湘教版数学九年级上册期末试题
- 格式:doc
- 大小:155.00 KB
- 文档页数:5
湘教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.已知一元二次方程x2+x﹣1=0,下列判断正确的是()A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定2.已知如图,DE∥BC,,则=()A.B.C.2 D.33.若a>3,则+=()A.1 B.﹣1 C.2a﹣5 D.5﹣2a4.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.5.已知粉笔盒里只有2支红色粉笔和3支白色粉笔,每支粉笔除颜色外其他均相同,现从中任取一支粉笔,则取出白色粉笔的概率是()A.B.C.D.6.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40︒B.3sin50︒C.3tan40︒D.3tan50︒7.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)8.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是()A .15mB .20mC .20mD .10m9.将二次函数y=x2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+210.如图是二次函数y=ax2+bx+c (a≠0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③a ﹣b+c=﹣9a ;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题11.某工厂今年3月份的产值为50万元,4月份和5月份的总产值为132万元.若设平均每月增长的百分率为x ,则列出的方程为:_____.12.方程x2-4x=0的解为______.13.若△ABC ∽△A′B′C′,且''AB A B =34,△ABC 的周长为12 cm ,则△A′B′C′的周长为_______cm.14.抛物线y=x2﹣2x ﹣1与x 轴的交点坐标分别是(x1,0),(x2,0),则+=_____.15.如图,在平面直角坐标系中有两点A (6,0),B (0,3),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为_____时,△BOC 与△AOB 相似.16.在Rt△ABC中,∠C=90°,AC=BC,那么sinA=________.三、解答题17.计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.18.解方程:x2﹣10x+25=7.19.如图所示,在宽为20米,长为32米的矩形空地上修的两条宽度相同且互相垂直的水泥路,余下部分作为草地.现要使草地的面积为540平方米,求水泥路的宽应为多少米?20.在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.21.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE的长(结果保留根号).22.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)23.有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.现要把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB,AC上.(1)如果此矩形可分割成两个并排放置的正方形,如图1,此时,这个矩形零件的两条邻边长分别为多少mm?请你计算.(2)如果题中所要加工的零件只是矩形,如图2,这样,此矩形零件的两条邻边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条邻边长.24.如图,在平面直角坐标系中,四边形ABCD是等腰梯形,AD∥BC,AB=DC,BC在x 轴上,点A在y轴的正半轴上,点A,D的坐标分别为A(0,2),D(2,2),AB=2,连接AC.(1)求出直线AC的函数解析式;(2)求过点A,C,D的抛物线的函数解析式;(3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标.25.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.(1)要使每天获得利润700元,请你帮忙确定售价;(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.26.如图8,AE是位于公路边的电线杆,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起拉线.已知公路的宽AB为8米,电线杆AE的高为12米,水泥撑杆BD高为6米,拉线CD与水平线AC的夹角为67.4°.求拉线CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).(参考数据:sin67.4°≈1213,cos67.4°≈513,tan67.4°≈125)参考答案1.B【解析】试题分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解:∵a=1,b=1,c=﹣1,∴△=b2﹣4ac=12﹣4×1×(﹣1)=5>0,∴方程有两个不相等实数根.故选:B.考点:根的判别式.2.B【解析】试题分析:根据DE∥BC,证得△ADE∽△ABC,再根据相似三角形对应边的比相等,可证DE:BC=AD:AB,即可求解.解:∵,∴AD:AB=1:3.∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB=1:3.故选B.考点:相似三角形的判定与性质.3.C【解析】试题分析:根据二次根式的性质,即可解答.解:∵a>3,∴a﹣2>0,3﹣a<0,+==a﹣2+a﹣3=2a﹣5.故选:C.考点:二次根式的性质与化简.4.B【解析】试题分析:本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.解:由题意,设BC=4x,则AB=5x,AC==3x,∴tanB===.故选B.考点:锐角三角函数的定义;互余两角三角函数的关系.5.C【解析】试题分析:由粉笔盒里只有2支红色粉笔和3支白色粉笔,每支粉笔除颜色外其他均相同,直接利用概率公式求解即可求得答案.解:∵粉笔盒里只有2支红色粉笔和3支白色粉笔,每支粉笔除颜色外其他均相同,∴现从中任取一支粉笔,取出白色粉笔的概率是:=.故选C.考点:概率公式.6.D【详解】试题分析:∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,tanACBBC=,∴tan3tan50AC BC B=⋅=︒.故选D.考点:1.直角三角形两锐角的关系;2.锐角三角函数定义.7.A【详解】试题分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选A.考点:位似变换;坐标与图形性质.8.C【解析】试题分析:在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解:在Rt△ABC中,∵BC=10m,tanA=1:,∴AC=BC÷tanA=10m,∴AB==20(m).故选C.考点:解直角三角形的应用-坡度坡角问题.9.D【解析】试题分析:本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式即可.解:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.故选:D.考点:二次函数的三种形式.10.C【解析】试题分析:①根据直线x=﹣1是对称轴,确定b﹣2a的值;②根据x=﹣2时,y>0确定4a﹣2b+c的符号;③根据x=﹣4时,y=0,比较a﹣b+c与﹣9a的大小;④根据抛物线的对称性,得到x=﹣3与x=1时的函数值相等判断即可.解:①∵直线x=﹣1是对称轴,∴﹣=﹣1,即b﹣2a=0,①正确;②x=﹣2时,y>0,∴4a﹣2b+c>0,②错误;∵x=﹣4时,y=0,∴16a﹣4b+c=0,又b=2a,∴a﹣b+c=﹣9a,③正确;④根据抛物线的对称性,得到x=﹣3与x=1时的函数值相等,∴y1>y2,④正确,故选:C.考点:二次函数图象与系数的关系.11.50(1+x)+50(1+x)2=132【详解】试题分析:增长率问题,一般用增长后的量=增长前的量×(1+增长率),关系式为:4月份的产值+5月份的产值=132,把相关数值代入即可求解.解:4月份的产值为50×(1+x),5月份的产值在4月份产值的基础上增加x,为50×(1+x)×(1+x),则列出的方程是50(1+x)+50(1+x)2=132,故答案为50(1+x)+50(1+x)2=132.考点:由实际问题抽象出一元二次方程.12.【详解】试题分析:x2﹣4x提取公因式x,再根据“两式的乘积为0,则至少有一个式子的值为0”求解.解:x2﹣4x=0x(x﹣4)=0x=0或x﹣4=0x1=0,x2=4故答案是:x1=0,x2=4.考点:解一元二次方程-因式分解法.13.16cm【详解】∵△ABC∽△A′B′C′,3 ''4 ABA B,∴C△ABC:C△A′B′C′=3:4,又∵C△ABC=12cm,∴C△A′B′C′=16cm.故答案为16.14.﹣2【解析】试题分析:根据抛物线与x轴的交点问题得到x1、x2为方程x2﹣2x﹣1=0的两根,则利用根与系数的关系得到x1+x2=2,x1+x2=﹣1,然后把+通分后利用整体代入的方法计算即可.解:∵抛物线y=x2﹣2x﹣1与x轴的交点坐标分别是(x1,0),(x2,0),∴x1、x2为方程x2﹣2x﹣1=0的两根,∴x1+x2=2,x1+x2=﹣1,∴+===﹣2.故答案为﹣2.考点:抛物线与x轴的交点.15.(﹣1.5,0),(1.5,0),(﹣6,0)【分析】本题可从两个三角形相似入手,根据C点在x轴上得知C点纵坐标为0,讨论OC与OA对应以及OC与OB对应的情况,分别讨论即可.【详解】解:∵点C在x轴上,∴∠BOC=90°,两个三角形相似时,应该与∠BOA=90°对应,若OC与OA对应,则OC=OA=6,C(﹣6,0);若OC与OB对应,则OC=1.5,C(﹣1.5,0)或者(1.5,0).∴C点坐标为:(﹣1.5,0),(1.5,0),(﹣6,0).故答案为(﹣1.5,0),(1.5,0),(﹣6,0).考点:相似三角形的判定;坐标与图形性质.16.2【详解】AC BC =90C ∠=︒,∴A=45°,根据特殊角三角函数值,可得sinA=sin45°=22. 故答案为:22.考点:特殊角的三角函数值17.﹣3﹣.【解析】试题分析:直接利用特殊角的三角函数值以及负指数幂的性质以及零指数幂的性质、二次根式的性质化简进而求出答案.解:原式=﹣2×﹣3﹣3+1+2=﹣3﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.18.7x2=57【详解】试题分析:先变形,再开方,即可得出两个一元一次方程,求出方程的解即可. 试题解析:x2﹣10x+25=7,(x ﹣5)2=7,x ﹣5=±77x2=57考点:解一元二次方程-配方法.19.2m【详解】试题分析:把四块耕地拼到一起正好构成一个矩形,矩形的长和宽分别是(32﹣x )和(20﹣x ),根据矩形的面积公式,列出关于道路宽的方程求解.解:设水泥路的宽为x m ,则可列方程为:(32﹣x )(20﹣x )=540解得:x=2或x=50(不合题意,舍去),答:水泥路的宽为2m .考点:一元二次方程的应用.20.(1)y=x2﹣2x ﹣3;(2)(4,0).【解析】试题分析:(1)有顶点就用顶点式来求二次函数的解析式;(2)由于是向右平移,可让二次函数的y 的值为0,得到相应的两个x 值,算出负值相对于原点的距离,而后让较大的值也加上距离即可.解:(1)∵二次函数图象的顶点为A (1,﹣4),∴设二次函数解析式为y=a(x﹣1)2﹣4,把点B(3,0)代入二次函数解析式,得:0=4a﹣4,解得a=1,∴二次函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)令y=0,得x2﹣2x﹣3=0,解方程,得x1=3,x2=﹣1.∴二次函数图象与x轴的两个交点坐标分别为(3,0)和(﹣1,0),∴二次函数图象上的点(﹣1,0)向右平移1个单位后经过坐标原点.故平移后所得图象与x轴的另一个交点坐标为(4,0).考点:待定系数法求二次函数解析式;二次函数图象与几何变换.21.CE的长为(4+)米【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×,∵DH=1.5,∴,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE==((米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题22.E点,概率为1 3.【分析】先列表:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【详解】解:列表如下:1 2 31 2 3 42 3 4 53 4 5 6共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占2种,摸出的两个小球标号之和是6的占1种;所以棋子走E点的可能性最大,棋子走到E点的概率=39=13.考点:列表法与树状图法.23.(1)这个矩形零件的两条边长分别为mm,mm;(2)S的最大值为2400mm2,此时PN=60mm,PQ=80﹣×60=40(mm).【解析】试题分析:(1)由于矩形是由两个并排放置的正方形所组成,则可设PQ=ymm,则PN=2ymm,易证△APN∽△ABC,由相似三角形的性质解答即可;(2)设PN=x,用PQ表示出AE的长度,然后根据相似三角形对应高的比等于相似比列出比例式并用x表示出PN,然后根据矩形的面积公式列式计算,再根据二次函数的最值问题解答解:(1)设矩形的边长PN=2ymm,则PQ=ymm,∵PN∥BC,∴△APN∽△ABC,∴,即,解得y=,∴PN=×2=(mm),答:这个矩形零件的两条边长分别为mm,mm;(2)设PN=xmm,由条件可得△APN∽△ABC,∴,即,解得PQ=80﹣x.∴S=PN•PQ=x(80﹣x)=﹣x2+80x=﹣(x﹣60)2+2400,∴S的最大值为2400mm2,此时PN=60mm,PQ=80﹣×60=40(mm).考点:相似三角形的应用.24.(1)y=﹣x+2;(2)y=﹣x2+x+2;(3)点P的坐标为(﹣4,﹣4)或(﹣10,﹣28)或(6,﹣4).【解析】试题分析:(1)先在Rt△ABO中,运用勾股定理求出OB===2,得出B(﹣2,0),再根据等腰梯形的对称性可得C点坐标为(4,0),又A(0,2),利用待定系数法即可求出直线AC的函数解析式;(2)设所求抛物线的解析式为y=ax2+bx+c,将A,C,D三点的坐标代入,利用待定系数法即可求出抛物线的函数解析式;(3)先由点P(m,n)(n<0)在抛物线y=﹣x2+x+2上,得出m<﹣2或m>4,n=﹣m2+m+2<0,于是PM=m2﹣m﹣2.由于∠PMC=∠AOC=90°,所以当Rt△PCM与Rt△AOC相似时,有==或==2.再分两种情况进行讨论:①若m<﹣2,则MC=4﹣m.由==,列出方程=,解方程求出m的值,得到点P的坐标为(﹣4,﹣4);由==2,列出方程=2,解方程求出m的值,得到点P的坐标为(﹣10,﹣28);②若m>4,则MC=m﹣4.由==时,列出方程=,解方程求出m的值均不合题意舍去;由==2,列出方程=2,解方程求出m的值,得到点P的坐标为(6,﹣4).解:(1)由A(0,2)知OA=2,在Rt△ABO中,∵∠AOB=90°,AB=2,∴OB===2,∴B(﹣2,0).根据等腰梯形的对称性可得C点坐标为(4,0).设直线AC的函数解析式为y=kx+n,则,解得,∴直线AC的函数解析式为y=﹣x+2;(2)设过点A,C,D的抛物线的函数解析式为y=ax2+bx+c,则,解得,∴y=﹣x2+x+2;(3)∵点P(m,n)(n<0)在抛物线y=﹣x2+x+2上,∴m<﹣2或m>4,n=﹣m2+m+2<0,∴PM=m2﹣m﹣2.∵Rt△PCM与Rt△AOC相似,∴==或==2.①若m<﹣2,则MC=4﹣m.当==时,=,解得m1=﹣4,m2=4(不合题意舍去),此时点P的坐标为(﹣4,﹣4);当==2时,=2,解得m1=﹣10,m2=4(不合题意舍去),此时点P的坐标为(﹣10,﹣28);②若m>4,则MC=m﹣4.当==时,=,解得m1=4,m2=0,均不合题意舍去;当==2时,=2,解得m1=6,m2=4(不合题意舍去),此时点P的坐标为(6,﹣4);综上所述,所求点P的坐标为(﹣4,﹣4)或(﹣10,﹣28)或(6,﹣4).考点:二次函数综合题.25.(1)13元或15元(2)14元,最大利润为720元【解析】解:(1)设每件商品提高x元,则每件利润为(10+x-8)=(x+2)元,每天销售量为(200-20x)件,依题意,得:(x+2)(200-20x)=700.整理得:x2-8x+15=0.解得:x1=3,x2=5.∴把售价定为每件13元或15元能使每天利润达到700元;答:把售价定为每件13元或15元能使每天利润达到700元.(2)设应将售价定为x元时,才能使得所赚的利润最大为y元,根据题意得:y=(x-8)(200-)=-20x2+560x-3200, =-20(x2-28x )-3200,=-20(x2-28x+142)-3200+20×142 =-20(x-14)2+720,∴x=14时,利润最大y=720.答:应将售价提为14元时,才能使所赚利润最大,最大利润为720元.26.解:⑴在Rt ∆DBC 中,sin BDDCB CD ∠=, 666.512sin sin 67.413BD CD DCB ∴====∠(m ). ……………………………3分DF AE F ABDF ⊥作于,则四边形为矩形, …………………………4分8DF AB ∴==,6AF BD ==,6EF AE AF ∴=-=, ……………………5分,10Rt EFD ED ∆==在中(m ). ……………7分10 6.516.5L ∴=+=(m ) ……………………………………8分【解析】略。
一、选择题1.下列事件是必然事件的是( )A .打开电视机,正在播放动画片B .2022年世界杯德国队一定能夺得冠军C .某彩票中奖率是1%,买100张一定会中奖D .在一只装有5个红球的袋中摸出1球,一定是红球2.一位批发商从某服装制造公司购进60包型号为L 的衬衫,由于包装工人疏忽,在包裹中混进了型号为M 的衬衫,每包混入的M 号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M 号衬衫数不超过3的概率是( ) A .120 B .115 C .920 D .4273.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 4.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。
