泛的应用。
本文将探讨新北师大版九年级数学中二次函数的应用。
1. 抛物线的性质在研究二次函数之前,我们先来了解一下抛物线的性质。
抛物线是由二次函数所表示的图形,它具有以下几个重要的性质:- 抛物线的顶点:抛物线的顶点是抛物线上最高点或最低点的坐标。
- 抛物线的对称轴:抛物线是关于对称轴对称的,对称轴是通过抛物线顶点的垂直线。
- 抛物线的开口方向:抛物线的开口方向由二次函数的系数决定。
当二次函数的二次项系数大于零时,抛物线开口向上;当二次函数的二次项系数小于零时,抛物线开口向下。
2. 二次函数的图像和应用二次函数的图像为抛物线,根据二次函数的系数,我们可以画出不同形状的抛物线。
在新北师大版九年级数学中,二次函数的应用主要有以下几个方面:2.1. 描述实际问题二次函数可以用来描述很多实际问题,例如:- 飞行物体的轨迹:如果已知一个飞行物体的高度和时间之间的关系,可以通过建立二次函数来描述它的轨迹。
- 喷泉的水柱高度:可以根据喷泉水柱的高度和时间之间的关系,建立二次函数来描述水柱的变化。
2.2. 解决最值问题二次函数可以帮助解决最值问题,例如:- 最值问题:给定一些条件,通过建立二次函数模型,可以求出函数的最值(最大值或最小值),从而解决一些实际问题。
2.3. 确定函数的定义域和值域二次函数的图像是一条抛物线,通过观察抛物线的开口方向和顶点,可以确定函数的定义域和值域。
3. 总结二次函数在新北师大版九年级数学中有广泛的应用,它可以用来描述实际问题、解决最值问题,同时也可以通过观察抛物线的性质来确定函数的定义域和值域。
通过研究二次函数的应用,可以帮助学生更好地理解数学知识,提高解决实际问题的能力。
以上是关于新北师大版九年级数学二次函数的应用的文档。
希望对您有所帮助!。
二次函数的应用案例总结二次函数是一种常见的数学函数形式,它的形式为:y = ax^2 + bx + c。
在现实生活中,二次函数可以用于解决各种问题,包括物理、经济、工程等领域。
本文将总结几个常见的二次函数应用案例,以展示二次函数的实际应用。
案例一:物体自由落体的高度模型假设一个物体从高处自由落体,忽略空气阻力,我们可以用二次函数来表示物体的高度与时间之间的关系。
设物体初始高度为H,加速度为g,时间为t。
根据物理定律,物体的高度可以表示为:h(t) = -0.5gt^2 + H。
这个二次函数模型可以帮助我们计算物体在任意时间点的高度,并可以用于预测物体何时落地。
案例二:销售收入和定价策略假设一个公司生产和销售某种产品,销售价格为p(单位:元),销售量为q(单位:件)。
二次函数可以用于建立销售收入与定价策略之间的模型。
设定售价的二次函数为:R(p) = -ap^2 + bp + c,其中a、b、c为常数。
我们可以通过分析二次函数的图像、求解极值等方法,确定最佳售价,以使得销售收入最大化。
案例三:桥梁设计中的弧线形状在桥梁设计中,常常需要确定桥梁的弧线形状,以使得车辆在桥上行驶时感到平稳。
二次函数可以用来描述桥梁的曲线形状。
设桥梁的弧线形状为y = ax^2 + bx,其中x表示桥梁长度的一半,y表示桥梁的高度。
通过调整参数a和b,可以得到不同形状的弧线,以满足设计要求。
案例四:市场需求和价格关系分析在经济学中,二次函数可以用于建立市场需求与价格之间的关系模型。
设市场需求量为D,价格为p。
根据经济理论,市场需求可以表示为:D(p) = ap^2 + bp + c,其中a、b、c为常数。
通过分析二次函数的图像、求解极值等方法,可以研究市场需求和价格之间的关系,得出不同价格下的市场需求量。
综上所述,二次函数在物理、经济、工程等领域中具有广泛的应用。
通过建立二次函数模型,我们可以更好地理解和解决各种实际问题。
《二次函数》的应用(附例题分析)典型例题分析1:某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每件文具的利润不低于为25元且不高于29元.请比较哪种方案的最大利润更高,并说明理由.解:(1)由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000;(2)w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=2250,故当单价为35元时,该文具每天的利润最大;(3)A方案利润高.理由如下:A方案中:20<x≤30,故当x=30时,w有最大值,此时wA=2000;B方案中:故x的取值范围为:45≤x≤49,∵函数w=﹣10(x﹣35)2+2250,对称轴为直线x=35,∴当x=35时,w有最大值,此时wB=1250,∵wA>wB,∴A方案利润更高.考点分析:二次函数的应用;一元二次方程的应用.题干分析:(1)根据利润=(销售单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B 方案的最大利润,然后进行比较。
