2013高考物理二轮复习教案人教版 专题6 电磁感应
- 格式:doc
- 大小:4.49 MB
- 文档页数:9
专题六 电磁感应 教案一. 专题要点1.感应电流:⑴产生条件:闭合电路的磁通量发生变化。
⑵方向判断:楞次定律和右手定则。
⑶“阻碍”的表现:阻碍磁通量的变化(增反减同),阻碍物体间的相对运动(来斥去吸),阻碍原电流的变化(自感现象)。
2.感应电动势的产生:⑴感生电场:英国物理学家麦克斯韦的电磁场理论认为,变化的磁场周围产生电场,这种电场叫感生电场。
感生电场是产生感生电动势的原因。
⑵动生电动势:由于导体的运动而产生的感应电动势为动生电动势。
产生动生电动势的那部分导体相当于电源 3.感应电动势的分类、计算二. 考纲要求考点要求 考点解读电磁感应现象 Ⅰ 本专题有对单一知识点的考查,也有对其它知识的综合考查考查的主要内容有楞次定律和法拉第电磁感应定律尤其是电磁感应与动力学、电路、能量守恒定律、图像相互结合的题目磁通量Ⅰ 法拉第电磁感应定律 Ⅱ 楞次定律 Ⅱ 自感、涡流Ⅰ三.教法指引此专题复习时,可以先让学生完成相应的习题,在精心批阅之后以题目带动知识点,进行适当提炼讲解。
这一专题的知识点较为综合,高考要求普遍较高,属于必考知识点因为这部分的综合题较多,二轮复习时还是要稳扎稳打,从基本规律,基本解题步骤出发再进行提升。
四.知识网络五.典例精析题型1.(楞次定律的应用和图像)如图甲所示,存在有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里和向外,磁场宽度均为L,在磁场区域的左侧相距为L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直. 现使线框以速度v匀速穿过磁场区域以初始位置为计时起点,规定电流逆时针方向时的电流和电动势方向为正,B 垂直纸面向里时为正,则以下关于线框中的感应电动势、磁通量、感应电流、和电功率的四个图象描述不正确的是()解析:在第一段时间内,磁通量等于零,感应电动势为零,感应电流为零,电功率为零。
在第二段时间内,BLvt BS ==Φ,BLv E =,R BLvR E I ==,R BLv P 2)(=。
高中物理电磁感应教案课题:电磁感应教学目标:1. 了解电磁感应的基本概念2. 掌握电磁感应定律的应用3. 能够应用电磁感应原理解决相关问题教学内容:1. 电磁感应的基本概念2. 法拉第电磁感应定律3. 感应电流的方向教学重点:1. 电磁感应的概念和定律2. 感应电流的方向判断教学难点:1. 掌握电磁感应定律的应用2. 判断感应电流的方向教学准备:1. 教科书、课件2. 示波器、电磁感应实验装置3. 实验用的线圈、磁铁、导线等材料教学过程:一、导入(5分钟)教师引导学生回顾之前学过的电磁学知识,引出电磁感应的概念。
二、讲解电磁感应(15分钟)1. 介绍电磁感应的基本概念和法拉第电磁感应定律2. 解释感应电流的产生原理三、实验演示(15分钟)教师向学生展示使用实验装置进行电磁感应实验的过程,引导学生观察实验现象并分析原因。
四、练习与讨论(20分钟)1. 学生进行相关练习,巩固概念和定律2. 学生在小组讨论中解决电磁感应问题五、总结(5分钟)教师带领学生总结本节课的重点内容,强调电磁感应在生活中的应用和意义。
六、作业(5分钟)布置相关作业,巩固学生对电磁感应的理解和运用能力。
板书设计:电磁感应- 法拉第电磁感应定律- 感应电流的方向教学反思:在教学中,要注重引导学生探究和实践,培养学生动手动脑的能力。
针对电磁感应这一概念性较强的内容,可以通过实验演示、讨论与练习等多种教学方法来提高学生的学习兴趣和参与度,加深对知识的理解和掌握。
同时,要着重指导学生在解决问题时注重思考和逻辑推理,培养解决问题的能力。
河北2013年高考二轮专题复习教案电磁感应一、电磁感应现象1.产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,但不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
2.感应电动势产生的条件感应电动势产生的条件是:穿过电路的磁通量发生变化。
