权值混合更新的神经网络液位控制方法及应用
- 格式:pdf
- 大小:237.57 KB
- 文档页数:4
基于神经网络的污水处理多变量广义预测控制基于神经网络的污水处理多变量广义预测控制污水处理是保护环境和人类健康的重要任务。
随着城市化进程的推进和人口的增加,污水处理厂越来越面临处理容量、水质稳定性和排放标准等方面的挑战。
为了提高污水处理厂的运行效率和水质稳定性,多变量广义预测控制技术应运而生。
本文将重点介绍基于神经网络的污水处理多变量广义预测控制方法。
首先,我们将介绍神经网络的基本原理。
神经网络是一种模拟人脑神经元网络的数学模型,其核心是通过调整网络连接权重和阈值来实现输入与输出之间的映射关系。
对于污水处理的多变量广义预测控制,我们可以将输入设置为污水处理厂的进水水质、进水流量等变量,输出设置为污水处理厂的出水水质、出水流量等变量。
通过训练神经网络,我们可以建立起输入与输出之间的复杂关系,实现对污水处理过程的精确预测和控制。
其次,我们将介绍多变量广义预测控制的基本原理。
多变量广义预测控制是一种针对具有多个输入和输出变量的系统进行预测和控制的方法。
在污水处理过程中,不同的输入变量和输出变量之间存在着相互影响的复杂关系,传统的单变量控制方法难以达到理想的控制效果。
多变量广义预测控制通过建立输入与输出之间的数学模型,综合考虑多个变量之间的相互作用,实现对污水处理过程的综合预测和控制。
接下来,我们将介绍基于神经网络的污水处理多变量广义预测控制方法。
首先,我们需要收集大量的污水处理过程数据,包括进水水质、进水流量、出水水质、出水流量等变量。
然后,我们利用这些数据训练神经网络,建立起输入与输出之间的映射关系。
接着,我们可以使用训练好的神经网络对未来的污水处理过程进行预测,在此基础上制定合理的控制策略,实现对污水处理过程的优化控制。
最后,我们将介绍基于神经网络的污水处理多变量广义预测控制的优势和应用前景。
与传统的单变量控制方法相比,基于神经网络的多变量广义预测控制具有更高的预测和控制精度,能够更好地应对污水处理过程中的复杂性和非线性。
bp神经网络在pid控制器参数整定中的应用PID控制器(PID, Proportional-Integral-Derivative)是近几十年来应用最为广泛,最成功的控制系统之一,用于正确、稳定地控制各种过程,是目前工业过程控制领域的主要技术。
目前,PID控制器的参数设置方法以人工方法为主,但由于人工方法的受限性,一般只能获得较为粗糙的参数。
在这种情况下,基于神经网络的自动参数整定方法以其快速和准确的特点得到了广泛的应用。
其中,bp神经网络是一种具有广泛应用前景的神经网络模型,它具有自适应特性,可以用于PID控制器参数整定。
首先,利用bp神经网络对过程模型进行研究,根据实际情况确定合理的PID参数,然后利用bp神经网络进行参数自动整定,构建出较为精确的控制系统,用以让过程回路的稳定性和控制精度达到最优。
此外,bp神经网络还可以应用于复杂的线性和非线性双向控制系统,如液位控制、温度控制等,增强了系统的可控性,并大大提高了控制性能和控制质量。
利用bp神经网络实现PID控制器参数自动整定,可以有效提高控制器在不同情况下的精度和可靠性,解决人工方法难以满足的实际控制需求,具有广泛的应用前景。
同时,bp模型本身也有一定的缺陷,例如计算时间长,精度不够等,因此今后有必要进行深入的研究,以发展更先进的控制方法,使之能够更全面地运用于工业过程中。
综上所述,基于bp神经网络的PID控制器参数整定技术是当今应用技术中的一个热点,具有巨大的应用潜力。
它可以有效改善PID 控制系统的性能,并且能够满足不同应用场合的需求,为工业过程控制技术的发展提供了有力的支持。
未来,将继续围绕bp神经网络模型,进行系统的性能分析及参数设计,以更好地服务工业过程控制的发展。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201810157907.7(22)申请日 2018.02.25(66)本国优先权数据201721333861.7 2017.10.17 CN(71)申请人 北京尚水信息技术股份有限公司地址 100085 北京市海淀区上地五街7号昊海大厦303(72)发明人 王希花 纪红军 曲兆松 任明轩 (51)Int.Cl.G06Q 10/04(2012.01)G06N 3/08(2006.01)G06N 3/02(2006.01)(54)发明名称基于神经网络预测水位的方法(57)摘要本发明的基于神经网络预测水位的方法包括以下步骤:根据各站点的关系,下游某一站点(A)的水位与该站点(A)的前一段时间的水位相关,并且与该站点(A)上游的若干个上游站点(B、C、D …)的对应的该瞬间的水位相关,根据已有数据分析,水从上游站点(B、C、D …)流到下游的该站点(A)耗时分别为t 1、t 2和t 3…分钟,选取上游站点(B、C、D …)的前2t 1-t 1、2t 2-t 2和2t 3-t 3…分钟水位数据,以及该站点(A)的前U分钟的水位数据作为输入信号;建立一个神经网络;并经过若干次迭代让神经网络进行自我学习,使得神经网络的预测误差小于设定误差;输入该站点(A)前一段时间的水位和若干个上游站点(B、C、D …)的水位数据,基于神经网络预测该站点(A)水位。
权利要求书2页 说明书5页 附图1页CN 108510103 A 2018.09.07C N 108510103A1.一种基于神经网络预测水位的方法,该方法根据若干个上游站点(B、C、D…)的水位来预测下游某一站点A的水位,其特征在于:该方法它包括以下步骤:1)确定输入信号根据各站点的关系, 下游某一站点(A)的水位与该站点(A)的前一段时间的水位相关,并且与该站点(A)上游的若干个上游站点(B、C、D…)的对应的该瞬间的水位相关,根据已有数据分析,水从上游站点(B、C、D…)流到下游的该站点(A)耗时分别为t1、t2和t3…分钟,选取上游站点(B、C、D…)的前2t1- t1、2t2- t2和2t3- t3…分钟的水位数据,以及该站点(A)的前U分钟的水位数据作为输入信号;2)建立一个神经网络该神经网络包括:输入层(1)、隐含层(3)和输出层(5),输入层(1)包括并列的若干个输入点(2),隐含层(3)包括并列的若干个节点(4),输出层(5)包括一个输出点,每个输入点(2)的输出均作为每个节点(4)的输入,每个节点(4)的输出均作为输出层(5)的输入,输出层(5)输出一个信号;3)让神经网络进行自我学习将上游站点(B、C、D…)的前2t1- t1、2t2- t2、2t3- t3…每分钟的水位数据和该站点(A)的前U分钟的每分钟的水位数据中每一个数据作为一个输入点(2)的输入数据,将上述输入数据输入步骤2)的该站点(A)的神经网络中,让神经网络进行自我一次学习,经过若干次自我学习,使得神经网络的预测误差小于设定误差,得到该站点(A)的神经网络;4)基于神经网络预测该站点(A)水位把上游站点(B、C、D…)的前2t1- t1、2t2- t2和2t3- t3…水位数据和该站点(A)的前U分钟的水位数据作为步骤3)的该站点(A)的神经网络的若干个输入点(2)的输入数据,根据步骤3)的该站点(A)的神经网络得到该站点(A)的水位。
第一部分、自动控制原理一、是开环控制什么是闭环控制?开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器的输出没有影响。
在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。
闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。
闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。
二、什么是定值系统,随动系统?定值调节系统即简单调节系统一般是由测量元件、调节器和执行器组成的控制系统,生产过程中的控制大多数属于这一类。
它可以是使变量保持在常数的定值调节,也可以是使变量跟踪变化的随动调节。
随动就是指你的控制系统需要达到的目标值是不断变化的。
恒值调节就是你通过调节控制所需要达到的目标是已知固定的,如液位控制、温度控制、压力控制,后者在工业过程和日常生活中更为多见三、控制系统的组成,各部分的作用主要包括检测元件变送器控制器执行器和控制对象各个部分的作用见课本四、经典控制理论与现代控制理论有什么区别从控制对象来说。
经典的控制理论主要是针对单输入单输出系统进行讨论和研究的理论,而现代控制理论主要是针对单输入多输出,多输入单输出,多输入多输出的系统进行的讨论和研究的理论。
从研究方法来说。
经典的控制理论主要是传递函数---时域分析法,根轨迹法,频率响应法现代控制理论主要是主要是状态空间描述研究方法。
从实际应用来说。
经典的控制理论主要是从火炮控制系统设计的过程中发展出来的,现代控制理论主要是主要是复杂多变量控制系统的出现而发展起来的。
包括航天航空的发展等五、什么是智能控制,智能控制有哪些?在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。