这是一道与二次函数有关的实际应用问题,贴近生活,考生能学习生活知识,同时更帮助学生理解数学知识和生活之间的关系。
研究题目,吃透题型是数学学习最有效,最实际的学习探究行为。
二次函数的实际应用一-最值问题再现及巩固h 4c — /? 2 二次函数的一般式j = ax 2 +bx + c (QH O )化成顶点式y = a(x + —)2 + ----2a 4a果口变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当。
>0时,函数有最小值,并且当x = ~—2ab Acic ~b当GVO 时,函数有最大值,并且当x =-佥,y 最大值=爲 ・ 巩固练习 1. 求下列二次函数的最值: (1) 求函数y = x 2+2x-3的最值.(2) 求函数y = 〒+2x —3的最值.(0<^<3)2. 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每 星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元, 如何定价才能使利润最大? 附答案: 巩固练习:1. (1)解析:解:y = (x + l)2—4当兀=一1时,y 有最小值一4,无最大值.(2)解:y = (x + l)2 -40 < x < 3 ,对称轴为x = —1.•・当x = 0时y 有最小值- 3;当x = 30寸)有最大值12 .2. 解:设涨价(或降价)为每件兀元,利润为y 元,X 为涨价时的利润,儿为降价时的利润 则:卩=(60-40 4- x)(300 一 1 Ox)= -10(X 2-10X -600) = -10(X -5)2+6250当x = 5,即:定价为65元时,y max = 6250 (元)y? = (60-40-兀)(300 + 20无)= -20(x-20)(x + 15)= -20(x-2.5)2+6125当x = 2.5,即:定价为57. 5元时,儿^=6125 (元) 综合两种情况,应定价为65元时,利润最大.三、知识点梳理1. 二次函数在没有范围条件下的最值4ac-b 2""4a二次函数的一般式y = O? +加+ Q (a H 0)化成顶点式y = d (x +舟尸+4°;;戸, 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当。
初三二次函数的应用二次函数是数学中的一个重要概念,具有广泛的应用。
在初三学习二次函数的过程中,我们不仅要学会掌握二次函数的基本性质和图像特点,更要学会应用二次函数解决实际问题。
本文将从数学和实际问题两个方面介绍初三二次函数的应用。
数学应用1. 求解二次方程二次函数的性质之一是关于 x 的二次方程。
利用二次函数图像和性质,我们可以通过求解二次方程来解决一些问题。
例如,已知二次函数 y = ax^2 + bx + c 的图像与 x 轴交于 A、B 两点,我们可以通过求解方程 ax^2 + bx + c = 0 来确定函数与 x 轴的交点坐标。
2. 确定二次函数的开口方向和顶点坐标对于一般形式的二次函数 y = ax^2 + bx + c,通过观察二次函数的系数 a 的正负可以判断其开口方向,即向上或向下开口;同时可以利用一些关系式来确定二次函数的顶点坐标。
这些知识点的掌握对于正确绘制二次函数图像至关重要。
实际问题的应用初三阶段,我们学习数学的过程中,二次函数的实际应用也是重要的内容之一。
下面将介绍一些常见的二次函数实际问题应用。
1. 抛物线运动在物理学中,抛物线运动是一个常见的问题。
例如,当我们抛出一个物体时,它的轨迹可以用二次函数来描述。
二次函数的顶点就是物体的最高点,通过解析解或图像分析可以得到物体的最大高度、最大飞行距离等信息。
2. 路程问题在解决路程问题时,二次函数也有所应用。
例如,已知某辆汽车的加速度为 a,初始速度为 v0,我们可以通过二次函数模型来描述汽车在 t 秒内的行驶距离 S。
通过求解二次方程可以计算出汽车行驶到某个特定位置的时间 t。
3. 面积问题二次函数的图像与x 轴所围成的图形面积是一个常见的问题。
例如,已知一块矩形底部宽度为 l,上方通过二次函数 y = ax^2 + bx + c 描述,我们可以通过求解二次方程来计算矩形与二次函数曲线所围成的面积。
这种类型的问题在应用数学中经常出现。