从袋中摸出4个球,下列属于必然事件的是( )A .摸出的4个球其中一个是绿球B .摸出的4个球其中一个是红球C .摸出的4个球有一个绿球和一个红球D .摸出的4个球中没有红球 5.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A 3B .332C .3D .332+6.如图,在三角形ABC 中,AB=2,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .π7.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .23B .3C .2D .22 8.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75°9.已知Rt ABC ∆中,两条直角边4AC =,3BC =,将ABC ∆绕斜边中点O 旋转,使直角顶点与点B 重合,得到与ABC ∆全等的EDB ∆,BE 边和AC 相交于点F ,则EF 的值是( )A .78B .1C .45D .2310.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D . 11.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x = 12.方程23x x =的解为( )A .3x =B .3x =-C .10x =,23x =D .10x =,23x =-二、填空题13.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球是黑球的概率为14,那么袋中的红球有_________个. 14.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.15.已知抛物线的解析式为21y ax bx =++,现从﹣1,﹣2,﹣3,4四个数中任选两个不同的数分别作为a 、b 的值,则抛物线21y ax bx =++与x 轴有两个交点的概率是_____. 16.如图,A ,B ,P 是半径为2的O 上的三点,45APB ∠=︒,则弦AB 的长为______.17.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为________.18.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.19.如图,在直角坐标系中,点A ,C 在x 轴上,且8AC =,10AB =,90ACB ∠=,抛物线经过坐标原点O 和点A ,若将点B 向右平移5个单位后,恰好与抛物线的顶点D 重合,则抛物线的解析式为_______.20.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.三、解答题21.交大附中 各班举行了“垃圾分类,从我做起”的主题班会,九年级三班的同学在班会课上进行了一个有关垃圾分类知识竞答的活动,他们上网查阅了相关资料,收集到如下四个图标,并将其制成编号为,,,A B C D 的四张卡片(除编号和内容外,其余完全相同) ,他们将这四张卡片背面朝上,洗匀放好.(1)从中随机抽取一张,恰好抽到“可回收物”的概率是(2)从中随机抽取一张(不放回),再从中随机抽一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“其他垃圾”和“有害垃圾”的概率(这四张卡片分别用它们的编号,,,A B C D 表示)22.某生活小区鲜奶店每天以每瓶3元的价格从奶场购进优质鲜奶,然后以每瓶6元的价格出售,如果当天卖不完,剩余的只有倒掉.店主记录了30天的日需求量(单位:瓶),整理得下表: 日需求量 26 27 28 29 30频数 5 8 7 6 4(1)求这30天内日需求量的众数;(2)假设鲜奶店在这30天内每天购进28瓶,求这30天的日利润(单位:元)的平均数;(3)以30记录的各需求量的频率作为各需求是发生的概率.若鲜奶店每天购进28瓶,求在这记录的30天内日利润不低于81元的概率.23.如图,AB ,AC 是⊙O 的弦,过点C 作CE AB ⊥于点D ,交⊙O 于点E ,过点B 作BF AC ⊥于点F ,交CE 于点G ,连接BE .(1)求证:BE BG =;(2)过点B 作BH AB ⊥交⊙O 于点H ,若BE 的长等于半径,4BH =,43AC =,求CD 的长.参考答案24.如图,△ABC 的顶点坐标分别为A (0,1),B (3,3),C (1,3).(1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1.(2)①画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2;②直接写出点B 2的坐标为 .25.阅读下列材料:春节回家是中国人的一大情结,春运车票难买早已是不争的事实.春节回家一般都要给父母、亲戚带点年货,坐车回去不好携带,加上普通小客车中签率低以及重大节假日高速公路小客车免费通行等因素,所以选择春节租车回家的人越来越多.这都对汽车租赁市场起到明显的拉动作用,出现了很多的租赁公司.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元.当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆.根据以上材料解答下列问题:设公司每日租出x辆车时,日收益为y元(日收益=日租金收入-平均每日各项支出).(1)公司每日租出x辆车时,每辆车的日租金收入为______元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益才能盈利?26.解方程:2250x x+-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据随机事件和必然事件定义一一判定即可,必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】解:A. 打开电视机,正在播放动画片,可能发生,也可能不发生,是随机事件,故此项错误;B. 2022年世界杯德国队一定能夺得冠军,可能发生,也可能不发生,是随机事件,故此项错误;C. 某彩票中奖率是1%,买100张一定会中奖,可能发生,也可能不发生,是随机事件,故此项错误;D. 在一只装有5个红球的袋中摸出1球,一定是红球,一定发生,所以是必然事件.故选:D.【点睛】该题考查的是对必然事件的概念的理解;必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.C解析:C【解析】由题意得760+2060=920,所以选C.3.D 解析:D【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1<<③为随机事件.4.B解析:B【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件.【详解】A.若摸出的4个球全部是红球,则其中一个一定不是绿球,故本选项属于随机事件;B.摸出的4个球其中一个是红球,故本选项属于必然事件;C.若摸出的4个球全部是红球,则不可能摸出一个绿球,故本选项属于随机事件;D.摸出的4个球中不可能没有红球,至少一个红球,故本选项属于不可能事件;故选B.【点睛】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.5.B解析:B【分析】作B点关于直径AC的对称点B′,过B′点作B′E⊥AB于E,交AC于F,如图,利用两点之间线段最短和垂线段最短可判断此时FB+FE的值最小,再判断△ABB′为等边三角形,然后计算出B′E的长即可.【详解】解:作B点关于直径AC的对称点B′,过B′点作B′E⊥AB于E,交AC于F,如图,则FB=FB′,∴FB+FE=FB′+FE=B′E,此时FB+FE的值最小,∵∠BAC=30°,∴∠B′AC=30°,∴∠BAB′=60°,∵AB=AB′,∴△ABB′为等边三角形,∵B′E⊥AB,∴AE=BE=32,∴B′E3=332,即BF+EF 33.故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.6.A解析:A【分析】过A作AD⊥BC,连接AF,求出∠FAE,再利用弧长计算公式计算EF的长即可.【详解】解:过A作AD垂直BC,连接AF,如图,∵22,30,45AB B C =∠=︒∠=︒,可得AD=CD=2∴AC=2,∵AC=AF∴∠AFC=∠C=45°,∴∠FAE=∠AFC-∠B=45°-30°=15°∴EF 的长为:152180π⨯=6π 故选:A【点睛】此题主要考查了弧长的计算,关键是掌握弧长计算公式. 7.A解析:A【分析】如图,连接OB 、OC .首先证明△OBC 是等边三角形,求出BC 、BM ,根据勾股定理即可求出OM .【详解】解:如图,连接OB 、OC .∵ABCDEF 是正六边形,∴∠BOC=60°,OB=OC=4,∴△OBC 是等边三角形,∴BC=OB=OC=4,∵OM ⊥BC ,∴BM=CM=2,在Rt △OBM 中,22224223OM OB BM -=-=,故选:A .【点睛】本题考查正多边形与圆、等边三角形的性质、勾股定理、弧长公式等知识,解题的关键是记住等边三角形的性质,弧长公式,属于基础题,中考常考题型.8.B解析:B【分析】连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.9.A解析:A【分析】由旋转的性质得O 为DE 中点,可证OB=OE ,∠OBE=∠E ,进而证明AF=BF ,然后设设AF=BF=x ,根据勾股定理求解即可.【详解】解:∵ABC ∆≌EDB ∆,∴BE=AC=4, ∠A=∠E , ∠C=∠DBE=90°.∵O 为AB 中点,且△ABC 绕点O 旋转,∴O 为DE 中点,∴OB=OE ,∴∠OBE=∠E ,∴∠OBE=∠A ,∴AF=BF ,设AF=BF=x ,则CF=4-x ,∵222BC CF BF +=,∴2223(4)x x +-=, ∴258x =, ∴258BF =, ∴257488EF BE BF =-=-=. 故选A .【点睛】本题考查了全等三角形的性质,直角三角形斜边上的中线等于斜边的一半,等腰三角形的判定与性质,以及勾股定理等知识,熟练掌握各知识点是解答本题的关键. 10.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,但不是中心对称图形,故此选项正确;B 、是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,是中心对称图形,故此选项错误;D 、不是轴对称图形,是中心对称图形,故此选项错误;故选A .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 11.D解析:D【分析】直接利用二次函数对称轴求法得出答案.【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2.故选:D .【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.12.C解析:C【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程变形得:x2-3x=0,分解因式得:x(x-3)=0,可得x=0或x-3=0,解得:x1=3,x2=0.故选:C.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.二、填空题13.9【分析】首先设袋中的黑球有x个根据题意得:解此分式方程即可求得答案【详解】解:设袋中的黑球有x个根据题意得:解得:x=3即袋中的黑球有3个所以红球个数:12-3=9(个)故答案为9【点睛】此题考查解析:9【分析】首先设袋中的黑球有x个,根据题意得:1124x=,解此分式方程即可求得答案.【详解】解:设袋中的黑球有x个,根据题意得:1 124x=,解得:x=3,即袋中的黑球有3个.所以红球个数:12-3=9(个)故答案为9.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】据已知条件证得△ABD≌△AED根据全等三角形的性质得到BD=ED得出S△ABD=S△AEDS△BCD=S△DCE推出S△ACD=S△ABC根据概率公式可得的答案【详解】延长BD交AC于E∵解析:1 2【分析】据已知条件证得△ABD≌△AED,根据全等三角形的性质得到BD=ED,得出S△ABD=S△AED,S△BCD=S△DCE,推出S△ACD=12S△ABC,根据概率公式可得的答案.【详解】延长BD 交AC 于E ,∵AD 平分∠BAC ,∴∠BAD =∠EAD ,∵BD ⊥AD ,∴∠ADB =∠ADE =90°,在△ABD 和△AED 中,ADB ADE AD ADBAD EAD ∠=∠⎧⎪=⎨⎪∠∠⎩=, ∴△ABD ≌△AED (ASA ),∴BD =ED ,∴S △ABD =S △AED ,S △BCD =S △DCE ,,∴S △ACD =12S △ABC , 则点P 落在△ADC 内(包括边界)的概率为:12ACD ABC S S =. 故答案为12. 【点睛】 本题考查了概率公式的应用与全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.15.【分析】根据题意可知有两个不相等的实数根结合概率公式进行分析计算即可【详解】解:由抛物线与轴有两个交点可知有两个不相等的实数根根据图可知共有12种不同的情况而满足有两个不相等的实数根的情况有9种所以解析:34【分析】根据题意可知21=0ax bx ++有两个不相等的实数根,结合概率公式进行分析计算即可.【详解】解:由抛物线21y ax bx =++与x 轴有两个交点可知21=0ax bx ++有两个不相等的实数根,2=40b a ->,根据图可知共有12种不同的情况,而满足21=0ax bx ++有两个不相等的实数根的情况有9种,所以抛物线21y ax bx =++与x 轴有两个交点的概率是93124=. 故答案为:34. 【点睛】本题考查二次函数相关以及概率公式,熟练运用方程思维以及结合概率公式进行分析是解题的关键. 16.【分析】首先连接OAOB 由圆周角定理即可求得∠AOB=90°又由OA=OB=2利用勾股定理即可求得弦AB 的长【详解】解:连接OAOB ∵∠APB=45°∴∠AOB=2∠APB=90°∵OA=OB=2∴ 解析:22【分析】首先连接OA ,OB ,由圆周角定理即可求得∠AOB=90°,又由OA=OB=2,利用勾股定理即可求得弦AB 的长.【详解】解:连接OA ,OB ,∵∠APB=45°,∴∠AOB=2∠APB=90°,∵OA=OB=2,∴2222AB OA OB +=故答案为:2【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.17.【分析】连结OC 根据勾股定理可求OC 的长根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积依此列式计算即可求解【详解】连接如图∵在扇形中又故答案为:【点睛】考查了正方形的性质和扇形面解析:24π-【分析】连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.【详解】连接OC ,如图,∵在扇形AOB 中,90AOB ∠=︒,AC BC =,45COD ∴∠=︒,又CD DE ⊥,45OCD COD ∴∠=∠=︒,22OD CD ∴==22(22)(22)4OC ∴=+=,224541(22)243602ODC BOC S S Sππ⨯∴=-=-⨯=-阴影扇形. 故答案为:24π-.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度. 18.9【分析】根据旋转的性质得到△ABC ≌△A1BC1A1B=AB=6所以△A1BA 是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S 阴影=S △A1BA+S △A1BC1﹣S △ABC=解析:9【分析】根据旋转的性质得到△ABC ≌△A 1BC 1,A 1B=AB=6,所以△A 1BA 是等腰三角形,依据∠A 1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S △A1BA +S △A 1BC 1﹣S △ABC=S △A 1BA ,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A 1BC 1, ∴△ABC ≌△A 1BC 1,∴A 1B=AB=6,∴△A 1BA 是等腰三角形,∠A 1BA=30°,∴S △A1BA = 12×6×3=9, 又∵S 阴影=S △A1BA +S △A1BC1﹣S △ABC ,S △A1BC1=S △ABC ,∴S 阴影=S △A1BA =9. 故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.19.【分析】利用勾股定理易求BC 的长即点D 的纵坐标长度再求出OE 的长即可出点D 的坐标设抛物线的解析式为y=a (x-3)2+6把点A 坐标代入求出a 的值即可得到抛物线解析式【详解】解:如图所示∵BC ⊥x 轴即 解析:2243y x x =-+ 【分析】利用勾股定理易求BC 的长,即点D 的纵坐标长度,再求出OE 的长即可出点D 的坐标,设抛物线的解析式为y=a (x-3)2+6,把点A 坐标代入求出a 的值即可得到抛物线解析式.【详解】解:如图所示,∵BC ⊥x 轴,即∠BCA=90°,∴226BC AB AC -=.由平移性质得,CE=BD=5.∴AE=OE=3.∴D 的坐标为(3,6).设抛物线的解析式为y=a (x-3)2+6,将点A (6,0)代入得,a (6-3)2+6=0.∴a=23, ∴y=-23(x-3)2+6=2243x x -+. 故答案为:2243y x x =-+ 【点睛】本题考查了抛物线与x 轴的交点、利用待定系数法求抛物线的解析式以及勾股定理的运用,题目的综合性较强,难度中等.20.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91如果设每个支干分出x个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x个,小分支的数量为x•x=x2个,然后根据主干、支干和小分支的总数是91就可以列出方程.【详解】解:依题意得支干的数量为x个,小分支的数量为x•x=x2个,那么根据题意可列出方程为:1+x+x2=91,故答案为:1+x+x2=91.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.三、解答题21.(1)14;(2)16.【分析】(1)根据概率公式直接得出答案;(2)根据题意先画出树状图列出所有等可能结果数,根据概率公式求解即可.【详解】解:(1)有其他垃圾、可回收物、有害垃圾、厨房垃圾,共四张卡片,∴恰好抽到“可回收物”的概率是14;(2)根据题意画图如下:共12种等可能的结果数,其中抽到“其他垃圾”和“有害垃圾”的结果数为2,∴抽到的两张卡片恰好是“其他垃圾”和“有害垃圾”的概率21 126 ==.【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题时放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)这30天内日需求量的众数是27;(2)则这30天的日利润的平均数是80.4元;(3)在这记录的30天内日利润不低于81元的概率为17 30.(1) 根据众数的概念并结合表格中的数据进行解答即可;(2) 首先根据加权平均数的计算公式与已知条件即可求出总利润,接下来利用总利润÷30,即可求出每天的利润;(3) 设每天的需求量为x 瓶时,日利润不低于81元,根据图表所给出的数据列出算式,求出x 的取值范围,再根据概率公式进行计算即可.【详解】(1)∵27出现了8次,出现的次数最多,∴这30天内日需求量的众数是27,(2)假设鲜奶店在这30天内每天购进28瓶,则这30天的总利润是:(26×5+27×8+28×7+28×6+28×4)×6﹣28×30×3=2412(元), 则日利润的平均数是:2412÷30=80.4(元);(3)设每天的需求量为x 瓶时,日利润不低于81元,根据题意得:6x ﹣28×3≥81,解得:x≥27.5,则在这记录的30天内日利润不低于81元的概率为:764173030++=. 【点睛】本题考查了众数、加权平均数和利用频率估计概率,掌握这些基本概念才能熟练解题.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)见解析;(2)6.【分析】(1)根据圆周角定理得到BAC BEC ∠=∠,根据直角三角形的性质、对顶角相等得到BEC BGE ∠=∠,根据等腰三角形的判定定理证明结论; (2)连接OB 、OE 、AE 、CH ,根据平行四边形的判定和性质得到4CG BH ==,根据等边三角形的性质得到60BOE ∠=︒,根据直角三角形的性质、勾股定理计算,得到答案.【详解】(1)证明:由圆周角定理得,BAC BEC ∠=∠,CE AB ⊥,BF AC ⊥,90ADC GFC ∴∠=∠=︒,CGF BAC ∴∠=∠,BEC CGF ∴∠=∠,BGE CGF ∠=∠,BEC BGE ∴∠=∠,BE BG ∴=;(2)解:连接OB 、OE 、AE 、CH ,BH AB ⊥,CE AB ⊥//BH CE ∴,四边形ABHC 是O 的内接四边形,90ACH ABH ∴∠=∠=︒,//BF CH ∴,∴四边形CGBH 为平行四边形,4CG BH ∴==,OE OB BE ==,BOE ∴∆为等边三角形,60BOE ∴∠=︒,1302BAE BOE ∴∠=∠=︒, 12DE AE ∴=, 设DE x =,则2AE x =, 由勾股定理得,223AD AE DE x =-=,BE BG =,AB CD ⊥,DG DE x ∴==,4CD x ∴=+,在Rt ADC ∆中,222AD CD AC +=,即)()(2223434x x ++=, 化简得:2280x x +-=解得,12x =,240x =-<(舍去)则24=6CD =+.【点睛】本题考查的是圆周角定理、勾股定理、等边三角形的判定和性质,灵活运用圆周角定理是解题的关键.24.(1)作图见解析;(2)①作图见解析;②(-3,3).【分析】(1)利用关于原点对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可; (2)①利用网格特点和旋转的性质画出A 、B 、C 的对应点A 2、B 2、C 2即可; ②利用所画图形写出B 2点的坐标.【详解】解:(1)如图,△A 1B 1C 1为所作;(2)①画如图,△A 2B 2C 2为所作;②点B 2的坐标为(﹣3,3).故答案为(-3,3).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角.25.(1)150050x -(020x ≤≤,x 为整数);(2)当日租出15辆时,租赁公司的日收益最大,最大值为5000元;(3)当每日租出520x <≤(x 为整数)辆时,租赁公司的日收益才能盈利.【分析】(1)根据题意可直接进行求解;(2)由题意得日租金收入=每辆车的日租金×日租出车辆的数量,日收益=日租金收入-平均每日各项支出,据此可求函数关系式,然后根据二次函数的性质进行求解即可; (3)当租赁公司的日收益不盈也不亏时,即0y =,求解,进而可根据题意求解.【详解】解:(1)每辆车的日租金是()5005020150050x x +-=-(元)(020x ≤≤,x 为整数);故答案为()150050x -;(2)∵日租金收入=每辆车的日租金×日租出车辆的数量,∴日租金收入()150050x x =-,又∵日收益=日租金收入-平均每日各项支出,∴()1500506250y x x =--,()22501500625050155000x x x =-+-=--+,∵租赁公司拥有20辆小型汽车,∴020x ≤≤,∴当15x =时,y 有最大值5000,答:当日租出15辆时,租赁公司的日收益最大,最大值为5000元. (3)当租赁公司的日收益不盈也不亏时,即0y =,∴()2501550000x --+=,解得125x =,25x =, ∴当525x <<时,0y >,∵租赁公司拥有20辆小型汽车,答:当每日租出520x <≤(x 为整数)辆时,租赁公司的日收益才能盈利.【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的应用是解题的关键.26.1211x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=2(1)6x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键.。