无论电路是否闭合,只要穿过电路的磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
若外电路是闭合的,电路中就会有电流。
3.磁通量和磁通量变化如果在磁感应强度为B 的匀强磁场中有一个与磁场方向垂直的平面,其面积为S ,则定义B 与S 的乘积为穿过这个面的磁通量,用Φ表示,即Φ=BS 。
Φ是标量,但是有方向(只分进、出该面两种方向)。
单位为韦伯,符号为W b 。
1W b =1T ∙m 2=1V ∙s=1kg ∙m 2/(A ∙s 2)。
可以认为磁通量就是穿过某个面的磁感线条数。
在匀强磁场的磁感线垂直于平面的情况下,B =Φ/S ,所以磁感应强度又叫磁通密度。
当匀强磁场的磁感应强度B 与平面S 的夹角为α时,磁通量Φ=BS sin α(α是B 与S 的夹角)。
磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S 、α不变,B 改变,这时ΔΦ=ΔB ∙S sin α②B 、α不变,S 改变,这时ΔΦ=ΔS ∙B sin α③B 、S 不变,α改变,这时ΔΦ=BS (sin α2-sin α1)若B 、S 、α中有两个或三个同时变化时,就只能分别计算Φ1、Φ2,再求Φ2-Φ1了。
磁通量是有方向的。
当初、末状态的磁通量方向相反时,计算磁通量变化时应将初、末状态磁通量的大小相加。
例1.如图所示,矩形线圈沿a →b →c 在条形磁铁附近移动,试判断穿过线圈的磁通量如何变化?如果线圈M 沿条形磁铁从N 极附近向右移动到S 极附近,穿过该线圈的磁通量如何变化?解:⑴在磁铁右端轴线附近由上到下移动时,穿过线圈的磁通量由方向向下减小到零,再变为方向向上增大。
高三物理教案:电磁感应复习学案【】步入高中,相比初中更为紧张的学习随之而来。
在此高三物理栏目的小编为您编辑了此文:高三物理教案:电磁感应复习学案希望能给您的学习和教学提供帮助。
本文题目:高三物理教案:电磁感应复习学案1、电磁感应属于每年重点考查的内容之一,试题综合程度高,难度较大。
2、本章的重点是:电磁感应产生的条件、磁通量、应用楞次定律和右手定则判断感应电流的方向、感生、动生电动势的计算。
公式E=Blv的应用,平动切割、转动切割、单杆切割和双杆切割,常与力、电综合考查,要求能力较高。
图象问题是本章的一大热点,主要涉及ф-t图、B-t图、和I-t 图的相互转换,考查楞次定律和法拉第电磁感应定律的灵活应用。
3、近几年高考对本单元的考查,命题频率较高的是感应电流产生的条件和方向的判定,导体切割磁感线产生感应电动势的计算,电磁感应现象与磁场、电路、力学等知识的综合题,以及电磁感应与实际相结合的问题,如录音机、话筒、继电器、日光灯的工作原理等.第一课时电磁感应现象楞次定律【教学要求】1、通过探究得出感应电流与磁通量变化的关系,并会叙述楞次定律的内容。
2、通过实验过程的回放分析,体会楞次定律内容中阻碍二字的含义,感受磁通量变化的方式和途径,并用来分析一些实际问题。
【知识再现】一、电磁感应现象感应电流产生的条件1、内容:只要通过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生.2、条件:①____________; ②____________.二、感应电流方向楞次定律1、感应电流方向的判定:方法一:右手定则 ; 方法二:楞次定律。
2、楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
3、掌握楞次定律,具体从下面四个层次去理解:①谁阻碍谁感应电流的磁通量阻碍原磁场的磁通量.②阻碍什么阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍原磁通量增加时,感应电流磁场方向与原磁场方向相反;当原磁通量减少时,感应电流磁场方向与原磁场方向相同,即增反减同.④阻碍的结果阻碍并不是阻止,结果是增加的还增加,减少的还减少.知识点一磁通量及磁通量的变化磁通量变化△ф=ф2-ф1,一般存在以下几种情形:①投影面积不变,磁感强度变化,即△ф=△B②磁感应强度不变,投影面积发生变化,即△ф=B△S。