1.4 二次函数的应用(一)1.已知二次函数y =(a -1)x 2+2ax +3a -2的图象的最低点在x 轴上,则a =__2__,此时函数的表达式为y =x 2+4x +4.(第2题)2.用长为8 m 的铝合金材料做成如图所示的矩形窗框,要使窗户的透光面积最大,那么这个窗户的最大透光面积是__83__m 2.(第3题)3.如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是(C )A. 60 m 2B. 63 m 2C. 64 m 2D. 66 m 24.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3).D 是抛物线y =-x 2+6x 上一点,且在x 轴上方.求△BCD 面积的最大值.(第4题)【解】 ∵点C (4,3),∴菱形OABC 的边长=32+42=5.∵抛物线y =-x 2+6x 的顶点坐标为(3,9), ∴△BCD 面积的最大值为S =12×5×(9-3)=15.5.如图,在梯形ABCD 中,AB ∥DC ,∠ABC =90°,∠A =45°,AB =30,BC =x ,其中15<x <30.过点D 作DE ⊥AB 于点E ,将△ADE 沿直线DE 折叠,使点A 落在点F 处,DF 交BC 于点G .(1)用含x 的代数式表示BF 的长.(2)设四边形DEBG 的面积为S ,求S 关于x 的函数表达式. (3)当x 为何值时,S 有最大值?并求出这个最大值.【解】(1)∵DE=BC=x,∠A=45°,DE⊥AE,∴AE=DE=x.由折叠知,EF=AE=x,∴BF=AF-AB=2x-30.(2)∵S△DEF=12EF·DE=12x2,S△BFG=12BF·BG=12(2x-30)2,∴S=12x2-12(2x-30)2=-32x2+60x-450.(3)∵15<x<30,∴当x=602×32=20时,S有最大值,S最大=150.6.竖直上抛的小球离地高度是关于它运动时间的二次函数,小军相隔1 s依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1 s时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=__1.6__.【解】设各自抛出后1.1 s时到达相同的最大离地高度为h,则小球的高度y=a(t-1.1)2+h.由题意,得a(t-1.1)2+h=a(t-1-1.1)2+h,解得t=1.6.7.如图,从1×2的矩形ABCD的较短边AD上找一点E,过这点剪下两个正方形,它们的边长分别是AE,DE,当剪下的两个正方形的面积之和最小时,点E应选在(A)(第7题)A. AD的中点B. AE∶ED=(5-1)∶2C. AE∶ED=2∶1D. AE∶ED=(2-1)∶2【解】设AE=x,剪下的两个正方形的面积之和为y,则DE=1-x,y=AE2+DE2=x2+(1-x)2=2⎝⎛⎭⎪⎫x-12 2+12.∴当x=12时,y取得最小值,此时E是AD的中点.8.如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y =k x(k >0)的图象与BC 边交于点E .(1)当F 为AB 的中点时,求该函数的表达式.(2)当k 为何值时,△EFA 的面积最大,最大面积是多少. 【解】 (1)∵在矩形OABC 中,OA =3,OC =2, ∴点B (3,2).∵F 为AB 的中点,∴点F (3,1).∵点F 在反比例函数y =k x(k >0)的图象上, ∴k =3,∴该函数的表达式为y =3x(x >0).(2)由题意知E ,F 两点的坐标分别为E ⎝ ⎛⎭⎪⎫k 2,2,F ⎝ ⎛⎭⎪⎫3,k3, ∴S △EFA =12AF ·BE =12×13k ⎝ ⎛⎭⎪⎫3-12k ,=12k -112k 2=-112(k 2-6k +9-9)=-112(k -3)2+34.∴当k =3时,△EFA 的面积最大,最大面积是34.9.如图,BD 是正方形ABCD 的对角线,BC =2,边在其所在的直线上平移,将通过平移得到的线段记为PQ ,连结PA ,QD ,并过点Q 作QO ⊥BD ,垂足为O ,连结OA ,OP .(1)请直接写出线段BC 在平移过程中,四边形APQD 是什么四边形? (2)请判断OA ,OP 之间的数量关系和位置关系,并加以证明.(3)在平移变换过程中,设y =S △OPB ,BP =x (0≤x ≤2),求y 与x 之间的函数表达式,并求出y 的最大值.(第9题)【解】 (1)四边形APQD 为平行四边形. (2)OA =OP ,OA ⊥OP .理由如下: ∵四边形ABCD 是正方形,∴AB =BC =PQ ,∠ABO =∠OBQ =45°.∵OQ ⊥BD ,∴∠PQO =45°,∴∠ABO =∠OBQ =∠PQO ,∴OB =OQ , ∴△AOB ≌△OPQ (SAS ). ∴OA =OP ,∠AOB =∠POQ ,∴∠AOP =∠BOQ =90°,∴OA ⊥OP .(第9题解①)(3)如解图①,过点O 作OE ⊥BC 于点E . ①当点P 在点B 右侧时,BQ =x +2,OE =x +22,∴y =12·x +22·x=14()x +12-14. 又∵0≤x ≤2,∴当x =2时,y 有最大值2.(第9题解②)②如解图②,当点P 在点B 左侧时,BQ =2-x ,OE =2-x2, ∴y =12·2-x 2·x=-14()x -12+14.又∵0≤x ≤2,∴当x =1时,y 有最大值14.综上所述,y 的最大值为2.初中数学试卷。