湘教版九年级数学上册期末考试卷【及答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x 4.若函数y =(3﹣m )27mx -﹣x+1是二次函数,则m 的值为( ) A .3 B .﹣3C .±3D .9 5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:1 10.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0)D .(-32,0) 二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136的结果是_____________. 2.因式分解:2()4()a a b a b ---=_______.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为__________.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,ABC 三点中的两点. (1)判断点B 是否在直线y x m =+上.并说明理由;(2)求,a b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、C4、B5、B6、C7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、()()()22a b a a -+-3、-1245、212π+.6、2三、解答题(本大题共6小题,共72分)1、x=32、(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)543、(1)略;(2)略;(3)10.4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或.5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
湘教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、已知函数是二次函数,则m的值为()A.-2B.±2C.D.2、如图,在△ABC中,已知MN∥BC,DN∥MC.以下四个结论:① ;② ;③ ;④ . 其中正确结论的个数为( )A.1B.2C.3D.43、方程x(x﹣1)=5(x﹣1)的解是()A.1B.5C.1或5D.无解4、在中,,则边的长为()A. B. C. D.5、已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m的值为( )A.1B.1和-3C.-3D.不等于1的任何数6、如图,在△ABC中,,分别交AB,AC于点D,E.若AD=1,DB=3,则的面积与的面积的比等于()A. B. C. D.7、如图,在平行四边形中,,,那么的值等于()A. B. C. D.8、如图,点A是反比例函数交反比例函数的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则平行四边形ABCD的面积为()A.2B.3C.4D.59、如图,△ABC的中线BE、CF交于点O,直线AD∥BC,与CF的延长线交于点D,则S△AEF :S△AFD为()A.1:2B.3:2C.2:3D.3:410、如图,在四边形ABCD中,∠ABC=∠BCD=90°,,把沿着AC翻折得到,若,则线段DE的长度()A. B. C. D.11、如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F,若AB=2,AC=6,DE=1.5,则DF的长为()A.7.5B.6C.4.5D.312、如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.4B.﹣2C.2D.无法确定13、方程(x+1)(x-2)=x+1的解是()A.2B.3C.-1,2D.-1,314、如图,已知O是坐标原点,△OBC与△ODE是以0点为位似中心的位似图形,且△OBC与△ODE的相似比为1:2,如果△OBC内部一点M的坐标为(x,y),则M在△ODE中的对应点M′的坐标为()A.(﹣x,﹣y) B.(﹣2x,﹣2y)C.(﹣2x,2y)D.(2x,﹣2y)15、如图,若点M是x轴正半轴上的任意一点,过点M作PQ∥y轴,分别交函数(x>0)和(x>0)的图象于点P和Q,连接OP、OQ,则下列结论正确的是()A.∠POQ不可能等于90°B.C.这两个函数的图象一定关于x轴对称D.△POQ的面积是二、填空题(共10题,共计30分)16、已知实数a,b,c满足a+b+c=10,且,则的值是________17、如图,L1是反比例函数y= 在第一象限内的图像,且过点A(2,1),L2与L1关于x轴对称,那么图像L2的函数解析式为________(x>0).18、如图是百度地图的一部分(比例尺1:4000000).按图可估测杭州在嘉兴的南偏西________度方向上,杭州到嘉兴的图上距离约2cm,则杭州到嘉兴的实际距离约为________.19、已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=________.20、若,则=________.21、△ABC与△DEF相似,其面积比为1:4,则它们的相似比为________.22、如图,小明在某天15:00时测量某树的影长时,日照的光线与地面的夹角∠ACB=60°,当他在17:00时测量该树的影长时,日照的光线与地面的夹角∠ADB=30°,若两次测得的影长之差CD长为m,则树的高度为________m.23、一块矩形菜地的面积是120平方米,如果它的长减少2米,那么菜地就变成了正方形,则原矩形的长是________ 米.24、如图,E为平行四边形ABCD的边AD延长线上-一点,且D为AE的黄金分割点,BE交DC于点F,若AB= +1,且AD>DE,则CF的长为________ 。
湘教版九年级数学上册期末测试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是()A.15B.0.5C.5D.502.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元3.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.55.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.16.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A .40°B .45°C .50°D .55°9.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D ,若⊙P 的半径为5,点A 的坐标是(0,8),则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)13816-=_____.2.因式分解:a 3-a =_____________.33x +有意义,则实数x 的取值范围是__________. 4.如图,ABC ∆中,D 为BC 的中点,E 是AD 上一点,连接BE 并延长交AC 于F ,BE AC =,且9BF =,6CF =,那么AF 的长度为__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.4.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、A5、A6、B7、D8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、a (a -1)(a + 1)3、x ≥-3且x ≠24、32;5、12.6、2三、解答题(本大题共6小题,共72分)1、3x =-2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)略;(2)37°4、(1)BF =10;(2)r=2.5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、()()21y 5x 800x 2750050x 100=-+-≤≤;(2)当x 80=时,y 4500=最大值;(3) 销售单价应该控制在82元至90元之间.。
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.在Rt △ABC 中,已知∠C=90°,AC=3,BC=4,那么∠A 的余弦值等于( ) A .35B .45C .34D .432.下列方程中,关于x 的一元二次方程是( ) A .()()23121x x +=+ B .21120x x+-= C .2ax bx c ++=0 D .2221x x x +=-3.如图,矩形ABCD ∽矩形ADFE ,AE=1,AB=4,则AD=( )A .2B .2.4C .2.5D .34.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为( )A .①②B .②③C .①②③D .①③5.如图,点M 在BC 上,点N 在AM 上,CM=CN ,AM BMAN CM=,下列结论正确的是( )A .△ABM ∽△ACB B .△ANC ∽△AMB C .△ANC ∽△ACMD .△CMN ∽△BCA 6.下列运算中,结果正确的是( )A .2a 2+a=3a 2B .2a ﹣1=12aC .(﹣a )3•a 2=﹣a 6D .123+=2﹣3 7.如果手头没有硬币,下列方法可以模拟掷硬币实验的是( )A .掷一个瓶盖,盖面朝上代表正面,盖面朝下代表反面B .掷一枚图钉,钉尖着地代表正面,钉帽着地代表反面C .用计算器产生1和2两个随机整数,1代表正面,2代表反面D .转动如图所示的装盘,指针指向“红”代表正面,指针指向“蓝”代表反面 8.设x 1 、x 2是方程x 2+x ﹣4=0的两个实数根,则x 13﹣5x 22+10=( ) A .﹣29B .﹣19C .﹣15D .﹣99.已知有一块等腰三角形纸板,在它的两腰上各有一点E 和F ,把这两点分别与底边中点连结,并沿着这两条线段剪下两个三角形,所得的这两个三角形相似,剩余部分(四边形)的四条边的长度如图所示,那么原等腰三角形的底边长为( )A .43B .245 C .43或245D .23或12510.如图,已知////AB CD EF ,:1:2BD DF =,那么下列结论中,正确的是( )A .:1:3AC AE =B .:1:3CE EA =C .:1:2CD EF = D .:1:2AB EF =二、填空题11.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=____.12.已知:∠1=30°30′,∠2=28.5°,则sin(∠1﹣∠2)≈________(可用计算器,精确到0.001)13.①sin2A+cos2A=________,②tanA•cotA=________.14.Rt△ABC中,∠C=90°,AB=10,BC=8,则cosB=________15.如图,E、P、F分别是AB、AC、AD的中点,则四边形AEPF与四边形ABCD________ (填“是”或“不是”)位似图形.16.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD=_____.17.已知1是关于x的一元二次方程x2+mx+n=0的一个根,那么m+n=____.三、解答题18.如图,在直角坐标系中,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点).(1)在第一象限内找一点P,以格点P、A、B为顶点的三角形与△ABC相似但不全等,请写出符合条件格点P的坐标;(2)请用直尺与圆规在第一象限内找到两个点M、N,使∠AMB=∠ANB=∠ACB.请保留作图痕迹,不要求写画法.19.某中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学代表学校参加全市汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.如图,登山缆车从点A出发,途经点B后到达终点C,其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)21.如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=14 DC,连结EF并延长交BC的延长线于点G,连结BE.(1)求证:△ABE∽△DEF.(2)若正方形的边长为4,求BG的长.22.ABC 是等边三角形,点D ,E 分别在BC ,AC 上,且BD CE =,AD 与BE 相交于点F .(1)证明:ABD BCE △≌△; (2)找出一组相似三角形并证明;(3)若9,1AF DF ==,你能求出哪条线段的长度(除线段AD 外)?请指出这条线段并求出它的长度.23.曲靖市某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米3240元的均价开盘销售. (1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.9折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.4元,请问哪种方案更优惠?24.如图,在矩形ABCD 中,E 是BC 的中点,DF AE ⊥,垂足为F .(1)求证:ABE DFA △∽△;(2)若6,4AB BC ==,求DF 的长.25.如图1所示,上海中心大厦是上海市的一座超高层地标式摩天大楼,是我国最高的建筑,建筑主体共计119层.某数学小组欲测此上海中心大厦的楼高,设计出如图2所示的测量方案.具体方案如下:小组成员在地面A 处通过激光测距,测得仰角37a =︒,光路AB 长1000m 3,光路AB 被写字楼BN 楼顶的一面玻璃(视为点B )反射,反射的激光束沿光路BC 恰好可以到达上海中心大厦CM 楼顶(视为点C ).已知写字楼与上海中心大厦的直线距离MN 为576m (写字楼与上海中心大厦位于同一平面),图2中的虚线为法线.(所有结果保留整数,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈).(1)求写字楼BN 的高度. (2)求上海中心大厦的楼高CM .参考答案1.A 【详解】试题解析:在Rt △ABC 中,∵∠C =90∘,AC =3,BC=4,5AB ∴=3cos .5AC A AB ∴== 故选A 2.A 【分析】A 、根据一元二次方程的定义A 满足条件,B 、分母中有未知数,不是整式方程,B 不满足条件,不选BC 、判断二次项系数为a 是否为0即可,不选CD 、看二次项系数是0,不是一元二次方程,不选D 【详解】A 、根据一元二次方程的定义A 满足条件,故A 正确,B 、分母中有未知数,不是整式方程,不选B ,C 、二次项系数为a 是否为0,不确定,不选C ,D 、没有二次项,不是一元二次方程,不选D . 故选择:A . 【点睛】本题考查一元二次方程问题,关键掌握一元二次方程定义满足的条件. 3.A 【详解】 设AD=x ,∵矩形ABCD ∽矩形ADFE , ∴AD:AE=AB:AD , 又∵AE=1,AB=4, ∴:14:x x =, ∴24x =, 又∵0x >, ∴2x =. 即AD=2. 故选A.4.D【详解】如图,连接BE,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠C<cos∠D,故②错误;tan∠C>tan∠D,故③正确;故选D.5.B【详解】∵CM=CN,∴∠CNM=∠CMN,∴180°-∠CMN=180°-∠CNM,即∠AMB=∠ANC,∵CM=CN,AM BM AN CM=,∴AM BMAN CN=,∴△AMB∽△ANC.故选B.6.D【解析】A选项中,因为22a a+中两个项不是同类项,不能合并,所以本选项错误;B 选项中,因为122a a-=,所以本选项错误; C 选项中,325()a a a -⋅=-,所以本选项错误;D 2== 故选D. 7.A 【解析】A 选项中,一个瓶盖可用盖面朝上表示硬币的正面,盖面朝下表示硬币的反面,两者出现的概率一样,可作实验替代物,所以本选项正确;B 选项中,图钉尖朝上的概率大于面朝上的概率,不可做实验替代物,所以本选项错误;C 选项中,用计算器产生1和2两个随机整数,1代表正面,2代表反面,两数产生的概率不同,不能代替抛掷硬币的实验,所以本选项错误;D 选项中,转动如图所示的装盘,指针指向“红”代表正面,指针指向“蓝”代表反面,由于还有一个“黄色区域”,本实验中有三种等可能结果,与抛掷硬币实验情况不一样,所以本选项错误; 故选A. 8.B 【解析】∵22x x 、是方程240x x +-=的两个实数根, ∴2211221240401x x x x x x +-=+-=+=-,,, ∴22112244x x x x =-=-,, ∴3212510x x -+ =112(4)5(4)10x x x ---+ =2112420510x x x --++ =1124(4)510x x x --+- =125()14x x +-=514--=19-.故选B.9.B【解析】根据题意,本题需分点(1)A为等腰三角形的顶点,点D为等腰三角形底边的中点;(2)点A为等腰三角形底边的中点,点D为等腰三角形的顶点;两种情况来讨论:(1)如图1,当点A为等腰三角形的顶点,点D为底边的中点时,设BD=DC=a,AB=AC=b,则BE=b-2,CF=b-4,∵AB=AC,∴∠B=∠C,又∵BD=DC,BE≠CF,DE≠DF,∴点B与点C,点E与点D,点D与点F为对应点,即△BED∽△CDF,∴BE:CD=BD:CF,即(b-2):a=a(b-4)=3:2,解得:a=125,∴BC=2a=245,该等腰三角形的底边长为:245.,(2)如图2,当点D为等腰三角形的顶点,点A为底边中点时,设AB=AC=a,BD=CD=b,则BE=b-3,CF=b-2,∵BD=CD,∴∠B=∠C,∴点B与点C为对应点,①若点E与点F、点A与点C为对应点,则△BEA∽△CFA,∴BE:CF=EA:FA=BA:CA,即(b-3):(b-2)=a:a=2:4,此时a、b无解,故此种情况不成立;②若点E与点A,点A与点F为对应点,由△BEA∽△CAF,∴BE :CA=EA :AF=BA :CF ,即(b-3):a=2:4=a :(b-2),解得:a=23,b=103,则此时AB=23,BE=13, 又∵AE=2,∴此时AB 、BE 、AE 不能围成三角形,故此种情况不成立; 综上所述,这个等腰三角形底边长为:245. 故选B.点睛:(1)由题意可知本题需分两种情况讨论:① A 为等腰三角形的顶点,点D 为等腰三角形底边的中点;②点D 为等腰三角形的顶点,点A 为底边中点;(2)解得三角形的边长时,需用三角形三边间的关系检验,看是否能够围成三角形.10.A【分析】根据平行线分线段成比例性质:三条平行线截两条直线,所得的对应线段成比例,据此可得结论.