高三物理重点——电磁感应教案。
电磁感应是高三物理中的重要内容,也是普通物理中较为复杂的内容之一。
掌握电磁感应的基本原理和计算方法对于学生将来的科学研究和应用领域都至关重要。
因此,高三物理教学中电磁感应的教学显得尤为重要。
一、教学内容电磁感应是指电流在电磁场中产生电场,使电荷产生位移和电势差的现象,也就是由变化的电场所产生的电动势现象。
电磁感应包括自感现象、互感现象、电磁振荡、变压器、感应电流等多个方面。
在高三物理中主要学习电磁感应的基础知识、电磁感应定律、互感和自感电感、电磁感应的应用等内容。
其中,电磁感应定律是电磁感应的重要基础。
包括了安培环路定理和法拉第电磁感应定律。
安培环路定理表明,在任何物理过程中,沿着一个封闭回路的总电磁动力学作用相等于该封闭回路所包括的面积的变化率和该面积所包含的传导电流的乘积。
而法拉第电磁感应定律则是一个极其重要的公式,是应用最广泛的电磁感应定律。
二、教学重点1.熟练掌握电磁感应定律的两个公式:1)动生电动势E=-ΔΦ/Δt2)静生电动势E=-n·ΔΦ/Δt其中,ΔΦ表示磁通量的变化量,Δt表示时间变化量,n表示匝数比,E表示电动势。
静生电动势和动生电动势的区别在于,静生电动势的电磁感应过程是在磁场恒定的条件下进行的,因此不会产生电流;而动生电动势是在磁场变化的条件下进行的,因此会产生感应电流。
2.掌握互感和自感电感计算公式:1)互感电感L1,2=M1,2/√(L1L2)2)自感电感L=(μ0n^2A)/l其中,M1,2表示物两个线圈之间的互感系数,L1和L2分别表示物两个线圈的自感系数,n表示线圈的匝数,A表示线圈的截面积,μ0表示真空中磁导率,l表示线圈的长度。
三、教学方法1.讲解和实验相结合通过讲解和实验相结合的方法,使学生在适当地理论知识的引导下,能够亲自感受和体验电磁感应的原理和应用。
例如,做出一个电磁铁或者测量电动势的实验,通过实验得到的数据能够进一步加深学生对电磁感应定律的理解。
专题六 电磁感应 教案一. 专题要点1.感应电流:⑴产生条件:闭合电路的磁通量发生变化。
⑵方向判断:楞次定律和右手定则。
⑶“阻碍”的表现:阻碍磁通量的变化(增反减同),阻碍物体间的相对运动(来斥去吸),阻碍原电流的变化(自感现象)。
2.感应电动势的产生:⑴感生电场:英国物理学家麦克斯韦的电磁场理论认为,变化的磁场周围产生电场,这种电场叫感生电场。
感生电场是产生感生电动势的原因。
⑵动生电动势:由于导体的运动而产生的感应电动势为动生电动势。
产生动生电动势的那部分导体相当于电源 3.感应电动势的分类、计算二. 考纲要求考点要求 考点解读电磁感应现象 Ⅰ 本专题有对单一知识点的考查,也有对其它知识的综合考查考查的主要内容有楞次定律和法拉第电磁感应定律尤其是电磁感应与动力学、电路、能量守恒定律、图像相互结合的题目磁通量Ⅰ 法拉第电磁感应定律 Ⅱ 楞次定律 Ⅱ 自感、涡流Ⅰ三.教法指引此专题复习时,可以先让学生完成相应的习题,在精心批阅之后以题目带动知识点,进行适当提炼讲解。
这一专题的知识点较为综合,高考要求普遍较高,属于必考知识点因为这部分的综合题较多,二轮复习时还是要稳扎稳打,从基本规律,基本解题步骤出发再进行提升。
四.知识网络五.典例精析题型1.(楞次定律的应用和图像)如图甲所示,存在有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里和向外,磁场宽度均为L,在磁场区域的左侧相距为L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直. 现使线框以速度v匀速穿过磁场区域以初始位置为计时起点,规定电流逆时针方向时的电流和电动势方向为正,B垂直纸面向里时为正,则以下关于线框中的感应电动势、磁通量、感应电流、和电功率的四个图象描述不正确的是()解析:在第一段时间内,磁通量等于零,感应电动势为零,感应电流为零,电功率为零。
在第二段时间内,BLvt BS ==Φ,BLv E =,RBLv R E I ==,RBLv P 2)(=。
在第三段时间内, BLvt BS 2==Φ,BLv E 2=,RBLv RE I 2==,RBLv P 2)2(=。