基于HJI理论的移动机器人神经网络自适应控制移动机器人技术的发展给现代社会带来了许多便利和创新。
为了使移动机器人在各种环境中能够实现高效且安全的自主行为,控制算法的设计成为了一个重要的研究领域。
本文将介绍基于HJI(哈密顿-雅可比-伊凡斯)理论的移动机器人神经网络自适应控制算法,以提高移动机器人的自主性和适应性。
一、HJI理论简介HJI理论是一种在非线性系统控制中广泛应用的数学工具。
它基于动态规划和最优控制的思想,通过解决哈密顿-雅可比-伊凡斯偏微分方程,得到系统的最优控制输入。
应用HJI理论可以使得移动机器人在复杂和不确定的环境中做出最优的决策,从而实现精确而高效的控制。
二、移动机器人神经网络自适应控制的基本原理神经网络是一种模拟人脑神经元网络结构的数学模型。
通过对大量样本数据的学习和训练,神经网络可以实现对输入和输出之间的映射关系建模。
在移动机器人控制中,结合神经网络和HJI理论,可以实现自适应控制,使机器人能够根据环境的变化动态调整控制策略。
具体而言,移动机器人的控制器可以通过神经网络学习和适应环境中的变化。
神经网络的输入可以是机器人周围环境的传感器信息,如视觉、声音等,输出则为机器人的控制指令,如速度、方向等。
通过不断地更新神经网络的权重和偏置,使其能够根据环境反馈的信息调整控制策略,并在动态环境中实时响应。
三、基于HJI理论的移动机器人神经网络自适应控制方法1. 确定系统动态模型:首先需要根据移动机器人的物理特性和运动学方程建立系统的动态模型。
这个模型将用于计算HJI偏微分方程的解,并作为神经网络的训练样本。
2. 建立神经网络模型:在确定系统动态模型之后,可以构建适当的神经网络结构来建模控制器。
选择合适的网络拓扑和激活函数,并根据需要确定网络的层数和神经元个数。
3. 学习与适应:将机器人在真实环境中采集到的传感器数据作为神经网络的输入,并利用系统动态模型计算出的最优控制指令作为输出,进行神经网络的训练和学习。
权值自动更新的方法
权值自动更新的方法主要有以下两种:
1. 利用梯度下降法进行权值更新。
具体步骤如下:计算损失函数对权值的梯度,然后将梯度乘以学习率,再根据计算出的梯度对权值进行更新。
2. 利用反向传播算法进行权值更新。
具体步骤如下:首先前向传播输入数据,计算出输出值和损失函数值;然后根据损失函数对权值的偏导数,计算出梯度;最后将梯度乘以学习率,再根据计算出的梯度对权值进行更新。
以上方法仅供参考,建议查阅相关书籍或咨询专业人士以获取更全面准确的信息。
华北电力大学毕业设计(论文)题目基于RBF神经网络整定的PID控制器设计及仿真基于RBF神经网络整定的PID控制器设计及仿真摘要目前,因为PID控制具有简单的控制结构,可通过调节比例积分和微分取得基本满意的控制性能,在实际应用中又较易于整定,所以广泛应用于过程控制和运动控制中,尤其在可建立精确模型的确定性控制系统中应用比较多。
然而随着现代工业过程的日益复杂,对控制要求的逐步增高(如稳定性、准确性、快速性等),经典控制理论面临着严重的挑战。
对工业控制领域中非线性系统,采用传统PID 控制不能获得满意的控制效果。
采用基于梯度下降算法优化RBF神经网络,它将神经网络和PID控制技术融为一体,既具有常规PID控制器结构简单、物理意义明确的优点,同时又具有神经网络自学习、自适应的功能。
因此,本文通过对RBF神经网络的结构和计算方法的学习,设计一个基于RBF神经网络整定的PID控制器,构建其模型,进而编写M语言程序。
运用MATLAB软件对所设计的RBF神经网络整定的PID控制算法进行仿真研究。
然后再进一步通过仿真实验数据,研究本控制系统的稳定性,鲁棒性,抗干扰能力等。
关键词:PID;RBF神经网络;参数整定SETTING OF THE PID CONTROLLER BASED ON RBF NEURAL NETWORK DESIGN AND SIMULATIONAbstractAt present, because the PID control has a simple control structure, through adjusting the proportional integral and differential gain basic satisfactory control performance, and is relatively easy to setting in practical application, so widely used in process control and motion control, especially in