【详解】解:∵////AB CD EF ,:1:2BD DF =,∴:1:3AC AE =,故A 选项正确;:2:3CE EA =,故B 选项错误;:CD EF 的值无法确定,故C 选项错误; :AB EF 的值无法确定,故D 选项错误;故选:A .【点睛】本题考查了平行线分线段成比例定理,熟练掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.11.214【详解】∵12x x 、是关于x 的一元二次方程250x x a -+=的两个实数根,∴12125x x x x a +=⋅=,,又∵22121212()()10x x x x x x -=+-=,∴122x x -=,又∵12x x -=2,解得:214a =. 点睛:(1)若关于x 的一元二次方程2(0)0 ax bx c a ++=≠的两根分别是12x x 、,则:1212c x x a x x a+=-⋅=,;(2)当120x x ->时,12x x -=12.0.035【解析】∵∠1=30°30′,∠2=28.5°,∴∠1-∠2=30°30′-28°30′=2°,∴sin(∠1-∠2)=sin2°≈0.035.13.1 1【解析】如图,设Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a b c 、、,则sinA=a c,cosA=b c ,tanA=a b ,cotA=b a ,222+=a b c , ∴(1)sin 2A+cos 2A=2222222()()1a b a b c c c c c++===; (2)tanA•cotA=1a b b a ⋅=.点睛:解答本题的要点是:画出符合要求的图形,结合锐角三角形函数的定义和勾股定理进行推理计算即可得到答案.14.45【解析】∵Rt △ABC 中,∠C=90°,AB=10,BC=8∴cosB=84105 BCAB==.15.是【解析】由已知易得:AF:AD=AP:AC=AE:AB,∴PF∥CD,PE∥BC,∴△APF∽△ACD,△AEP∽△ABC,∴四边形AEPF∽四边形ABCD,∴根据位似图形的定义:“两个图形不仅相似,而且每组对应点的连线交于一点,对应边互相平行或在同一直线上,则这两个图形叫位似图形”可知:四边形AEPF和四边形ABCD是位似图形.即答案为:“是”.16.6 5【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=443AB⋅=,∴CE=BE-BC=2,5=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.17.﹣1【解析】∵1是关于x的一元二次方程x2+mx+n=0的一个根,∴1+m+n=0,∴m+n=-1.18.(1)P(1,4)或P′(3,4);(2)见解析.【分析】(1)分△APB∽△ABC,△BPA∽△ABC,△BAP∽△ABC三种情况分析讨论,并把全等的情况去掉即可;(2)根据同弧所对的圆周角相等,以BC为直径作Rt△ABC的外接圆即可找到符合条件的点M、N.【详解】(1)如图1所示:当△AP1B∽△ABC时,P1A:AB=AC:AB=1:2,解得P1A=4,此时点P的坐标为(1,4);当△BP2A∽△ABC时,P2B:AB=AB:AC=2:1,解得P2B=4,此时点P的坐标为(3,4);当△BAP3∽△ABC时,P3B:AB=AC:AB=1:2,解得P3B=1,此时两三角形全等,不符合题意,舍去;综上所述,点P的坐标为(1,4)或(3,4);(2)如图,作△ABC的外接圆,在ACB上取两点M,N即可.【点睛】(1)解第1小题时,围绕△PAB需满足三个条件:①必须是直角三角形;②AB是直角边;③与△ABC相似,但不全等;进行分析讨论即可;(2)解第2小题时,由△ABC是Rt△,以BC为直径作出其外接圆,利用同弧所对的圆周角相等即可得到答案.19.(1)见解析;(2)2 3【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【详解】(1)画树状图得:(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:82 123.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.缆车从点A运行到点C的垂直上升的距离约为234m.【详解】试题分析:缆车从点A 运行到点C 的垂直上升的距离为BD+CE ,在Rt △ABD 和Rt △△BCE 中,解直角三角形即可得到结论.试题解析:如图所示,缆车从点A 运行到点C 的垂直上升的距离为BD+CE ,又∵△ABD和△BCE 均为直角三角形,∴()sin30sin422000.50.67234BD CE AB BC m +=⋅︒+⋅︒=⨯+=. 考点:解直角三角形.21.(1)见解析;(2)BG=BC+CG=10.【分析】(1)利用正方形的性质,可得∠A =∠D ,根据已知可得AE :AB =DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE ∽△DEF ;(2)根据相似三角形的预备定理得到△EDF ∽△GCF ,再根据相似的性质即可求得CG 的长,那么BG 的长也就不难得到.【详解】(1)证明:∵ABCD 为正方形,∴AD =AB =DC =BC ,∠A =∠D =90 °.∵AE =ED ,∴AE :AB =1:2.∵DF =14DC , ∴DF :DE =1:2,∴AE :AB =DF :DE ,∴△ABE ∽△DEF ;(2)解:∵ABCD 为正方形,∴ED ∥BG ,∴△EDF ∽△GCF ,∴ED :CG =DF :CF .又∵DF =14DC ,正方形的边长为4, ∴ED =2,CG =6,∴BG =BC+CG =10.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.22.(1)见详解;(2)BDF BEC ∽△△,理由见详解;(3)能求出BD 的长度,BD =【分析】(1)根据题意易得,60AB BC ABD BCE =∠=∠=︒,然后问题可求证;(2)由(1)可得BAD CBE ∠=∠,60ABE CBE ∠+∠=︒,则有60AFE BAD ABE ∠=∠+∠=︒,然后可得60BFD BCE ∠=∠=︒,进而问题可求解;(3)由题意易得10AD BE ==,由(2)可得BDF BEC ∽△△,则有BD DF BE CE=,进而问题可求解.【详解】(1)证明:∵ABC 是等边三角形,∴,60AB BC ABD BCE =∠=∠=︒,∵BD CE =,∴()ABD BCE SAS △≌△;(2)解:BDF BEC ∽△△,理由如下:由(1)可得ABD BCE △≌△,∴BAD CBE ∠=∠,∵60ABC ∠=︒,∴60ABE CBE ∠+∠=︒,∴60ABE BAD +=︒∠∠,∴60AFE BAD ABE ∠=∠+∠=︒,∴60AFE BFD BCE ∠=∠=∠=︒,∵FBD CBE ∠=∠,∴BDF BEC ∽△△;(3)解:能求出BD 的长度,理由如下:由(1)(2)可得:ABD BCE △≌△,BDF BEC ∽△△,∴AD BE =,BD DF BE CE =, ∵9,1AF DF ==,∴10AD BE==,∵BD CE=,∴110BDBD=,∴210BD=,∴BD=【点睛】本题主要考查相似三角形的性质与判定及等边三角形的性质,熟练掌握相似三角形的性质与判定及等边三角形的性质是解题的关键.23.(1)平均每次下调的百分率是10%;(2)选择方案②更优惠,理由见解析.【解析】试题分析:(1)设平均每次下调的百分率为x,根据题意列出一元二次方程,解方程即可得到符合要求的答案;(2)根据题意分别计算出两种方案的优惠金额,在比较大小即可得到答案;试题解析:(1)设平均每次下调的百分率是x,依题意得:4000(1﹣x)2=3240 ,解得:x=0.1=10%或x=1.9(不合题意,舍去)∴平均每次下调的百分率是10%(2)方案①优惠金额=100×3240×(1﹣99%)=3240元;方案②优惠金额=100×1.4×12×2=3360元;∵3360>3240,故选择方案②更优惠.24.(1)见解析;(2【分析】(1)由矩形性质得AD∥BC,进而由平行线的性质得∠AEB=∠DAF,再根据两角对应相等的两个三角形相似;(2)由E是BC的中点,求得BE,再由勾股定理求得AE,再由相似三角形的比例线段求得DF.【详解】解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DAF =∠AEB ,∵DF ⊥AE ,∴∠AFD =∠B =90°,∴△ABE ∽△DF A ;(2)∵E 是BC 的中点,BC =4,∴BE =2,∵AB =6,∴AE∵四边形ABCD 是矩形,∴AD =BC =4,∵△ABE ∽△DF A , ∴AB AE DF AD=,∴DF =AB AD AE ⋅ 【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键是证明三角形相似. 25.(1)200m ;(2)632m .【分析】(1)过点B 作BD ⊥CM 于点D ,根据题意判断四边形BDMN 是矩形,得到∠ABD =α=37°,结合反射角=入射角得到∠CBD =∠ABD =37°,最后在R t △ANB 中利用正弦定义可得BN 的长;(2)在R t △BDC 中,由正切的定义解得CD 的长,进而可得上海中心大厦的高度CM .【详解】解:(1)如图所示,过点B 作BD ⊥CM 于点D ,∵BD ⊥CM ,CM ⊥MN ,BN ⊥MN ,∴∠BDM =∠CMN =∠BNM =90°,∴四边形BDMN 是矩形,∴BN =DM ,BD =MN =576m ,BD //MN ,∴∠ABD =α=37°,由物理知识,反射角=入射角得:∠CBD =∠ABD =37°,在R t △ANB 中,sin BN AB α=, 1000sin 0.62003BN AB α∴=⋅≈⨯≈m , 答:写字楼BN 的高度约200m .(2)由(1)得432DM BN == m ,在R t △BDC 中,tan CD CBD DB∠=, tan 5760.75432CD DB CBD ∴=⋅∠≈⨯≈m ,∴CM =DM +CD =432+200=632m ,答:上海中心大厦的楼高CM 是632m .【点睛】本题考查解直角三角形的应用-仰角俯角问题,涉及正切、正弦等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.。
湘教版九年级数学上册期末考试题及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣8的相反数是( )A .8B .18C .18-D .-82.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 24.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.下列图形中,是中心对称图形的是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-52,0) D.(-32,0)二、填空题(本大题共6小题,每小题3分,共18分)1.2的相反数是__________.2.分解因式:x2-2x+1=__________.3.若式子x1x有意义,则x的取值范围是_______.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF =AC,则∠ABC=__________度.5.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是__________.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.某商店以每件40元的价格进了一批商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时销售此商品每月的利润可达到4000元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、B6、A7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣22、(x-1)2.3、x1≥-且x0≠4、455、.6、12三、解答题(本大题共6小题,共72分)1、x=52、(1)证明见解析(2)1或23、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m22,1,2.4、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)20%;(2)60元。
湘教版九年级数学上册期末测试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =- 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形5.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =6.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =7.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A .15B .18C .21D .248.如图,⊙O 中,半径OC ⊥弦AB 于点D ,点E 在⊙O 上,∠E=22.5°,AB=4,则半径OB 等于( )A .2B .2C .22D .39.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B ,C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC =FG ;②S △FAB ∶S 四边形CBFG =1∶2;③∠ABC =∠ABF ;④AD 2=FQ ·AC ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是____________.2.分解因式:2x 2﹣8=_______.3.函数32y x x =-+x 的取值范围是__________. 4.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,在矩形ABCD 中,8AD =,对角线AC 与BD 相交于点O ,AE BD ⊥,垂足为点E ,且AE 平分BAC ∠,则AB 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.计算:()011342604sin π-----+().3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED=∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD DF AC CG =. (1)求证:△ADF ∽△ACG ;(2)若12AD AC =,求AF FG 的值.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、B5、C6、A7、A8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、2(x+2)(x ﹣2)3、23x -<≤4、3x <-或1x >.5、x=26、.三、解答题(本大题共6小题,共72分)1、x=12、33、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或(-或(-. 4、(1)略;(2)1.5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)该快递公司投递总件数的月平均增长率为10%;(2)该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.。
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.已知反比例函数经过(-2,3),则下列哪个点在此函数图象上()A .(-1,-6)B .(3,2)C .(-2,-3)D .(-6,1)2.一元二次方程x 2+4x=3配方后化为()A .(x+2)2=3B .(x+2)2=7C .(x-2)2=7D .(x+2)2=-13.点B 是线段AC 的黄金分割点,且AB <BC .若AC=4,则BC 的长为()A .2B .2C .12D 1-4.Rt △ABC 中,∠C=90°,若AB=4,cosA=35,则AC 的长为()A .95B .125C .163D .55.小明随机抽查了九年级(2)班9位同学一周写数学作业的时间,分别为6,4,6,5,6,7,6,6,8(单位:h ).则估计本班大多数同学一周写数学作业的时间约为()A .4hB .5hC .6hD .7h6.已知二次函数y=(m+2)23m x -,当x<0时,y 随x 的增大而增大,则m 的值为()A .BC .D .27.如图,在△ABC 中,∠A =90°,sinB =35,点D 在边AB 上,若AD =AC ,则tan ∠BCD 的值为()A .15B .16C .17D .188.函数y =mx与y =mx ﹣m (m ≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .9.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范围是()A .2m ≠B .6m =且2m ≠C .6m <D .2m =或6m ≤10.如图,已知直线l 1∥l 2∥l 3,直线m 、n 分别与直线l 1、l 2、l 3分别交于点A 、B 、C 、D 、E 、F ,若DE =3,DF =8,则BC AC的值为()A .35B .58C .53D .85二、填空题11.若反比例函数2k y x-=的图象经过第一、三象限,则k 的取值范围是______________.12.已知2334b a b =-,则a b=________13.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h 为___米.14.若关于x 的一元二次方程220x x k +-=有实数根,则k 的取值范围是__________.15.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________.16.如图所示,D 为AB 边上一点,AD :DB=3:4,DE //AC 交BC 于点E ,则S △BDE :S △AEC 为_____.17.如图,垂直于x 轴的直线AB 分别与抛物线C 1:y =x 2(x ≥0)和抛物线C 2:y =24x (x ≥0)交于A ,B 两点,过点A 作CD ∥x 轴分别与y 轴和抛物线C 2交于点C 、D ,过点B 作EF ∥x 轴分别与y 轴和抛物线C 1交于点E 、F ,则OFBEADS S 的值为_____.三、解答题18.计算:4sin60°+(3.14- )0-tan 230°.19.随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生3000人,请你估计该校对在线阅读最感兴趣的学生人数.20.某高速公路建设中,需要确定隧道AB 的长度.已知在离地面1800m 高度C 处的飞机上,测量人员测得正前方A ,B 两点处的俯角分别为60°和45°(即∠DCA =60°,∠DCB =45°).求隧道AB 的长.(结果保留根号)21.如图,△ABC 中,BD 平分∠ABC ,E 为BC 上一点,∠BDE=∠BAD=90°,(1)求证:BD 2=BA·BE ;(2)若AB=6,BE=8,求CD 的长.22.已知关于x 的一元二次方程x 2+2mx+m 2+m=0有两个不相等的实数根.(1)求m 的取值范围.(2)若x 1,x 2是方程的两根,且x 12+x 22=12,求m 的值.23.如图,直线y 1=kx+b 与函数y 2=(0)kx x的图象相交于点A(-1,6),与x 轴交于点C ,且∠ACO=45°,点D 是线段AC 上一点.(1)求k 的值与一次函数的解析式.(2)若直线与反比例函数的另一支交于B 点,直接写出y 1<y 2自变量x 的取值范围,并求出△AOB 的面积.(3)若S △COD :S △AOC =2:3,求点D 的坐标.24.如图,抛物线y=ax2+bx+c的图象过点A(-1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.25.(1)如图1,在四边形ABCD中,点M在BC上,∠B=∠C=∠AMD时.求证:△ABM∽△MCD.(2)如图2,在△ABC中,点M是边BC的中点,点D,E分别在边AB,AC上.若∠B =∠C=∠DME=45°,BC=2CE=6,求DE的长.参考答案1.D【分析】将已知点代入反比例函数的解析式kyx=中求出k值,再根据k=xy解答即可.【详解】解:设反比例函数的解析式为kyx =,将(﹣2,3)代入解析式中,得:k=﹣2×3=﹣6,只有D选项满足k=﹣6×1=﹣6,故选:D.