在第四段时间内, BLvt BS ==Φ,BLv E =,RE I =,RBLv P 2)(=。
此题选B 。
规律总结:对应线圈穿过磁场产生感应电流的图像问题,应该注意以下几点: ⑴要划分每个不同的阶段,对每一过程采用楞次定律和法拉第电磁感应定律进行分析。
⑵要根据有关物理规律找到物理量间的函数关系式,以便确定图像的形状 ⑶线圈穿越方向相反的两磁场时,要注意有两条边都切割磁感线产生感应电动势。
题型2.(电磁感应中的动力学分析)如图所示,固定在绝缘水平面上的的金属框架cdef 处于竖直向下的匀强磁场中,金属棒ab 电阻为r ,跨在框架上,可以无摩擦地滑动,其余电阻不计.在t =0时刻,磁感应强度为B 0,adeb 恰好构成一个边长为L 的正方形.⑴若从t =0时刻起,磁感应强度均匀增加,增加率为 k (T/s),用一个水平拉力让金属棒保持静止.在t =t 1时刻,所施加的对金属棒的水平拉力大小是多大?⑵若从t =0时刻起,磁感应强度逐渐减小,当金属棒以速度v 向右匀速运动时,可以使金属棒中恰好不产生感应电流.则磁感应强度B 应怎样随时间t 变化?写出B 与t 间的函数关系式. 解析:规律总结:题型3.(电磁感应中的能量问题)如图甲所示,相距为L 的光滑平行金属导轨水平放置,导轨一部分处在以OO ′为右边界匀强磁场中,匀强磁场的磁感应强度大小为B ,方向垂直导轨平面向下,导轨右侧接有定值电阻R ,导轨电阻忽略不计. 在距边界OO ′也为L 处垂直导轨放置一质量为m 、电阻r 的金属杆ab .(1)若ab 杆在恒力作用下由静止开始向右运动3L 距离,其速度一位移的关系图象如图乙所示(图中所示量为已知量). 求此过程中电阻R 上产生的焦耳Q R 及ab 杆在刚要离开磁场时的加速度大小a .(2)若ab 杆固定在导轨上的初始位置,使匀强磁场保持大小不变,绕OO ′轴匀速转动. 若从磁场方向由图示位置开始转过2的过程中,电路中产生的焦耳热为Q 2. 则磁场转动的角速度ω大小是多少?解析:(1)ab 杆离起起始位置的位移从L 到3L 的过程中,由动能定理可得 )(21)3(2122v v m L L F -=- (2分)ab 杆在磁场中由起始位置发生位移L 的过程,根据功能关系,恒力F 做的功等于ab 杆杆增加的动能与回路产生的焦耳热之和,则总Q mv FL +=2121 (2分)联立解得4)3(2122v v m Q -=总,(1分) R 上产生热量)(4)3(2122r R v v Rm Q R +-=(1分)ab 杆刚要离开磁场时,水平向上受安培力F 总和恒力F 作用,安培力为:rR v L B F +=122安(2分)由牛顿第二定律可得:ma F F =-安(1分)解得)(41222122r R m v L B Lv v a +--=(1分)(2)磁场旋转时,可等效为矩形闭合电路在匀强磁场中反方向匀速转动,所以闭合电路中产生正弦式电流,感应电动势的峰值ωω2BL BS E m ==(2分)有效值2m E E = (2分) 422T rR EQ ⋅+=(1分) 而ωπ2=T (1分)题型4.(电磁感应中的电路问题)如图所示,匀强磁场的磁感应强度1.0=B T ,金属棒AD 长 0.4m ,与框架宽度相同,电阻=R 1/3Ω,框架电阻不计,电阻R 1=2Ω,R 2=1Ω.当金属棒以5m /s 速度匀速向右运动时,求:(1)流过金属棒的感应电流为多大?(2)若图中电容器C 为0.3μF ,则电容器中储存多少电荷量?.题型5.(电磁感应定律)穿过闭合回路的磁通量Φ随时间t 变化的图像分别如下图①~④所示。
下列关于回路中产生的感应电动势的论述中正确的是: A 图①中回路产生的感应电动势恒定不变 B 图②中回路产生的感应电动势一直在变大C 图③中回路0~t 1时间内产生的感应电动势小于在t 1~t 2时间内产生的感应电动势D 图④中回路产生的感应电动势先变小再变大 解析:tnE E ttn E ∆∆Φ==∆∆Φ∆∆Φ=)(为图像斜率是定值乙图:丙图:0~t0斜率(不变)大于t0~2t0的斜率(不变)丁图:斜率先减小后增大 D 选项对。