the accurate model can be built more deterministic control system application. With the increasingly complex of the modern industrial process, however, increased step by step to control requirements (e.g., stability, accuracy and quickness, etc.), classical control theory is faced with severe challenges. Non-linear systems in industrial control field, using the traditional PID control can not obtain satisfactory control effect. Optimized RBF neural network based on gradient descent algorithm, it will be integrated neural network and PID control technology, with a conventional PID controller has simple structure, physical meaning is clear advantages, at the same time with neural network self-learning, adaptive function. Therefore, this article through to the RBF neural network structure and the calculation method of learning, to design a setting of the PID controller based on RBF neural network, constructs its model, and then write M language program. Using the MATLAB software to design the RBF neural network setting of PID control algorithm simulation research. Data and then further through simulation experiment, the control system stability, robustness, anti-interference ability, etc.Keywords: PID; RBF neural network; Parameter setting目录摘要 (Ⅰ)Abstract (Ⅱ)1 绪论 (1)1.1 课题研究背景及意义 (1)1.2神经网络的发展历史 (3)2 神经网络 (6)2.1神经网络的基本概念和特点 (6)2.2人工神经网络构成的基本原理 (7)2.3神经网络的结构 (8)2.3.1前馈网络 (8)2.3.2 反馈网络 (8)2.4神经网络的学习方式 (9)2.4.1监督学习(有教师学习) (9)2.4.2非监督学习(无教师学习) (9)2.4.3再励学习(强化学习) (9)2.5 RBF神经网络 (10)2.5.1 RBF神经网络的发展简史 (10)2.5.2 RBF的数学模型 (10)2.5.3被控对象Jacobian信息的辨识算法 (11)2.5.4 RBF神经网络的学习算法 (12)2.6 本章小结 (14)3 PID控制器 (14)3.1 PID控制器简介 (14)3.2 经典PID控制原理 (14)3.3 现有PID控制器参数整定方法 (16)3.4 PID控制的局限 (17)3.5本章小结 (17)4 基于RBF神经网络整定的PID控制器设计 (17)4.1 RBF神经网络的PID整定原理 (17)4.2 神经网络PID控制器的设计 (18)4.3 本章小结 (19)5 仿真分析 (19)5.1 系统的稳定性分析 (19)5.2 系统抗干扰能力分析 (21)5.3 系统鲁棒性分析 (22)5.4 本章小结 (24)结论 (25)参考文献 (26)致谢 (27)附录仿真程序 (28)1 绪论1.1 课题研究背景及意义PID控制器(按比例、积分和微分进行控制的调节器)是最早发展起来的应用经典控制理论的控制策略之一,是工业过程控制中应用最广泛,历史最悠久,生命力最强的控制方式,在目前的工业生产中,90%以上的控制器为PID控制器。