【点睛】本题考查反比例函数图象上的点的坐标特征、待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解答的关键.2.B【分析】在方程的两边同时加上一次项系数一半的平方,化成完全平方的形式即可得出答案.【详解】解:x2+4x=3,x2+4x+4=7,(x+2)2=7,故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.3.B【分析】根据黄金分割的定义可得出较长的线段AC,将AC=4代入即可得出BC的长度.【详解】解:∵点B是线段AC的黄金分割点,且AB<BC,∴AC,∵AC=4,∴BC=2.故选:B.【点睛】本题考查了黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=12AB≈0.618AB,并且线段AB的黄金分割点有两个.4.B【分析】根据三角函数可求出AC长.【详解】解:∵∠C=90°,若AB=4,∴cosA=ACAB,即345AC=,AC=12 5,故选:B.【点睛】本题考查了三角函数的计算,解题关键是理解余弦的意义,熟练进行计算.5.C【分析】求平均数即可.【详解】解:这9位同学一周写数学作业的时间平均数为64656766869++++++++=(小时);故选:C.【点睛】本题考查了平均数的计算,解题关键是理解样本可以估计总体,会熟练的运用平均数公式计算.6.A 【分析】根据次数为2可列方程,再根据函数增减性确定m 值.【详解】解:根据题意可知,232m -=,解得,m =∵二次函数y=(m+2)23m x -,当x<0时,y 随x 的增大而增大,∴m+2<0,解得m <-2,综上,m=故选:A .【点睛】本题考查了二次函数的定义和增减性,解题关键是根据二次函数的定义列方程,依据增减性确定二次项系数的符号.7.C 【分析】作DE ⊥BC 于E ,在△CDE 中根据已知条件可求得DE,CE 的长,从而求得tan ∠BCD.【详解】解:作DE ⊥BC 于E.∵∠A =90°,sinB =35,设AC=3a=AD ,则AB=4a,BC=5a,∴BD=AB-AD=a.∴DE=BD·sinB=35a,∴根据勾股定理,得BE=45a,∴CE=BC-BE=215a,∴tan ∠BCD=1.7DE CE =故选C.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键.8.C 【分析】分别根据反比例函数及一次函数的图象在坐标系中的位置,对四个选项逐一分析,即可得到答案.【详解】解:A 、由反比例函数的图象在可一、三象限知m >0时,-m <0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限∴A 错误,C 、由反比例函数的图象在可一、三象限知m >0时,-m <0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限C 正确;B 、反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴B 错误,D 、由反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴D 错误;故选C.【点睛】本题主要考查反比例函数和一次函数的图象比例系数的关系,掌握反比例函数和一次函数的比例系数的几何意义,是解题的关键.9.D 【分析】分两种情况讨论,当方程是一元一次方程时,20m -=,或方程是一元二次方程时,根据一元二次方程的定义,二次项系数不为零,再结合一元二次方程根的判别式:当0∆≥时,方程有实根,据此解题.【详解】解:当20m -=时,即2m =时,原方程是一元一次方程450x +=54x ∴=-,方程有实根;当2m ≠时,一元二次方程2(2)230m x mx m -+++=有实根,则0∆≥即22444(2)(3)0b ac m m m -=--+≥4240m -+≥解得6m ≤故选:D .【点睛】本题考查方程的根、一元二次方程的根的情况求参数等知识,是重要考点,涉及分类讨论的数学思想,掌握相关知识是解题关键.10.B 【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵l 1∥l 2∥l 3,∴=EF BCDF AC,∵DE =3,DF =8,∴838BCAC-=,即BCAC=58,故选:B.【点睛】本题考查了平行线分线段成比例定理,注意:一组平行线截两条直线,所截的线段对应成比例.11.2k>【分析】根据反比例函数的图象和性质即可得.【详解】由题意得:20k->,解得2k>,故答案为:2k>.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题关键.12.11 9【解析】∵2334ba b=-,∴8b=3(3a-b),即9a=11b,∴119ab=,故答案为11 9 .13.1.4【分析】根据相似三角形对应边成比例列式计算即可得解.【详解】由题意得,40.8 43h=+,解得h=1.4.故答案为1.4.【点睛】本题考查了相似三角形的应用,熟练掌握性质定理是解题的关键. 14.1k≥-【分析】一元二次方程220x x k +-=有实数根,即240b ac ∆=-≥【详解】解: 一元二次方程220x x k +-=有实数根24440b ac k ∴∆=-=+≥解得1k ≥-【点睛】本题考查24b ac ∆=-与系数的关系.15.7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x 2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x 轴的距离是纵坐标的绝对值,注意:分类讨论.16.16:21【分析】根据平行线分线段成比例得出DE :AC=BD :AB=4:7,再根据相似三角形的面积比等于相似比的平方可求得S △BDE :S 四边形ADEC =16:33,然后根据平行线间的距离相等得到S △ADE :S △AEC =DE :AC=4:7,进而可求得S △BDE :S △AEC .【详解】解:∵DE ∥AC ,∴△BDE ∽△BAC ,又AD :DB=3:4,∴DE :AC=BD :AB=4:7,∴S △BDE :S △BAC =16:49,∴S △BDE :S 四边形ADEC =16:33,∵DE ∥AC ,∴△ADE 与△AEC 的高相等,∴S △ADE :S △AEC =DE :AC=4:7=12:21,∴S △BDE :S △AEC =16:21,故答案为:16:21.【点睛】本题考查平行线分线段成比例、相似三角形的判定与性质、平行线的性质、比例性质,熟练掌握平行线分线段成比例和相似三角形的面积比等于相似比的平方是解答的关键.17.16【分析】根据二次函数的图象和性质结合三角形面积公式求解.【详解】解:设点A B 、横坐标为a ,则点A 纵坐标为2a ,点B 的纵坐标为24a ,∵BE ∥x 轴,∴点F 纵坐标为24a ,∵点F 是抛物线2y x =上的点,∴点F横坐标为12x a ==,∵CD x 轴,∴点D 纵坐标为2a ,∵点D 是抛物线24x y =上的点,∴点D横坐标为2x a ==,22131,,,244AD a BF a CE a OE a ∴====∴1141218362OFB EAD BF OE S S AD CE ⋅⋅==⨯=⋅⋅ ,故答案为16.【点睛】此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.18.23.【分析】先计算特殊角的三角函数值、零指数幂,化简二次根式,再计算各部分的和即可得到结果.【详解】4sin60°+(3.14-π)0-tan 230°=4×2+1-2()3=13=23.【点睛】本题考查特殊角的三角函数值、零指数幂及化简二次根式,熟记各特殊角的三角函数值及实数运算法则是解题关键.19.(1)见解析;(2)48︒;(3)800人.【分析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数.【详解】(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90−24−18−12=36,补全的条形统计图如图所示:;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360︒×1290=48︒,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48︒;(3)3000×2490=800(人),答:该校对在线阅读最感兴趣的学生有800人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.隧道AB的长为(1800﹣3m【分析】易得∠CAO=60°,∠CBO=45°,利用相应的正切值可得BO,AO的长,相减即可得到AB 的长.【详解】解:∵CD//OB,∴∠CAO=∠DCA=60°,∠CBO=∠DCB=45°,在Rt CAO中,tan∠CAO=COOA=tan60°,∴18003 OA=,∴OA=3在Rt CAO中,tan∠CBO=COOB=tan45°,∴OB=OC=1800,∴AB=OB﹣OA=1800﹣3答:隧道AB的长为(1800﹣3m.本题考查了解直角三角形的应用﹣俯角和仰角,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.21.(1)见解析;(2)【分析】(1)根据角平分线定义可证得∠ABD=∠EBD,再根据相似三角形的判定证明△BAD∽△BDE,然后根据相似三角形的性质即可证得结论;(2)根据(1)中结论求得BD长,再根据勾股定理求得AD长,进而可求得∠ABD=30°,即∠ABC=60°,利用锐角三角函数求得AC长,即可求得CD长.【详解】解:(1)∵BD平分∠ABC,∴∠ABD=∠EBD,又∵∠BDE=∠BAD=90°,∴△BAD∽△BDE,∴BD:BE=BA:BD,即BD2=BA·BE;(2)∵由(1)可知,BD2=BE·BA,且AB=6,BE=8,∴∴AD2=BD2-AB2=12即AD=,∵sin∠ABD=ADBD=12,∴∠ABD=30°,又∠ABD=∠EBD,∴∠ABC=60°,∴,∴【点睛】本题考查相似三角形的判定与性质、锐角三角函数、勾股定理、角平分线的定义,熟练掌握相似三角形的判定与性质是解答的关键.22.(1)0m ;(2)-2(1)根据根的判别式大于零求解即可;(2)先求出x 1+x 2=-2m ,x 1·x 2=m 2+m ,然后把x 12+x 22=12变形为(x 1+x 2)2-2x 1x 2=12,再把x 1+x 2=-2m ,x 1·x 2=m 2+m 代入求解即可;【详解】解:(1)∵此方程有两个不相等的实数根,∴b 2-4ac>0,即4m 2-4(m 2+m)>0,∴m<0;(2)x 1+x 2=-2m ,x 1·x 2=m 2+m ,∵x 12+x 22=12,∴(x 1+x 2)2-2x 1x 2=12,∴m=3或m=-2,由(1)可知m<0,故m=3舍去,∴m=-2.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,以及根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a ⋅=.23.(1)16,5k y x =-=-+;(2)10x -<<或6x >,352;(3)D (1,4)【分析】(1)将A(-1,6)代入y=(0)k x x <可求出k 的值,再求出点C 的坐标,然后用待定系数法即可求出一次函数的解析式;(2)解1256y x y x =-+⎧⎪-⎨=⎪⎩即可求出点B 的坐标,根据图象可求出y 1<y 2时自变量x 的取值范围,根据S △AOB =12OC AE ⋅求解即可求出△AOB 的面积;(3)过点D 作DF ⊥x 轴,垂足为F ,设D(x ,-x+5)(x >0),然后根据DF :AE=2:3列方程即可求解.【详解】解:(1)∵反比例函数经过点A(-1,6),∴k=-1×6==-6.如图1,作AE ⊥x 轴,交x 轴于点E ,∴E(-1,0),EA=6,∵∠ACO=45°,∴CE=AE=6,∴C(5,0),∴650k b k b -+=⎧⎨+=⎩,∴15k b =-⎧⎨=⎩,∴直线y 1`=-x+5;(2)解1256y x y x=-+⎧⎪-⎨=⎪⎩,得x 1=-1,x 2=6,故B(6,-1).如图2,由图象可知,当y 1<y 2时,-1<x<0或x>6,S △AOB =1·2OC AE =352;(3)如图1,作DF⊥x轴,交x轴于点F.:S△AOC=2:3,∵S△COD∴DF:AE=2:3.设点D(x,-x+5),即有(-x+5):6=2:3,∴x=1,∴D(1,4).【点睛】本题考查了反比例函数与一次函数额综合,待定系数法求解析式,三角形的面积等,解题关键是能够熟练运用反比例函数的性质.24.(1)2=-++;(2)存在,P(1,2),△PAC1032;(3)y x2x3存在,点M的坐标为(1,1),(16),(1,6),(1,0)【分析】(1)将A、B、C分别代入抛物线表达式中求解a、b、c即可解答;(2)由于10PAC的周长最小,只需PA+PC最小,由点A与点B关于对称轴对称,连接BC,与对称轴的交点即为△PAC周长取得最小值点P的位置,求出直线BC的解析式,将x=1代入即可求得点P的坐标及最小周长;(3)根据题意,分三种情况:①MA=MC;②MA=AC;③MC=AC进行求解即可解答.【详解】解:(1)将A,B,C代入抛物线的解析式y=ax2+bx+c中,得:09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为2y x 2x 3=-++;(2)因为,所以要使得△PAC 的周长最小,只需PA+PC 最小,由题意,抛物线的对称轴为直线x=1,根据抛物线的对称性,点A 的对称点为B ,连接BC ,与对称轴的交点即为△PAC 周长取得最小值点P 的位置.设直线BC 的解析式为y=kx+t ,将B(3,0)、C (0,3)代入,得303k t t +=⎧⎨=⎩,解得:13k t =-⎧⎨=⎩,∴直线BC 的解析式为y=﹣x+3,当x=1时,y=2,∴P(1,2),又BC==∴△PAC 周长的最小值为AC+BC=+;(3)设M (1,n ),A(-1,0),C(0,3),则MA 2=4+n 2;MC 2=1+(3-n)2;AC 2=10,根据题意,分三种情况:①当MA=MC 时,由4+n 2=1+(3-n)2得:n=1,②当MA=AC 时,由4+n 2=10得:n=,③当MC=AC 时,由1+(3-n)2=10得:n 1=0,n 2=6,但当n=6时,A ,C ,M 三点共线,不构不成三角形,需舍去,综上所述,满足条件的点M 的坐标为(1,1),(1),(1,),(1,0).【点睛】本题是二次函数的综合题,主要考查待定系数法求二次函数的解析式、二次函数的图象与性质、轴对称-最短路径、两点间距离公式、等腰三角形的判定、解一元一次方程、解一元二次方程等知识,解答的关键是明确题意,找寻知识的关联点,利用数形结合思想和分类讨论的方法等解题方法进行推理、探究和计算.25.(1)见解析;(2)10 3【分析】(1)由∠AMB+∠AMD+∠DMC=180°及△ABM内角和为180°、∠B=∠AMD,可得∠BAM=∠DMC,从而可判定△ABM∽△MCD;(2)可判定△BDM∽△CME,从而有对应边成比例,则易求得BD的长,然后在Rt△ADE 中,利用勾股定理或求得DE的长.【详解】(1)∵∠AMB+∠AMD+∠DMC=180°,∠B+∠AMB+∠BAM=180°,∠B=∠AMD∴∠BAM=∠DMC∵∠B=∠C∴△ABM∽△MCD(2)∵M是BC的中点∴BM=CM=11822 22BC=⨯=∵∠DMB+∠DME+∠EMC=180°,∠B+∠DMB+∠BDM=180°,∠B=∠DME ∴∠BDM=∠EMC∵∠B=∠C∴△BDM∽△CME∴BM BD CE CM=∴1663 BM CMBDCE===∵∠B=∠C=45°∴∠A=180°-∠B-∠C=90°∴由勾股定理得:AB=AC=82BC=∴AD=AB-BD=168833-=,AE=AC-CE=8-6=2在Rt△ADE中,由勾股定理得:103 DE===【点睛】本题考查了相似三角形的判定与性质,勾股定理,三角形内角和定理,关键是得出两个三角形相似.。
可编辑修改精选全文完整版湘教版九年级数学上册期末考试及答案【最新】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤7 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:33a b ab -=___________.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:231133x x x x -+=--2.已知a 、b 、c 满足2225(32)0a b c -+-+-=(1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.3.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.如图,以Rt △ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF 和AD .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为2,∠EAC =60°,求AD 的长.5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、B6、B7、D8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、ab(a+b)(a﹣b).3、x≥-3且x≠24、85、360°.6、 1三、解答题(本大题共6小题,共72分)1、32 x=-2、(1)a=,b=5,c=;(2)能;.3、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1)略;(2)AD=.5、(1)50;(2)240;(3)1 2 .6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案) 1.sin60°的值等于( )A .12 B C D 2.方程220x x -=的根是( )A .120x x ==B .122x x ==C .120,2x x ==D .120,2x x ==- 3.如图,线段AB 两个端点的坐标分别为A(6,6)、B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1) 4.下列说法中,正确的是( )A .所有的等腰三角形都相似B .所有的菱形都相似C .所有的矩形都相似D .所有的等腰直角三角形都相似5.如图,河坝横断面迎水坡AB 的坡比是BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( )A .9mB .6mC .D .6.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足( )A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=7.将方程231210x x --=进行配方、配方正确的是( ) A .()2325x -=B .()23213x -=C .()225x -=D .()21323x -=8.如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,点E 是△ABC 的内心,过点E 作EF ∥AB 交AC 于点F ,则EF 的长为( )A .52B .154 C .83D .1039.如图,在平面直角坐标系中,函数4y x=()0x >与1y x =-的图像交于点(),P a b ,则代数式11a b-的值为( )A .12-B .12C .14-D .14二、填空题10.如果反比例函数(k y k x=是常数,0k ≠)的图象经过点(2,3),则k =____. 11.已知四个数a b c d ,,,成比例.若2,3,6a b d ===.则c =____. 12.解方程:22590x -=的解是____.13.抛物线y=3(x ﹣1)2+1的顶点坐标是_____.14.若关于x 的一元二次方程2x x m 0++=有两个相等的实数根,则m=_______. 15.藏羚羊是国家保护动物,某地区为估计该地区藏羚羊的数量,先捕捉20只给它们分别作上记号然后放还,带有标记的藏羚羊完全混合于羊群后,第二次捕捉40只,发现其中有2只有标记,从而估计这个地区有藏羚羊_____.16.已知a 是方程2202110x x -+=的一个根,则322202120211a a a --=+____. 17.抛物线2y ax bx c =++的对称轴为直线1x =-,部分图象如图所示,下列判断中:①0abc >;②240b ac ->;③930a b c -+=;④若点()()120.5,,2,y y --均在抛物线上,则12y y >;⑤520a b c -+<.其中正确的序号是____(填写正确的序号).三、解答题18.计算:)()0202101230311sin -⎛-++-⎫⎪⎝⎭.19.已知关于x 的一元二次方程260x kx ++=一个根是2,求k 的值及方程的另一个根. 