题型6.(流过截面的电量问题)如图7-1,在匀强磁场中固定放置一根串接一电阻R 的直角形金属导轨aob (在纸面内),磁场方向垂直于纸面朝里,另有两根金属导轨c 、d 分别平行于oa 、ob 放置。
保持导轨之间接触良好,金属导轨的电阻不计。
现经历以下四个过程:①以速度v 移动d ,使它与ob 的距离增大一倍;②再以速率v 移动c ,使它与oa 的距离减小一半;③然后,再以速率2v 移动c ,使它回到原处;④最后以速率2v 移动d ,使它也回到原处。
设上述四个过程中通过电阻R 的电量的大小依次为Q 1、Q 2、Q 3和Q 4,则( )A 、Q 1=Q 2=Q 3=Q 4B 、Q 1=Q 2=2Q 3=2Q 4C 、2Q 1=2Q 2=Q 3=Q 4D 、Q 1≠Q 2=Q 3≠Q 4解析:设开始导轨d 与Ob 的距离为x 1,导轨c 与Oa 的距离为x 2,由法拉第①②③ t t 12电磁感应定律知移动c 或d 时产生的感应电动势:E =t∆∆φ=tS B ∆∆,通过R 的电量为:Q =I =RE Δt =RS B ∆。
可见通过R 的电量与导体d 或c 移动的速度无关,由于B 与R 为定值,其电量取决于所围成面积的变化。
①若导轨d 与Ob 距离增大一倍,即由x 1变2x 1,则所围成的面积增大了ΔS 1=x 1·x 2;②若导轨c 再与Oa 距离减小一半,即由x 2变为x 2/2,则所围成的面积又减小了ΔS 2=2x 1·x 2/2=x 1·x 2;③若导轨c 再回到原处,此过程面积的变化为ΔS 3=ΔS 2=2x 1·x 2/2=x 1·x 2;④最后导轨d 又回到原处,此过程面积的变化为ΔS 4=x 1·x 2;由于ΔS 1=ΔS 2=ΔS 3=ΔS 4,则通过电阻R 的电量是相等的,即Q 1=Q 2=Q 3=Q 4。
选A 。
规律总结:计算感应电量的两条思路:思路一:当闭合电路中的磁通量发生变化时,根据法拉第电磁感应定律,平均感应电动势E=N Δφ/Δt ,平均感应电流I =E/R =N Δφ/R Δt ,则通过导体横截面的电量q=I t ∆=N Δφ/R 。
思路二:当导体棒在安培力(变力)作用下做变速运动,磁通量的变化难以确定时,常用动量定理通过求安培力的冲量求通过导体横截面积的电量。
要快速求得通过导体横截面的电量Q ,关键是正确求得穿过某一回路变化的磁通量ΔΦ。
题型7.(自感现象的应用) 如图1所示电路中, D 1和D 2是两个相同的小灯泡, L 是一个自感系数很大的线圈, 其电阻与R 相同, 由于存在自感现象,在开关S 接通和断开瞬间, D 1和D 2发亮的顺序是怎样的? 解析:开关接通时,由于线圈的自感作用,流过线圈的电流为零,D 2与R 并联再与D 1串联,所以两灯同时亮;开关断开时,D 2立即熄灭,由于线圈的自感作用,流过线圈的电流不能突变,线圈与等D 1组成闭合回路,D 1滞后一段时间灭。
规律总结:自感电动势仅仅是减缓了原电流的变化,不会阻止原电流的变化或逆转原电流的变化.原电流最终还是要增加到稳定值或减小到零 ,在自感现象发生的一瞬间电路中的电流为原值,然后逐渐改变。
题型8.(导体棒平动切割磁感线问题)如图所示,在一磁感应强度B =0.5T 的匀强磁场中,垂直于磁场方向水平放置着两根相距为h =0.1m 的平行金属导轨MN 和PQ ,导轨电阻忽略不计,在两根导轨的端点N 、Q 之间连接一阻值R =0.3Ω的电阻。
导轨上跨放着一根长为L =0.2m ,每米长电阻r =2.0Ω/m 的金属棒ab ,金属棒与导轨正交放置,交点为c 、d ,当金属棒在水平拉力作用于以速度v =4.0m/s 向左做匀速运动时,试求: (1)电阻R 中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力; (3)金属棒ab 两端点间的电势差; (4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图、所示。
在闭合回路中,金属棒cd 部分相当于电源,内阻r cd =hr ,电动势E cd = Bhv 。
(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd=+=+=0.4A ,方向从N 经R 到Q 。