神经网络原理及BP网络应用实例摘要:本文主要对神经网络原理进行系统地概述,再列举BP网络在曲线逼近中的应用。
神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自适应动力系统。
神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。
随着计算机的发展,目前已经提出了多种训练算法和网络模型,其中应用最广泛的是前馈型神经网络。
本文将介绍人工神经网络的基本概念、基本原理、BP神经网络、自适应竞争神经网络以及神经网络的应用改进方法。
关键字:神经网络;收敛速度;BP网络;改进方法The principle of neural network and the applicationexamples of BP networkAbstract:Neural network is a cross discipline which now developing very rapidly, it is the nonlinearity adaptive power system which made up by abundant of the processing units . The neural network has features such as distributed storage, parallel processing, high tolerance and good self-learning, adaptive, associate, etc. Currently various training algorithm and network model have been proposed , which the most widely used type is Feedforward neural network model. Feedforward neural network training type used in most of the method is back-propagation (BP) algorithm. This paper will introduces the basic concepts, basic principles, BP neural network, adaptive competitive neural network and the application of artificial neural network.Keywords:neural network,convergence speed,BP neural network,improving method1 神经网络概述1.1 生物神经元模型人脑是由大量的神经细胞组合而成的,它们之间相互连接。
控制系统的小波神经网络控制方法随着科技的发展和应用需求的增加,控制系统在各个领域中扮演着重要的角色。
而小波神经网络作为一种新兴的控制方法,在控制系统中也展现出了广泛的应用前景。
本文将介绍控制系统中的小波神经网络控制方法,并探讨其在实际应用中的效果和优势。
第一部分:小波神经网络的基本特点小波神经网络是一种将小波分析和神经网络相结合的控制方法。
其基本特点有以下几个方面:1. 非线性能力强:小波神经网络通过神经元之间的连接和权值的调整,可以实现对非线性系统的建模和控制。
2. 适应性调整能力好:小波神经网络具有自动学习和适应环境变化的能力,可以根据实际情况自动调整网络的参数。
3. 高效性:小波神经网络采用了小波分析的方法,可以对信号进行多尺度表示,提高了系统的控制效果和响应速度。
第二部分:小波神经网络控制方法的步骤小波神经网络的控制方法通常包括以下几个步骤:1. 数据采集和预处理:首先需要采集控制系统的输入和输出信号,并对其进行预处理,去除噪声和异常值。
2. 网络结构设计:根据实际需求和系统特点,设计小波神经网络的结构,包括神经元的数量和各层之间的连接关系。
3. 参数设置和初始化:设置网络的参数,包括学习率、权值范围等,并进行初始化。
4. 训练网络:利用采集到的数据对小波神经网络进行训练,通过不断调整神经元之间的连接权值,使网络输出接近于期望输出。
5. 模型验证和调整:训练完成后,对网络进行验证和调整,确保其在实际环境中的控制效果和稳定性。
6. 实时控制:将训练好的小波神经网络应用于实际控制系统中,实现对系统的实时控制和监测。