20.在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如图.(1)求这50个样本数据的平均数、众数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动?21.如图,直升飞机在大桥AB 的上方Р点处,此时飞机离地面的高度450PO =米,且A B O 、、三点在一条直线上,测得大桥两端的俯角分别为130,245∠=︒∠=,求大桥的长AB(结果用根式表示).22.如图,反比例函数my x=的图象与一次函数y kx b =+的图象交于,A B 两点,点A 的坐标为(2,6),点B 的坐标为(,1)n .(1)求反比例函数与一次函数的表达式;(2)直线AB 与y 轴交于点P ,点E 为y 轴上一个动点,若5AEBS=,求点E 的坐标.23.如图,在平面直角坐标系中,抛物线27922y x x =--+与直线12y x b =+交于A B 、两点,其中点A 在x 轴上,已知A 点坐标()1,0,点P 是直线AB 上方的抛物线上一动点(不与点AB 、重合)过P 作y 轴的平行线交直线于点C ,连接PA PB 、.(1)求直线的解析式及点B 的坐标;(2)当APB △面积最大时,求点P 的坐标以及最大面积.24.如图,在四边形ABCD 中,AD //BC ,∠C =90°,AB =AD =25,BC =32,连接BD ,AE ⊥BD ,垂足为E . (1)求证:ABE ∽DBC ; (2)求线段AE 的长.25.顶角等于36的等腰三角形称为黄金三角形,如图1,在ABC 中,已知:,AB AC =且36,A DE ∠=是AB 的垂直平分线,交AC 于D ,并连接BD .(1)BCD △是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由; (2)设1,AB BC x ==,试求x 的值;(3)如图2,在ABC 中将BC 延长至点F ,使1CF AC ==,求BCAF的值.参考答案1.C【分析】把特殊角三角函数值代入求解即可.【详解】由正弦定理可得:sin60°故选C【点睛】此题考查了特殊角的三角函数值,掌握这些特殊角的三角函数值是解此题的关键.2.C【分析】本题可用因式分解法,提取x后,变成两个式子相乘为0的形式,让每个式子都等于0,即可求出x.【详解】解:∵x2-2x=0∴x(x-2)=0,可得x=0或x-2=0,解得:x=0或x=2.故选:C.【点睛】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用3.A【详解】试题分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的1后得到线段CD,2∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C 的坐标为:(3,3). 故选A .考点:位似变换;坐标与图形性质. 4.D 【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案. 【详解】A 、所有的等腰三角形,边的比不一定相等,对应角不一定对应相等,故错误;B 、所有的菱形,边的比一定相等,而对应角不一定对应相等,故错误;C 、所有的矩形,对应角的度数一定相同,但对应边的比值不一定相等,故错误;D 、所有的等腰直角三角形,边的比一定相等,而对应角对应相等,故正确. 故选D . 【点睛】考查相似多边形的判定,对应角相等,对应边的比相等,缺一不可. 5.B 【详解】由图可知,:BC AC =tan BAC ∠=, ∴30BAC ∠=︒, ∴36m1sin302BC AB ===︒. 故选B . 6.D 【分析】等量关系为:原价×(1-降价的百分率)2=现价,把相关数值代入即可. 【详解】第一次降价后的价格为:25×(1-x); 第二次降价后的价格为:25×(1-x)2; ∵两次降价后的价格为16元,∴25(1-x)2=16.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.求平均变化率的方法:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.D【分析】先将常数项移到方程右边,再将二次项系数化为1,最后两边加上一次项系数的一半的平方,写成完全平方公式即可.【详解】解:方程移项得:3x2-12x=1,方程两边除以3得:x2-4x=13,配方得:x2-4x+4=13+4=133,即(x-2)2=133,故选:D.【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.8.A【分析】延长FE交BC于点D,作EG⊥AB、作EH⊥AC,由EF∥AC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、∠GAE=∠HAE,从而知四边形BDEG是正方形,再证△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,设BD=BG=x,则AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再证△CDF∽△CBA,CD DF BC AB=可得92DF=,据此得出EF=DF-DE=52.【详解】解:如图,延长FE交BC于点D,作EG⊥AB于点G,作EH⊥AC于点H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四边形BDEG是正方形,在△GAE和△HAE中,∵GAE HAEAGE AEE HAA E ∠=∠∠=∠⎧⎪⎨⎪=⎩,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,设BD=BG=x,则AG=AH=6﹣x、CD=CH=8﹣x,∵=10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴CD DFBC AB=,即686DF=,解得:36982 DF==,则EF=DF﹣DE=95222-=,故选A【点睛】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键. 9.C 【分析】把P(a ,b )代入两解析式得出b a -和ab 的值,整体代入11b aa b ab--=即可求解C【详解】 ∵函数4y x=()0x >与1y x =-的图像交于点P(a ,b ), ∴4b a=,1b a =-,即4ab =,1b a -=-, ∴1114b a a b ab --==-. 故选:C . 【点睛】本题考查了代数式的求值以及反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数的解析式. 10.6 【分析】 把点(2,3)代入(0)ky k x=≠即可求出k 的值. 【详解】解:因为反比例函数(0)ky k x=≠经过点(2,3), 把(2,3)代入(0)ky k x=≠,得236k =⨯=, 故答案为:6. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(0)k y k x=≠的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .11.4【分析】 由四条线段a 、b 、c 、d 成比例,根据成比例线段的定义,即可得a cb d=,又由a=2,b=3,d=6,即可求得c 的值.【详解】解:∵四条线段a 、b 、c 、d 成比例, ∴a c b d =, ∵a=2,b=3,d=6. ∴2=36c , 解得:c=4.故答案为:4.【点睛】此题考查了成比例线段的定义.此题比较简单,解题的关键是注意掌握比例线段的定义.12.35x =± 【分析】利用直接开平方法解方程即可.【详解】解:22590x -=,即2925x =,解得35x =±, 故答案为:35x =±. 【点睛】本题主要考查解一元二次方程-直接开平方法,掌握一元二次方程的解法是解题的关键. 13.(1,1 ).【解析】试题分析:利用抛物线顶点式y=a (x ﹣h )2+k 直接求出顶点坐标即可.解:∵抛物线y=a (x ﹣h )2+k 的顶点坐标为(h ,k ),∴y=3(x ﹣1)2+1的顶点坐标是(1,1).故答案为(1,1 ).考点:二次函数的性质.14.14. 【详解】∵关于x 的一元二次方程2x x m 0++=有两个相等的实数根,∴方程根的判别式于0,∴由△=1﹣4m=0解得:m=14. 故答案为:14. 考点:一元二次方程根的判别式.15.400【详解】解:根据概率的计算法则可得:藏羚羊的数量为:40÷220=400只. 故答案为:400.考点:概率的应用16.2021-【分析】由方程根的定义可得2202110a a -+=,变形为212021a a +=.再将2202110a a -+=等号两边同时乘a 并变形得322021a a a -=-,代入322202120211a a a --+逐步化简即可. 【详解】∵a 是方程2202110x x -+=的一个根.∴2202110a a -+=,即212021a a +=.将2202110a a -+=等号两边同时乘a 得:2(20211)0a a a -+=,即322021a a a -=-. ∴2322202120211120212021202112021a a a a a a a a a a a +--=--=--=-=-=-+. 故答案为:-2021.【点睛】本题考查一元二次方程解的定义以及代数式求值.熟练掌握整体代入的思想是解答本题的关键.17.②③⑤【分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴方程得到b=2a >0,利用抛物线与y 轴的交点位置得到c <0,则可对①进行判断;利用抛物线与x 轴交点个数可对②进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-3,0),则可对③进行判断;根据二次函数的性质,通过比较两点到对称轴的距离可对④进行判断;利用5a-2b+c=5a-4a-3a=-2a <0,则可对⑤进行判断.【详解】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x=-2b a=-1, ∴b=2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以②正确;∵抛物线的对称轴为直线x=-1,抛物线与x 轴的一个交点坐标为(1,0),∴抛物线与x 轴的另一个交点坐标为(-3,0),∴9a-3b+c=0,所以③正确;∵点(-0.5,y 1)到直线x=-1的距离比点(-2,y 2)到直线x=-1的距离小,而抛物线开口向上,∴y 1<y 2;所以④错误;∵5a-2b+c=5a-4a-3a=-2a <0,故⑤正确,故答案为:②③⑤.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.18.4【分析】直接利用零指数幂的性质以及负整数指数幂的性质和特殊角的三角函数值分别化简得出答案.【详解】解:)()0202101230311sin -⎛-++-⎫ ⎪⎝⎭ 112312=-⨯++ 4=【点睛】此题主要考查了实数运算,三角函数,正确化简各数是解题关键.19.5k =-,23x =【分析】设方程的另一根为t ,根据根与系数的关系得到2+t=-k ,2t=6,然后先求出t 的值,再计算k 的值.【详解】解:设方程的另一根为t ,根据题意得2+t=-k ,2t=6,解得t=3,k=-5.故答案为:5k =-,23x =.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了根与系数的关系.20.(1)平均数是3.3次,众数是4次;(2)3960.【分析】(1)根据加权平均数的公式和众数的定义即可求出.(2)利用样本估计总体的方法,用1200×平均数即可.【详解】(1)观察条形统计图,可知这组样本数据的平均数是:132731741855 3.350x ⨯+⨯+⨯+⨯+⨯==次, 则这组样本数据的平均数是3.3次.在这组样本数据中,4出现了18次,出现的次数最多,这组数据的众数是4次.(2)这组样本数据的平均数是3.3次,估计全校1200人参加活动次数的总体平均数是3.3次,故全校1200人参加活动次数为3.312003960⨯=次.【点睛】本题考查的是条形统计图,平均数,众数以及样本估计总体.读懂统计图,从统计图中得到必要的信息是解题的关键.21.)4501m . 【分析】利用特殊角的三角函数解三角形即可.【详解】由题意得:304590PAO PBO POB POA ∠=︒∠=︒∠=∠=︒,,,tan tan 30PO PAO AO ∠=︒=AO = tan tan 451PO PBO BO∠=︒==,即求出450BO =米,则4501)AB AO BO =-==米.【点睛】本题考查解直角三角形,掌握特殊角的三角函数值是解答本题的关键.22.(1)12y x =,172y x =-+;(2)E 的坐标为(0,6)或(0,8). 【分析】(1)把点A 的坐标代入y=m x,求出反比例函数的解析式,把点B 的坐标代入y=12x ,得出n 的值,得出点B 的坐标,再把A 、B 的坐标代入直线y=kx+b ,求出k 、b 的值,从而得出一次函数的解析式;(2)设直线AB 与y 轴的交点为P ,点E 的坐标为(0,m ),连接AE ,BE ,求出点P 的坐标(0,7),得出PE=|m-7|,根据S △AEB =S △BEP -S △AEP =5,求出m 的值,从而得出点E 的坐标.【详解】解:()1把点(2,6)A 代入my x =,得12m =. 则反比例函数的表达式为12y x =.把点(,1)B n 代入12y x =,得12n =.则点B 的坐标为(12,1).由直线y kx b =+过点()()2,6,12,1A B ,得2621k b k b +=⎧⎨+=⎩ 解得127k b ⎧=-⎪⎨⎪=⎩ 则一次函数的表达式为172y x =-+()2如图,设直线AB 与y 轴的交点为P ,设点E 的坐标为(0,m ),连接AE ,BE , 则点P 的坐标为(0,7)∴PE=|m-7|∵S △AEB =S △PEB -S △PEA =5 ∴12×|m-7|×12-12×|m-7|×2=5. ∴12×|m-7|×(12-2)=5∴|m-7|=1.∴m 1=6,m 2=8∴点E 的坐标为(0,6)或(0,8)【点睛】本题考查了反比例函数和一次函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.23.(1)1122y x =-,B 的坐标为()5,3--;(2)点Р的坐标为()152,2-,APB △面积的最大值为27.【分析】(1)先求出抛物线27922y x x =--+与x 轴交点A 的坐标,再将A 点坐标代入 12y x b =+,利用待定系数法求出直线的解析式为1122y x =-,与抛物线的解析式联立,解方程组279221122y x x y x ⎧=--+⎪⎪⎨⎪=-⎪⎩,即可求得B 点的坐标; (2)设P (x ,27922x x --+),则C (x , 1122x -),则PC=-x 2-4x+5,利用三角形面积公式得到S △APB =12PC•|x A -x B |=12(-x 2-4x+5)×(1+5),然后利用二次函数的性质解决问题.【详解】解:()1A 点的坐标为()1,0,将()1,0代入12y x b =+, 得1012b =⨯+, 解得12b =-, ∴直线的解析式为1122y x =- 由279221122y x y x ⎧=--+⎪⎪⎨⎪=-⎪⎩ 解得1110x y =⎧⎨=⎩,2253x y =-⎧⎨=-⎩B ∴的坐标为()5,3--()2设279,22(P x x x --+),则11,22x x C ⎛⎫- ⎪⎝⎭, 221127945222x PC x x x x ⎛⎫⎛⎫∴=--+-=--+ ⎪ ⎪⎭⎝⎭-⎝, ()()222114515312153227(22APB A B S PC x x x x x x x ∆∴=⋅-=--+⨯+=--+=-++), 当2x =-时,APB ∆面积最大,最大值为27,此时点Р的坐标为()152,2-. 【点睛】本题考查了二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征,两函数交点坐标的求法,三角形的面积,难度适中.24.(1)证明见解析;(2)AE =15.【分析】(1)由等腰三角形的性质可知∠ABD =∠ADB ,由AD ∥BC 可得∠ADB =∠DBC ,即可得出∠ABD =∠DBC ,根据∠AEB =∠C =90°,即可可证明△ABE ∽△DBC ;(2)由等腰三角形的性质可知,BD =2BE ,根据相似三角形的性质可求出BE 的长,在Rt △ABE 中,利用勾股定理求AE 即可得答案.【详解】(1)∵AB =AD =25,∴∠ABD =∠ADB ,∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ABD =∠DBC ,∵AE ⊥BD ,∴∠AEB =∠C =90°,∴△ABE ∽△DBC ;(2)∵AB =AD ,AE ⊥BD ,∴BE =DE ,∴BD =2BE ,∵△ABE ∽△DBC ,∴AB BE BD BC=,∵AB=AD=25,BC=32,∴25232BE BE=,∴BE=20,∴AE15.【点睛】本题考查相似三角形的判定与性质,熟练掌握相似三角形的判定方法是解题关键.25.(1)△BDC是黄金三角形,理由见解析;(2)x=(335【分析】(1)先根据AB=AC,∠A=36°证明∠ABC=∠ACB=72°,再根据线段垂直平分线的性质证明∠ABD=∠A=36°,∠BDC=∠C,从而可得结论;(2)证明BDC ABC∆∆,根据相似三角形的性质可得方程,求解方程即可;(3)证明FBA ABC∆∆可得结论.【详解】解:()1BCD是黄金三角形.证明如下:点D在AB的垂直平分线上,,AD BD∴=,ABD A∴∠=∠36,A AB AC∠=︒=72ABC C∴∠=∠=,36,ABD DBC∴∠=∠=︒又72BDC A ABD∠=∠+∠=,,BDC C∴∠=∠,BD BC∴=BCD∴△是黄金三角形.()2设,1BC x AC==,由()1知,AD BD BC x===.,DBC A C C∠=∠∠=∠BDC ABC∴∆∆,BC DC AC BC ∴=即11x x x-=整理得210x x +-=,解得x =. 因为x 均为正数,所以x = () 336,A AB AC ∠=︒=,72ACB B ∴∠=∠=,18072108ACF ∴∠=︒-=︒,1,36AC CF F CAF ∴==∠=∠=72,BAF B ∴∠=︒=∠,FBA ABC ∴∆∆BC AB =,AB AF =2BC BC AB AF AB AF ∴=⨯==⎝⎭. 【点睛】此题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答此题的关键.。
湘教版九年级数学上册期末试卷一、选择题1、从分别写有数字、、、、、、、、的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( )A .B .C .D .2、如果∠A 是锐角,且,那么∠A =( )A .30°B .45°C .60°D .90°3、如图,梯子(长度不变)跟地面所成的锐角为A ,关于∠A 的三角函数值与梯子的倾斜程度之间,叙述正确的是()A .sinA 的值越大,梯子越陡B .cosA 的值越大,梯子越陡C .tanA 的值越小,梯子越陡D .陡缓程度与∠A 的函数值无关(第3题图) (第4题图) (第5题图)4、周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在处测得她看塔顶的仰角为,小丽站在处测得她看塔顶的仰角为30°.她们又测出两点之间的距离为30米.假设她们的眼睛离头顶都为,则可计算出塔高约为(结果精确到,参考数据:,)( )A .36.21米B .37.71米C .40.98米D .42.48米5、如图,在△中,,,则△的面积是( )A .B .12C .14D .216、下列命题中,是真命题的是( )A .有两边和其中一边的对角对应相等的两个三角形全等B .等腰三角形既是轴对称图形,也是中心对称图形C .轴对称图形的对称轴是连接两个对称点之间的线段的垂直平分线D .任何数的零次幂都等于1 7、如图,,,延长交于,且,则的长为( )A B.C.D.8、有两块木板,第一块长是宽的2倍,第二块的长是第一块宽的3倍,宽比第一块的长少,已知第二块木板的面积比第一块大,这两块木板的长和宽分别是( ) A .第一块木板长,宽,第二块木板长,宽 B .第一块木板长,宽,第二块木板长,宽 C .第一块木板长,宽,第二块木板长,宽D .以上都不对9、已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是( ) A .B .C .D .910、下列四个三角形,与左图中的三角形相似的是( )11、下列命题中,真命题是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是菱形 C .对角线互相平分的四边形是平行四边形 D .对角线互相垂直平分的四边形是正方形12、一只盒子中有红球个,白球个,黑球个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么与的关系是( )A .,B .C .D .二、填空题13、有一箱规格相同的红、黄两种颜色的小塑料球共个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为,据此可以估计红球的个数约为 。
湘教版九年级数学上册期末考试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( )A .±2B .2C .﹣2D .162.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1 B .1 C .﹣5 D .55.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y=﹣5(x+1)2﹣1B .y=﹣5(x ﹣1)2﹣1C .y=﹣5(x+1)2+3D .y=﹣5(x ﹣1)2+3 6.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为 ( )A.180 B.182 C.184 D.1869.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=23,则线段CD的长是()A.2 B.3C.32D.33210.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1124503_____.2.分解因式:2x3﹣6x2+4x=__________.3.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是_____.4.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.如图,在矩形ABCD 中,8AD =,对角线AC 与BD 相交于点O ,AE BD ⊥,垂足为点E ,且AE 平分BAC ∠,则AB 的长为__________.三、解答题(本大题共6小题,共72分) 1.解方程23111x x x -=--2.已知a 、b 、c 满足2225(32)0a b c ---=(1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.3.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.4.如图,在平面直角坐标系中,直线l1:y=﹣12x与反比例函数y=kx的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣12x>kx的解集;(3)将直线l1:y=﹣12x沿y向上平移后的直线l2与反比例函数y=kx在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.为满足市场需求,某服装超市在六月初购进一款短袖T恤衫,每件进价是80元,超市规定每件售价不得少于90元,根据调查发现:当售价定为90元时,每周可卖出600件,一件T恤衫售价每提高1元,每周要少卖出10件.(1)试求出每周的销售量y(件)与每件售价x元之间的函数表达式;(不需要写出自变量取值范围)(2)该服装超市每周想从这款T恤衫销售中获利850元,又想尽量给客户实惠,该如何给这款T恤衫定价?(3)超市管理部门要求这款T恤衫售价不得高于110元,则当每件T恤衫售价定为多少元,每周的销售利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、A6、B7、A8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、2x(x﹣1)(x﹣2).3、0或14、5、40°6、.三、解答题(本大题共6小题,共72分)1、2x2、(1)a=,b=5,c=;(2)能;.3、(1)略;(2)5 2.4、(1)y= 8x;(2)y=﹣12x+152;5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)101500y x =-+;(2)销售单价为95元;(3)当销售单价为110元时,该超市每月获得利润最大,最大利润是12000元.。
湘教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.已知32 )0,(0a b a b =≠≠,下列变形错误的是( ) A .23a b = B .23b a = C .32b a = D .23a b =2.下列关于反比例函数8y x=-,结论正确的是( ) A .图象必经过()2,4 B .图象在二,四象限内 C .在每个象限内,y 随x 的增大而减小 D .当1x >-时,则8y >3.甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是22221.2, 1.1,0.6,0.9S S S S ====甲乙丁丙则射击成绩最稳定的是( ) A .甲B .乙C .丙D .丁4.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -= 5.将抛物线 22y x = 的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是( )A .()2223y x =-- B .()2223y x =-+ C .()2223y x =+- D .()2223y x =++6.已知关于x 的一元二次方程2cos 0x α+=有两个相等的实数根,则锐角α等于A .15B .30C .45D .607.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( ) A .()9121x -=B .()2911x -=C .()9121x +=D .()2911x +=8.如图,在ABC 中,//DE AB ,且34AD BD =,则AEAC的值为( )A .37B .43C .47 D .349.如图,等腰Rt ABC ∆与等腰Rt CDE ∆是以点O 为位似中心的位似图形,位似比为1:3,90,4k ACB BC =∠==,则点D 的坐标是( )A .()18,12B .()16,12C .()12,18D .()12,16二、填空题10.方程2x x =的根是____________. 11.已知ABC∆DEF ∆,相似比为2,且ABC ∆的面积为4,则DEF ∆的面积为__________.12.如图,某水坝的坡比为坡长AB 为20米,则该水坝的高度BC 为__________米.13.ABC ∆中, 如果锐角,A B ∠∠满足2cos 1 0tanA B ⎛+= ⎝⎭-,则C ∠=_________度 14.已知m 是方程2210x x +-=的一个根,则代数式()21m +的值为__________. 15.抛物线2y cx bx c =++经过点()()2, 54, 5,,则这条抛物线的对称轴是直线__________. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数ky x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为____.17.如图,ABCD 的对角线AC BD ,交于点,O CE 平分BCD ∠交AB 于点E ,交BD 于点F ,且60,2ABC AB BC ∠==,连接OE .下列结论:①tan CAB ∠=②AOD COF ∆∆;③3AOD OCF S S ∆∆=:④2.FB OF DF =其中正确的结论有__________(填写所有正确结论的序号)三、解答题18.计算:()114sin 6020192π-⎛⎫+-- ⎪⎝⎭19.已知二次函数的图象顶点是(12)-,, 且经过()1, 3-,求这个二次函数的表达式.20.如图,已知ABC ∆中,90ACB ∠=︒, 点D 是边AB 上一点,且CDECAB ∆∆()1求证:CADCBE ∆∆;()2求证:EB AB ⊥. 21.某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.请根据图表信息,解答下列问题:()1本次调查随机抽取了____ 名学生:表中m = ;n =()2补全条形统计图:()3若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有多少人22.如图①是图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂40AC cm =,灯罩30CD cm =,灯臂与底座构成的60CAB ∠=︒.CD 可以绕点C 上下调节一定的角度.使用发现:当CD 与水平线所成的角为30°时,台灯光线最佳.现测得点D 到桌面的距离为49.6cm .请通过计算说明此时台灯光线是否为最佳?( 1.73).23.如图,在矩形ABCD 中,24BC cm P Q M N =,、、、分别从A B C D 、、、同时出发,分别沿边AD BC CB DA 、、、移动,当有一个点先到达所在边的另一个端点时,其它各点也随之停止移动.己知移动段时间后,若()0,2,3BQ xcm x AP xcm CM xcm =≠==,2DN x cm =.当x 为何值时,以P Q M N 、、、为顶点的四边形是平行四边形?24.从三角形(不是等腰三角形)一个顶点引出一条射线 与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.()1如图1,在ABC ∆中,44, A CD ∠=是ABC ∆的完美分割线,且AD CD =, 则ACB ∠的度数是()2如图2,在ABC ∆中,CD 为角平分线,40 60A B ∠=∠=,,求证: CD 为ABC ∆的完美分割线.()3如图2,ABC ∆中,2, AC BC CD =是ABC ∆的完美分割线,且ACD ∆是以CD 为底边的等腰三角形,求完美分割线CD 的长.25.如图,反比例函数ky x=的图象经过点()A -,射线AB 与反比例函数的图象的另一个交点为()1, B a -,射线AC 与x 轴交于点E ,与y 轴交于点,75C BAC AD y ∠=⊥,轴, 垂足为D .()1求反比例函数的解析式;()2求DC 的长()3在x轴上是否存在点P,使得APE∆与ACD∆相似,若存在,请求出满足条件点P的坐标,若不存在,请说明理由.参考答案1.B【解析】根据比例式的性质,即可得到答案.【详解】∵23ab=⇔32a b=,23ba=⇔23a b=,32ba=⇔32a b=,23a b=⇔32a b=,∴变形错误的是选项B.故选B . 【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键. 2.B 【分析】根据反比例函数的图象和性质,逐一判断选项,即可得到答案. 【详解】 ∵2488⨯=≠-, ∴A 错误,∵k=-8<0,即:函数8y x=-的图象在二,四象限内, ∴B 正确,∵k=-8<0,即:在每个象限内,y 随x 的增大而增大, ∴C 错误,∵当1x >-时,则8y >或0y <, ∴D 错误, 故选B . 【点睛】本题主要考查反比例函数的图象和性质,掌握比例系数k 的意义与增减性,是解题的关键. 3.C 【分析】根据方差的意义,即可得到答案. 【详解】 ∵丙的方差最小, ∴射击成绩最稳定的是丙, 故选C . 【点睛】本题主要考查方差的意义,掌握方差越小,一组数据越稳定,是解题的关键. 4.A 【分析】利用配方法把方程2680x x --=变形即可. 【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17, 故选A . 【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键. 5.B 【分析】根据“左加右减,上加下减”的规律求解即可. 【详解】y =2x 2向右平移2个单位得y=2(x ﹣2)2,再向上平移3个单位得y =2(x ﹣2)2+3. 故选B. 【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”. 6.D 【分析】根据一元二次方程根的判别式等于零,求出cos α的值,进而即可得到答案. 【详解】∵关于x 的一元二次方程2cos 0x α+=有两个相等的实数根,∴∆=2(41cos 0α-⨯⨯=,解得:1cos 2α=, ∴α=60. 故选D . 【点睛】本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键. 7.B【分析】等量关系为:2016年贫困人口()212018⨯-=下降率年贫困人口,把相关数值代入计算即可. 【详解】解:设这两年全省贫困人口的年平均下降率为x ,根据题意得: ()2911x -=,故选B . 【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键. 8.A 【分析】由DE 与BC 平行,得到三角形ADE 与三角形ABC 相似,由相似得比例即可求出所求; 【详解】 解: ∵//DE BC∴,ADE B AED C ∠=∠∠=∠, ∴ADE ABC ∽ ∴34AD AE BD EC == ∴37AE AC = 故选A 【点睛】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键. 9.A 【分析】根据位似比为1:34k BC ==,,可得13OC BC OE DE ==,从而得:CE=DE=12,进而求得OC=6,即可求解. 【详解】∵等腰Rt ABC ∆与等腰Rt CDE ∆是以点O 为位似中心的位似图形,位似比为1:3,90,4k ACB BC =∠==,∴13OC BC OE DE ==,即:DE=3BC=12, ∴CE=DE=12, ∴1123OC OC =+,解得:OC=6,∴OE=6+12=18,∴点D 的坐标是:()18,12. 故选A . 【点睛】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键. 10.0和1 【分析】观察本题形式,用因式分解法比较简单,在移项提取x 后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x . 【详解】移项得:20x x -=, 即()10x x -=, 解得:1201x x ==,. 故答案为:0和1 . 【点睛】本题考查了因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 11.1 【分析】根据相似三角形的性质,即可求解. 【详解】 ∵ABC∆DEF ∆,相似比为2,∴ABC ∆与DEF ∆,的面积比等于4:1, ∵ABC ∆的面积为4,∴DEF ∆的面积为1.故答案是:1.【点睛】本题主要考查相似三角形的性质定理,掌握相似三角形的面积比等于相似比的平方,是解题的关键.12.10【分析】根据坡度的定义,可得:BC AC =∠A=30°,进而即可求解.【详解】∵水坝的坡比为∠C=90°,∴:BC AC =tan ∠∴∠A=30°,∵AB 为20米,∴BC 为10米.故答案是:10.【点睛】本题主要考查坡度的定义和三角函数的定义,掌握坡度的定义,是解题的关键. 13.105【分析】根据绝对值与偶数次幂的非负性,可得=1 tanA 且cos B ∠A ,∠B 的值,即可得到答案.【详解】∵2cos 1 0tanA B ⎛+= ⎝⎭-,∴0 1 tanA -=且2cos =0B ⎛ ⎝⎭,∴=1 tanA 且cos B ∴∠A=45°,∠B=30°,∵在ABC ∆中, ++180A B C ∠∠=︒∠,∴C ∠=105°.故答案是:105°.【点睛】本题主要考查绝对值与偶数次幂的非负性,特殊三角函数以及三角形内角和定理,掌握绝对值与偶数次幂的非负性,是解题的关键.14.2【分析】根据方程的根的定义,得2210m m +-=,结合完全平方公式,即可求解.【详解】∵m 是方程2210x x +-=的一个根,∴2210m m +-=,即:221m m +=∴()22121m m m +=++=1+1=2.故答案是:2.【点睛】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键. 15.3x =【分析】根据抛物线的轴对称性,即可得到答案.【详解】∵抛物线2y cx bx c =++经过点()()2, 54, 5,,且点()2, 5,点()4, 5关于直线x=3对称, ∴这条抛物线的对称轴是:直线x=3.故答案是:3x =.【点睛】本题主要考查二次函数的图象与性质,掌握抛物线的轴对称性,是解题的关键. 16.3y x =. 【详解】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.17.①③④【分析】由四边形ABCD是平行四边形,∠ABC=60°,EC平分∠DCB,得△ECB是等边三角形,结合AB=2BC,得∠ACB=90°,进而得∠CAB=30°,即可判断①;由∠OCF<∠DAO,∠OFC>∠ADO,即可判断②;易证△OEF∽△BCF,得OF=13OB,进而得S△AOD=S△BOC=3S△OCF,即可判断③;设OF=a,得DF=4a,BF=2a,即可判断④.【详解】∵四边形ABCD是平行四边形,∴CD∥AB,OD=OB,OA=OC,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC平分∠DCB,∴∠ECB=12∠DCB=60°,∴∠EBC=∠BCE=∠CEB=60°,∴△ECB是等边三角形,∴EB=BC= EC,∵AB=2BC,∴EA=EB=EC,∴∠ACB=90°,∴∠CAB=30°,即:tan CAB∠故①正确;∵AD∥BC,∴∠ADO=∠CBO,∠DAO=∠BCO,∵∠OCF<∠BCO,∠OFC>∠CBO,∴∠OCF<∠DAO,∠OFC>∠ADO,∴AOD COF∆∆错误,故②错误;∵OA=OC,EA=EB,∴OE∥BC,∴△OEF∽△BCF,∴12 OE OFBC BF==,∴OF=13 OB,∴S△AOD=S△BOC=3S△OCF,故③正确;设OF=a,∵OF=13 OB,∴OB=OD=3a,∴DF=4a,BF=2a,∴BF2=OF•DF,故④正确;故答案为:①③④.【点睛】本题主要考查平行四边形的性质定理,相似三角形的判定和性质,三角函数的定义,以及直角三角形的判定和性质,掌握平行四边形的性质定理,相似三角形的判定和性质,是解题的关键.18.原式1=-【分析】根据特殊角三角函数以及实数的混合运算法则,即可求解.【详解】原式=412--=12--=-1【点睛】本题主要考查特殊角三角函数以及实数的混合运算法则,掌握实数的混合运算法则是解题的关键.19.()25124y x =-++ 【分析】根据二次函数解析式的顶点式以及待定系数法,即可得到答案.【详解】 把顶点()12-,代入()2y a x h k =-+得:()212y a x =++, 把()1,3-代入()212y a x =++得:54a =-, ∴二次函数的表达式为:()25124y x =-++. 【点睛】本题主要考查二次函数的待定系数法,掌握二次函数解析式的顶点式是解题的关键. 20.(1)详见解析;(2)详见解析【分析】(1)根据相似三角形的性质和判定定理,即可得到结论;(2)由CADCBE ∆∆得CAD CBE ∠=∠,进而即可得到结论.【详解】(1)CDECAB ∆∆, CA CB CD CE∴=,ACB DCE ∠=∠, ACB DCB DCE DCB ∴∠-∠=∠-∠,即:ACD BCE ∠=∠,∴CAD CBE ∆∆;()2 CAD CBE ∆∆,CAD CBE ∴∠=∠.90ACB ∠=︒,∴90CAD CBA ∠+∠=︒,90CBE CBA ∴∠+∠=︒,即:∠DBE=90°,EB AB ∴⊥.【点睛】本题主要考查相似三角形的判定和性质定理以及直角三角形的性质定理,掌握两边对应成比例,夹角相等的两个三角形是相似三角形,是解题的关键.21.(1)50,20,0.12;(2)详见解析;(3)1640.【分析】(1)根据总数×频率=频数,即可得到答案;(2)根据统计表的数据,即可画出条形统计图;(3)根据全校总人数×达到“优秀"和“良好”等级的学生的百分比,即可得到答案.【详解】()1本次调查随机抽取了2142%50÷=名学生,65040%20, 0.1250m n =⨯===. 故答案为: 50200.12,,; ()2补全条形统计图如图所示:()321202000164050+⨯=(人), 答:该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有1640多少人.【点睛】本题主要考查频数统计表和条形统计图,掌握统计表和条形统计图的特征,是解题的关键.22.此时台灯光线是最佳【解析】【分析】如图,作CE AB ⊥于E ,DH AB ⊥于H ,CF DH ⊥于F .解直角三角形求出DCF ∠即可判断.【详解】解:如图,作CE AB ⊥于E ,DH AB ⊥于H ,CF DH ⊥于F .