第三部分:小波神经网络控制方法的实际应用小波神经网络控制方法在各个领域中都有广泛的应用。
以下是几个典型的实际应用案例:1. 智能交通系统:小波神经网络可以应用于智能交通系统中的交通流量控制和优化,提高道路通行效率和交通安全性。
2. 机器人控制:小波神经网络可以应用于机器人控制系统中,实现对机器人的智能导航和任务执行。
基于BP 神经网络的自校正PID 控制研究摘 要: 基于反向传播BP 算法的神经网络具有很强的学习能力,适应能力.本文详细叙述了BP 算法的原理,并将改进的BP 神经网络应用在传统的PID 控制中,克服了PID 控制在参数的调整过程中对于系统模型过分依赖的缺点.利用MATLAB 仿真的结果表明基于BP 神经网络的自校正控制能够使传统PID 控制的参数逼近最优达到很好的控制效果. 关键词: BP 算法,神经网络,PID 控制1引言随着科学技术的发展,人们需要加以控制的过程和系统越来越复杂,许多系统具有大型,复杂和强烈非线性的特点.对这些系统进行有效准确的控制就非常的困难.传统的PID 控制是通过对偏差的比例(P),积分(I),微分(D)的线性组合构成控制向量对被控对象进行控制.它算法结构简单,但是,当被控对象具有非线性,时变不确定性和难以建立精确的数学模型时,PID 控制器参数整定不良,性能欠佳,不能达到理想的控制效果.随着人们对神经网络的研究,基于BP 算法的神经网络以其自学习,自适应及逼近任意函数的能力在控制领域得到应用,将BP 神经网络和传统的PID 控制相结合构成的比例,积分,微分神经元控制器,不仅克服了PID 控制的缺陷,而且具有快速的学习能力,快速的适应性,良好的性能和鲁棒性.因此,可以通过神经网络对系统性能的学习来达到最佳的比例,积分,微分组合,实现最佳的PID 控制效果.2 神经网络的BP 算法2.1 神经网络的结构BP 神经网络是控制领域中应用最多的神经网络,它是多层神经元彼此以前馈方式连接组成的网络,网络中没有信号反馈,只有相邻层神经元,每个神经元首先完成输入信号与连接权值的内积计算,然后通过一个非线性函数作用产生输出.BP 神经网络通常由输入层,输出层和若干隐层构成每层由若干个结点组成, 每一个结点表示一个神经元,上层结点与下层结点之间通过权值联接, 同一层结点之间没有联系。
基于深度神经网络的自适应PID控制自适应 PID 控制是现代控制理论中的一种重要方法,它通过不断地对实际控制系统的反馈信息进行分析,来实现对系统参数的自适应优化,从而达到更优的控制效果。
在传统的控制方法中,PID 控制器是最常见的一种控制器,它通过改变比例、积分、微分三个参数来控制系统的输出行为。
虽然 PID 控制的思想简单而直观,但它往往需要通过人工调整控制器参数才能达到最佳的控制效果,这使得传统的PID 控制方法在复杂的工业控制系统中应用受到了很大的限制。
近年来,随着深度学习技术的快速发展,越来越多的控制问题开始通过深度神经网络来解决。
深度神经网络通过多层的非线性映射来实现复杂的数据处理和表达,具有非常强的模型适应力和自适应能力,并且能够从大量的数据中学习到系统的隐含规律,从而提高控制性能。
基于深度神经网络的自适应 PID 控制是一个典型的应用场景。
它通过将深度神经网络嵌入到PID 控制器中,实现对系统参数的自适应学习,从而优化控制效果。
具体实现上,基于深度神经网络的自适应PID 控制可以分为以下两个步骤:首先,通过采集真实系统的数据,训练一个深度神经网络,用来对系统的动态特性进行建模和预测。
其次,在 PID 控制器中将这个深度神经网络作为预估器,根据预测误差来自适应调整 PID 控制器的参数,从而达到更优的控制效果。
在实际应用中,基于深度神经网络的自适应 PID 控制已经得到了广泛的应用。
例如在工业自动化领域,它可以通过对温度、压力等参数的自适应调整来实现对化工过程的控制;在机器人控制中,它可以实现对机械臂的精确控制和路径规划;在无人驾驶汽车中,它可以通过对车速、转向等参数的自适应调整来实现对车辆的自动驾驶。
总之,基于深度神经网络的自适应 PID 控制是现代控制理论中的一种重要方法,它能够实现对复杂工业系统的自适应优化。
随着深度学习技术的发展,我们相信基于深度神经网络的自适应 PID 控制将会在更多的领域得到应用,并取得更加突出的成果。
PID调节在液位控制上的应用摘要:现如今,大部分的过程控制系统仍采用PID控制策略,这是因为这种控制具有直观、实现简易和鲁棒性能良好等一系列优点。
液位控制系统是过程控制的重要研究模型,对液位控制系统的研究具有显著的理论和实际意义。
本文主要就是针对PID调节在液位控制上的应用来进行分析。
关键词:液位控制;PID调节;应用1、智能PID控制系统设计本控制系统属于计算机监督控制系统(SCC)。
计算机通过对液位控制系统中的控制对象离散采样,运用智能PID控制算法控制执行机构输出,从而实现对液位系统的恒定液位控制。
在工业控制对象中,液位系统是典型的一阶系统,时间常数比较大,有一定时延。
为此系统采用智能PID控制策略,改善系统的动态响应过程。
并使用Microsoft Visual C++及MFC类库编写了运行于Win-dovesNT/2000下的Win32控制程序。
软件的标准化体现在模块化的设计,符合工业标准的人机界面以及良好的代码可扩充性、可重用性。
1.1、液位控制系统组成图1液位控制系统结构框图图1为液位控制系统结构框图,系统采用闭环控制方案。
系统之中的A/D 采集卡将实际输出液位离散采样处理,反馈至输入端。
数字调节器采用智能PID 算法,输出离散控制信号,经过D/A发送卡采样保持,转换成为模拟控制电平信号,以控制执行机构(变频器和水泵)输出,控制对象在执行机构的控制下输出实际液位。
系统控制程序是使用Visual C++程序设计工具和Advantech设备库函数,自行设计制作的一款控制程序。
Advantech Devic Manager是研华公司提供的设备管理软件,用于研华系列设备的驱动加载,逻辑设备建立,设备在线测试及用户程序接口提供。
1.2、智能PID控制算法在液位控制系统中,由于液位具有大滞后、出水阀口的非线性、数学模型难以准确建立等特点,而常规的PID算法控制易出现较大的超调,系统的动态性能也较差,难以获得满意的控制效果。
智能控制系统中的神经网络控制算法研究智能控制系统,作为现代智能技术的重要应用领域之一,正逐渐在各个行业和领域中得到广泛应用。
智能控制系统的核心是算法,而神经网络控制算法作为其中一种重要技术手段,正在引起学术界和工业界的高度关注和广泛研究。
本文将从神经网络控制算法的基本原理、应用领域以及未来的发展方向等角度进行深入探讨。
第一部分:神经网络控制算法的基本原理神经网络控制算法是通过模拟人类神经系统的工作原理,将模糊控制、遗传算法等多种智能算法与控制系统相结合,形成一种新的控制方法。
神经网络控制算法的基本原理是神经元之间通过权值的连接来传递信号,并通过训练来调整神经元之间的连接权值,从而实现对控制系统的优化调节。
神经网络控制算法的基本结构包括输入层、隐层和输出层。
输入层接收外部的控制信号,隐层是神经网络的核心部分,通过神经元之间的连接进行信息传递和处理,输出层将隐层的结果转化为实际控制信号。
第二部分:神经网络控制算法的应用领域神经网络控制算法具有很强的适应性和优化能力,因此在许多领域都得到了广泛应用。
在工业自动化领域,神经网络控制算法可以对复杂的工业过程进行建模和控制,例如化工过程中的温度、压力和流量等参数控制。
在机器人技术领域,神经网络控制算法可以实现机器人的智能控制和路径规划,提高机器人的自主性和适应性。
在金融领域,神经网络控制算法可以用于股票价格预测和交易策略优化,提高投资者的收益率和风险控制能力。
第三部分:神经网络控制算法的未来发展方向虽然神经网络控制算法已经在多个领域得到应用,但仍然面临一些挑战和难题。
首先,神经网络控制算法的鲁棒性和可解释性需要进一步提高。
目前的神经网络模型往往是黑箱模型,难以解释其内部的决策过程,这在某些关键领域(如医疗和安全)可能会受到限制。
其次,神经网络控制算法在处理大规模数据和复杂问题时的计算复杂度较高。
如何提高算法的计算效率和准确性是一个亟待解决的问题。
此外,在人工智能和大数据的推动下,深度学习等新兴技术也对神经网络控制算法的发展提出了新的要求和机遇。
利用模糊神经网络控制解决问题的原理及方法通过课程学习,我了解了模糊控制和神经网络控制解决问题的基本原理和方法。
通过查阅资料, 了解到模糊控制和神经网络控制在实际生活中如何解决问题。
我参考火灾探测系统为例,介绍模糊控制解决问题的原理及方法。
首先,简要介绍一下 Bp 神经网络控制和模糊控制的原理。
1. Bp 神经网络的结构及算法BP 网络可以有多层, 但为叙述简捷以三层为例导出计算公式。
设 BP 网络为三层网络,输入神经元以 i 编号,隐蔽层神经元以 j 编号,输出层神经元以 k 编号,示意图如图 1-1所示,其具体形式在下面给出,隐蔽层第 j 个神经元的输入为:∑=ii ji j o w net ,第 j 个神经元的输出为 (j j net g o =,输出层第 k 个神经元的输入为∑=j kj k o w net ,相应的输出为 (k k net g o =,式中 g 为 sigmoid 型函数, g(x= (11 (Θ+-+=x e x g , 式中ʘ为阈值或偏置值。