∵90CEH CFH FHE ∠=∠=∠=︒,∴四边形CEHF 是矩形,∴CE FH =,在Rt ACE △中,∵40,60AC cm A =∠=︒,∴·60()34.6CE AC sin cm =︒=,∴34.6()FH CE cm ==∵49.6DH cm =,∴49.63461).5(DF DH FH cm =-=-=,在Rt CDF 中,151sin 302DF DCF CD ∠===, ∴30DCF ∠=︒,∴此时台灯光线为最佳.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.2或3-【分析】根据平行四边形的性质,得PN QM =,分两种情况: ①当点P 在点N 的左侧时,②当点P 在点N 的右侧时,分别列出关于x 的方程,即可求解.【详解】∵在矩形ABCD 中,AD ∥BC ,∴以P Q M N 、、、为顶点的四边形是平行四边形时,PN QM =.①当点P 在点N 的左侧时,由PN QM =,得:2242243x x x x --=--,解得:10x = (舍去),22x =;②当点P 在点N 的右侧时,由PN QM =,得:()2224243x x x x +-=--,解得:1233x x =-=-舍去);综上所述:当x =2或3-P Q M N 、、、为顶点的四边形是平行四边形.【点睛】本题主要考查一元二次方程与平行四边形的性质综合,根据等量关系,列出方程,时是解题的关键.24.(1)88°;(2)详见解析;(3【分析】(1) C D 是ABC ∆的完美分割线,且AD CD =,得∠ACD=44°,∠BCD=44°,进而即可求解;(2)由4060A B ∠=∠=,,得80ACB ∠=,由CD 平分ACB ∠,40ACD BCD ∠=∠=,得ACD ∆为等腰三角形,结合BCD BAC ∆∆,即可得到结论;(3)由 CD 是ABC ∆的完美分割线,得BCDBAC ∆∆,从而得BC BD BA BC =,设BD x =,列出方程,求出x 的值,再根据CDBDAC BC =,即可得到答.【详解】(1) ∵ C D 是ABC ∆的完美分割线,且AD CD =,∴ABC CBD ,∠A=∠ACD=44°,∴∠A=∠BCD=44°,∴88ACB ∠=.故答案是:88°;()24060A B ∠=∠=,,80ACB ∴∠=,ABC ∆∴不是等腰三角形, CD 平分ACB ∠,1402ACD BCD ACB ∴∠=∠=∠=,40ACD A ∴∠=∠=,ACD ∴∆为等腰三角形.40DCB A ∠=∠=,CBD ABC ∠=∠,BCD BAC ∴∆∆,CD ∴是ABC ∆的完美分割线.()3∵ACD ∆是以CD 为底边的等腰三角形,∴2AC AD ==,∵CD 是ABC ∆的完美分割线,∴BCD BAC ∆∆,BC BD BA BC∴=,设BD x =,则()22x x =+,0x ,1x ∴=,CD BD AC BC ∴==2CD ∴== 【点睛】本题主要考查等腰三角形的性质与相似三角形的判定和性质定理,掌握相似三角形的性质定理,是解题的关键.25.(1)y =;(2)2;(3)1 ()P -,2P ⎛⎫ ⎪ ⎪⎝⎭【分析】(1)根据待定系数法,即可求解;(2)过点B 作BM AD ⊥于点M ,求出点B 的坐标,从而得45BAM ∠=,进而得30DAC ∠=,即可求解; (3)分两种情况讨论:①当1AP x ⊥轴时,1APE CDA ∆∆, ②当2AP AE ⊥时,2AP E DCA ∆∆,分别求出点P 的坐标,即可.【详解】 ()1∵反比例函数k y x=的图象经过点()A -,∴(1k =-⨯=-∴反比例函数的解析式为:y = ()2过点B 作BM AD ⊥于点M ,把()1, B a -代入y =,得:a =∴ 1AM BM ==,45BAM ∴∠=,21 75BAC ∠=,754530DAC ∴∠=-=∴2DC ==; ()3∵AD ⊥y 轴,∴AD ∥x 轴,∴∠1=∠OEC=∠DAC=30°,①当1AP x ⊥轴时,1APE CDA ∆∆,此时:1()P -; ②当2AP AE ⊥时,2AP E DCA ∆∆,1211903060AP AP P =∠=-=,,211P P ∴=,∴2P ⎛⎫ ⎪ ⎪⎝⎭.综上所述:1 ()P -,2P ⎛⎫ ⎪ ⎪⎝⎭.【点睛】本题主要考查反比例函数与相似三角形的综合,掌握反比例函数的性质与相似三角形的性质,是解题的关键.。
湘教版九年级数学上册期末考试卷【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =6.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .10.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,C 分别在x 轴,y 轴的正半轴上,点D (-2,3),AD =5,若反比例函数k y x=(k >0,x >0)的图象经过点B ,则k 的值为( )A .163B .8C .10D .323二、填空题(本大题共6小题,每小题3分,共18分)1.计算(31)(31)+-的结果等于___________.2.分解因式:x 2-2x+1=__________.3.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解分式方程:231133x x x x -+=--2.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++=(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标;(3)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B 《红楼梦》、C 《西游记》、D 《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某口罩生产厂生产的口罩1月份平均日产量为20000,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、D6、C7、C8、A9、C10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、22、(x-1)2.3、k<6且k ≠34、425、12π+.6、①③④.三、解答题(本大题共6小题,共72分)1、32x =- 2、(1)详见解析(2)k 4=或k 5=3、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、(1)答案略;(2)45°.5、(1)50;(2)见解析;(3)16. 6、(1)10%;(2)26620个。
湘教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、对于一个函数,自变量x取c时,函数值等于0,则称c为这个函数的零点.若关于x的二次函数有两个不相等的零点,关于x的方程有两个不相等的非零实数根,则下列关系式一定正确的是()A. B. C. D.2、若反比例函数y=的图象经过点(-2,4),那么这个函数是()A.y=B.y=C.y=-D.y=-3、已知二次函数,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程的两根之积为()A.0B.C.D.4、不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有()A.0个B.1个C.2个D.3个5、如图,A、B、C是反比例函数y= (k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条6、如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则AF:DF等于()A.19:2B.9:1C.8:1D.7:17、若一元二次方程x2﹣2x﹣m=0无实数根,则反比例函数y=的图象所在的象限是( )A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8、如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,与反比例函数y= 在第一象限内的图象交于点B(1,3),连接BO,下面三个结论:①S△AOB =1.5,;②点(x1, y1)和点(x2, y2)在反比例函数的图象上,若x1>x2,则y1<y2;③不等式x+2<的解集是0<x<1.其中正确的有()A.0个B.1个C.2个D.3个9、如图,点P在函数y=(x>0)的图象上,过点P分别作x轴,y轴的平行线,交函数y=﹣的图象于点A,B,则△PAB的面积等于()A. B. C. D.10、如图,△ABC中,DE∥BC,= ,则OE:OB=()A. B. C. D.11、如图是反比例函数y=的图象,下列说法正确的是()A.常数m<﹣1B.在每个象限内,y随x的增大而增大C.若A(﹣1,h),B(2,k)在图象上,则h<kD.若P(x,y)在图象上,则P′(﹣x,y)也在图象上12、若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是()A. 且 kB. 且C.D. 且13、在Rt△ABC中,∠C=90°,tanB=,则cosA=()A. B. C. D.14、关于x的一元二次方程x2-mx+2m-1=0的两个实数根分别是x1、x2,且x 12+x22=7,则(x1-x2)2的值是()A.1B.12C.13D.2515、若两个连续整数的积是56,则它们的和是( )A.11B.15C.-15D.±15二、填空题(共10题,共计30分)16、 +2sin30°-(p - 2)0=________.17、△ABC中,角C的平分线交AB于点T,且AT=2,TB=1,若AB上的高线长为2,则△ABC的周长________.18、计算:2﹣1×+2cos30°=________.19、已知方程x2+kx+5=0的一个根是﹣1,则另一个根为________.20、方程x2-3x-10=0的根为x1=5,x2=-2.此结论是:________的.21、用符号※定义一种新运算:a※b=(a﹣b)×a,则方程x※2=0的解是________.22、某网店一种玩具原价为100元,“双十一”期间,经过两次降价,售价变成了81元,假设两次降价的百分率相同,则每次降价的百分率为________.23、若,且相似比为2:1,的面积为20,则的面积为________.24、关于x的函数y=(k﹣1)x2﹣2x+1与x轴有两个不同的交点,则实数k 的取值范围是________.25、如图,在等腰中,,,点在边上,,点在边上,,垂足为,则长为________.三、解答题(共5题,共计25分)26、先化简,再求代数式(1﹣)÷的值,其中x=4sin45°﹣2cos60°.27、已知x1, x2是方程x2﹣2x+a=0的两个实数根,且x1+2x2=﹣1,求x1,x2和a的值.28、如图,某校有一教学楼AB,其上有一避雷针AC为7米,教学楼后面有一小山,其坡度为i=:1,山坡上有一休息亭E供爬山人员休息,测得山坡脚F与教学搂的水平距离BF为19米,与休息亭的距离FE为10米,从休息亭E测得教学楼上避雷针顶点C的仰角为30°,求教学搂AB的高度.(结果保留根号)(注:坡度i是指坡面的铅直高度与水平宽度的比)29、如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长.(参考数据:≈1.7,结果保留一位小数)30、已知二次函数y=x2﹣2mx+4m﹣8(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.参考答案一、单选题(共15题,共计45分)2、C3、D4、B5、A6、C7、C8、A9、D10、B11、C12、A13、D14、C15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
湘教版九年级数学上册期末考试卷(加答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A B .C .6,7,8 D .2,3,44.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于( )A .63米B .6米C .33米D .3米10.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm二、填空题(本大题共6小题,每小题3分,共18分)1.364 的平方根为__________.2.因式分解:3222x x y xy +=﹣__________. 3.已知直角三角形的两边长分别为3、4.则第三边长为________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:22x 1x 4x 2+=--2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.4.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.5.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、B4、B5、C6、A7、A8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±22、()2 x x y-3、54、25、6、24三、解答题(本大题共6小题,共72分)1、x3=-2、13、(1) 65°;(2) 25°.4、(1)BF=10;(2)r=2.5、(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.6、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
湘教版九年级数学上册期末考试卷【带答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<2.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01± 3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =6.若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .17.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个8.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________.2.因式分解:a3-a=_____________.3.若代数式1﹣8x与9x﹣3的值互为相反数,则x=__________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__________.5.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=______.6.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标;(3)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、B5、D6、D7、A8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)12、a (a -1)(a + 1)3、24、15°5、6、35r <<.三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、123、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、(1)略;(2)略.5、(1)50;(2)见解析;(3)16. 6、(1)120件;(2)150元.。
湘教版数学九年级上册期末试卷(绝密)
一、填空(每小题3分,共24分)
1.人们口语中常说的:“太阳从西边出来”是指某一事件______发生(填“必然”、“不可能”或“有可能”)
2.已知2143y x x =--,23y x =+,当=_______时,1y 与2y 的值相等.
3.若25a b =,则a b a b
+-=_________. 4.若关于x 的一元二次方程20x mx n ++=有两个相等的实数根,则符合条件的一组,m n
的值可以是m =_________,n =_________.
5.点C 是线段AB 的黄金分割点,若AB =5cm ,则BC 的长是_______.
6.如图,已知△ABC ∽△DBE . DB =8 , AB =6 ,则ABC S ∆:DBE S ∆=_________.
7.在△ABC 中,∠C =90°, cosB
=则b =_______. 8.同时抛两枚质地均匀的骰子,则朝上的点数之积为偶数的概率是________.
二、选择题(每小题3分,共24分)
1.袋子中有同样大小的红、绿小球各一个,随机摸出1个小球后放回,再随机摸出一个,则两次摸到的球中有绿球的概率是( )
A.
14 B.12 C.34
D. 1 2.在Rt △ABC,∠C =90°, sinB =35
,则sinA 的值是( ) A.35 B.45 C.53 D.54 3.已知等腰梯形ABCD 中, AD ∥BC ,∠B =60°, AD =2 , BC =8 ,则此梯形的周长为( )
A. 19
B. 20
C. 21
D.22
4.已知3x =是关于方程2
3230x ax a +-=的一个根,则关于y 的方程212y a -=的解 是( )
以上答案都不对
5.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组共有
( )
A. 8人
B. 9人
C. 10人
D. 11人
6.若顺次连结四边形ABCD 各边的中点所得到的四边形是正方形,则四边形ABCD 一定是
( )
A.矩形
B.菱形
C.正方形
D.对角线垂直且相等的四边
形
7.把方程2310x x +-=的左边配方后可得方程( ) A.23
13()24x += B.235()24x += C.2313()24x -= D. 235()24
x -= 8.在Rt △ABC 中,∠ACB =90°, CD ⊥AB 于D,下列式子中错误的是( ) A.BC 2
=DB ²AB B.AC 2=AD ²AB C.AB 2=AC ²BC D.CD 2=AD ²BD
三、解答题(每小题8分,共24分)
1.解下列方程
(1)2
3720x x -+= (2)2(21)4(12)50x x -+--=
2.计算:
(1)12sin30-
(2)tan 30tan 451tan 30tan 45--
3.为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图3的两个可以自由转动的转盘各一次,当两个转盘停后,指针所指字母相同时,他就可以获得一次指定一位到会者为大家表演节目的机会。
(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果。
(2)若小亮参加一次游戏,则他能获得这种指定机会的概率是多少?
四.证明题(12分)
在正方形ABCD中,O是对角线AC的中点,P是对角线AC上的一动点,过点P作
=。
⊥于点F,如图①,当点P与点O重合时,显然有DF CF
PF CD
⊥且PE交CD于点E,1、如图②,若点P在线段AO上(不与点A、O重合),PE PB
=。
⑴求证:DF EF
-=
⑵求证:PC PA
五、综合题(本大题满分16分)
在△ABC中,∠B=90°,AB=6cm, BC=3cm,点P从点A开始沿AB边向点B以1cm / s 的速度移动,点Q从点B开始沿BC边向点C以2cm / s的速度移动,如果P、Q分别从A、B同时出发.
(1)几秒钟后,P、Q间的距离等于?
(2)几秒钟后,△BPQ的面积等于△ABC面积的一半?
期末卷答案
一、填空题:1、不可能,2、-1或6,3、73-
,4、略,5
、52
,152-,6、9:16 7、b=2,8、3
4, 二、选择题:CBDC BDCC
三、解答题:
1、⑴121,23x x ==,⑵1
23,0x x == 2、⑴ 0,⑵-1,3、⑴了;略、⑵13 四、证明题
证明:1、如图(1)连接PD,∵四边形ABCD 是正方形,
AC 平分,,BCD CB CD ABCP DCP ∠=≅
000
,,90,
360180,
,,PBC PDC PB PD
PB PE BCD PBC PEC BPE BCE PED PBC PDC PD PE PF CD DF EF ∴∠=∠=⊥∠=∴∠+∠=-∠-∠=∠=∠=∠∴=⊥∴=
2
、∴),PC PC PA CF EF PC PA ⊥===∴-=
--=如图(2),过点P 作PH AD 于点H ,
由(1)知:即
五、综合题
解:(1)设x
秒后PB =,则
222
12,2,6,2(6)(2)0.4,2()AP x CQ x BP x BQ x
x x x x ===-=-+===舍
(2)设y 秒钟后,△BPQ 的面积等于△ABC 面积的一半
有
121136,22
6622y y ⨯⨯⨯-+==1(6-y )(2y)=2(舍)。