ʘ˃0则使 sigmoid 曲线沿横坐标左移, 反之则右移。
因此, 各神经元的输出应为∑Θ+-+=ij i ji j o w o (exp(1(1、∑Θ+-+=jk j kj k o w o(exp(1(1图 1-1神经网络结构图BP 网络学习过程中的误差反向传播过程是通过使一个目标函数(实际输出与希望输出之间的误差平方和最小化来完成的, 可以利用梯度下降法导出计算公式。
在学习过程中,设第 k 个输出神经元的希望输出为 pk t ,而网络输出为 pk o ,则系统平均误差为∑∑-=p kpk pk o t E 2 (21,为了表示方便,省去下标 p ,平均误差可写成∑-=kk k o t E 2 (21,式中平均误差 E 也称为目标函数。
根据梯度下降法, 权值的变化项∆ kj w 与ƏE/Əkj w 成正比,即∆ kj w =-ƞƏE/Əkj w ,由上述各公式可得:∆ kj w =-ƞƏE/Əkj w =j k k k k kjk k k k o o o o t net o E 1( ((--=∂∂∂∂∂∂-ηη, 记 j k k k k k o o o o t 1( (--=δ,对于隐含层神经元,也可写成∆ ji w =-ƞƏE/Əji w =i j j jji j j j j o o o E net o E 1((-∂∂-=∂∂∂∂∂∂-ηη, 1(j j j j o o E -∂∂-=δ,由于ƏE/Əj o 不能直接计算 , 而是以参数的形式表示 , 即 -ƏE/Əj o =-∑∑∑∑∑=∂∂-=∂∂∂∂-=∂∂∂∂kkj k kj k k j j j kj k k j k k k w w E o w E net E δ( (((, 则导出各个权重系数的调整量为∆ kj w j k k k k o o o o t 1( (--=η, ∆ ji w =i j o ηδ, 式中ƞ称为学习效率, ]1([j j kkj k j o o w -=∑δδ,1( (k k k k k o o o t --=δBP 网络的学习算法的具体步骤如下:1. 从训练本集中取某一样本,把它的输入信息输入到网络中2. 由网络正向计算出各层节点的输出3. 计算网络的实际输出与期望输出的误差4. 从输入层起始反向计算到第一个隐层,按一定原则向减小误差方向调整网络的各个联接权值5. 对训练样本集中的每一个样本重复以上步骤,直到对整个训练样本集的误差达到要求为止。
基于神经网络的智能控制算法研究智能控制算法作为目前发展最为迅速的控制技术之一,借助于神经网络的强大表达能力和自适应学习能力,已经在各个领域得到了广泛应用。
本文将对基于神经网络的智能控制算法进行深入研究,探索其工作原理、应用场景以及发展趋势。
智能控制算法是一种能够模拟人脑神经元网络结构和学习机制的控制方法。
其核心思想是使用神经网络模型对传统控制算法进行优化和增强,通过网络的自适应学习和优化能力,实现对复杂系统的智能化控制和优化。
首先,让我们来了解一下神经网络的基本概念。
神经网络是一种由大量人工神经元互联而成的网络结构,模拟人脑神经元之间的连接关系。
神经网络具有分布式存储、并行处理和自适应学习的特点,能够处理大量非线性、高度耦合的系统。
在智能控制算法中,神经网络被用作模型的学习器,通过对输入输出数据的学习和训练,获得系统的非线性映射关系,从而实现对复杂系统的智能化控制。
基于神经网络的智能控制算法的出现,极大地提升了传统控制算法的性能。
传统控制算法通常需要依靠专家经验和精确的数学模型,然而,对于某些复杂的非线性系统来说,这种方法往往难以得到令人满意的效果。
而基于神经网络的智能控制算法则可以通过训练神经网络,从数据中学习到系统的非线性映射关系,无需依赖精确的模型和专家知识,适用于那些模型难以建立的场景。
此外,基于神经网络的智能控制算法还具有自适应学习的能力,能够根据系统的变化自动调整网络参数,适应不同的工况和环境。
在实际应用中,基于神经网络的智能控制算法已经被广泛应用于各个领域。
例如,智能驾驶领域中的自动驾驶系统,通过神经网络学习车辆的行驶特征和环境感知能力,实现对车辆的自主控制;智能化工领域,通过神经网络预测化工过程中的异常状态,并采取相应的控制措施保证生产安全和质量稳定;智能机器人领域,通过神经网络学习机器人的运动规划和感知能力,实现对复杂环境下的自主导航和交互。
基于神经网络的智能控制算法凭借其强大的非线性建模能力和自适应性,为这些领域的智能化发展提供了重要支持。