11-利用离子注入技术改善晶硅太阳能电池性能
- 格式:pdf
- 大小:435.19 KB
- 文档页数:7
离⼦注⼊技术(Implant)离⼦注⼊技术摘要离⼦注⼊技术是当今半导体⾏业对半导体进⾏掺杂的最主要⽅法。
本⽂从对该技术的基本原理、基本仪器结构以及⼀些具体⼯艺等⾓度做了较为详细的介绍,同时介绍了该技术的⼀些新的应⽤领域。
关键字离⼦注⼊技术半导体掺杂1 绪论离⼦注⼊技术提出于上世纪五⼗年代,刚提出时是应⽤在原⼦物理和核物理究领域。
后来,随着⼯艺的成熟,在1970年左右,这种技术被引进半导体制造⾏业。
离⼦注⼊技术有很多传统⼯艺所不具备的优点,⽐如:是加⼯温度低,易做浅结,⼤⾯积注⼊杂质仍能保证均匀,掺杂种类⼴泛,并且易于⾃动化。
离⼦注⼊技术的应⽤,⼤⼤地推动了半导体器件和集成电路⼯业的发展,从⽽使集成电路的⽣产进⼊了⼤规模及超⼤规模时代(ULSI )。
由此看来,这种技术的重要性不⾔⽽喻。
因此,了解这种技术进⾏在半导体制造⾏业以及其他新兴领域的应⽤是⼗分必要的。
2 基本原理和基本结构2.1 基本原理离⼦注⼊是对半导体进⾏掺杂的⼀种⽅法。
它是将杂质电离成离⼦并聚焦成离⼦束,在电场中加速⽽获得极⾼的动能后,注⼊到硅中⽽实现掺杂。
离⼦具体的注⼊过程是:⼊射离⼦与半导体(靶)的原⼦核和电⼦不断发⽣碰撞,其⽅向改变,能量减少,经过⼀段曲折路径的运动后,因动能耗尽⽽停⽌在某处。
在这⼀过程中,涉及到“离⼦射程”、“”等⼏个问题,下⾯来具体分析。
2.1.1 离⼦射程xpy pz图2.1.1(a )离⼦射程模型图图2.1.1(a )是离⼦射⼊硅中路线的模型图。
其中,把离⼦从⼊射点到静⽌点所通过的总路程称为射程;射程的平均值,记为R ,简称平均射程;射程在⼊射⽅向上的投影长度,记为p x ,简称投影射程;投影射程的平均值,记为p R ,简称平均投影射程。
⼊射离⼦能量损失是由于离⼦受到核阻挡与电⼦阻挡。
定义在位移x 处这两种能量损失率分别为n S 和e S :n n xdE S d =(1)ee dE S k dx== (2)则在dx 内总的能量损失为:()n e n e dE dE dE S S dx =+=+(3)P0000P 0n ed d d d d R E E E ER x E x S S ===+?(4)n S 的计算⽐较复杂,⽽且⽆法得到解析形式的结果。
离子注入技术在二维及有机材料中的应用离子注入技术被广泛应用于不同种类的材料中,包括半导体、金属、合金和陶瓷等。
在这些材料中,离子注入技术可以实现微观结构和物理性能的改变。
在本文中,我们重点介绍了离子注入技术在二维及有机材料中的应用。
引言二维及有机材料在纳米电子器件中具有重要的潜在应用前景。
它们的限制在于它们的薄度和相对较弱的机械和热性能。
这些限制使得它们容易受到外界的扰动,从而导致其电子、结构和物理性能的变化。
为了改善这些材料的性能,离子注入技术被广泛地使用。
离子注入通过将离子注入到材料表面或体积中,从而实现对材料的局部控制和改变。
离子注入原理离子注入是一种利用高能离子束照射材料表面或体积的方法,使离子发生高能量的冲击和损耗。
损伤产物会在材料中形成缺陷和空位,从而导致化学、电学和机械性能的改变。
离子注入的主要原理是通过将离子注入到材料中来形成缺陷和空位,从而改变其宏观和微观结构。
具体来说,离子束中的离子将与材料原子发生相互作用,从而形成新的化学键,或松散的或更牢固的结合。
这些作用导致了局部材料性质的改变,例如载流子浓度、材料强度和电学阻抗等。
离子注入技术想要成功地应用于二维及有机材料,需要考虑以下方面:1. 确定材料的厚度和完整性2. 选择适当的离子注入剂和注射条件3. 确定材料表面和体积耐受性4. 对加工后的材料进行详细的结构和性能分析离子注入技术在二维材料中的应用离子注入技术是改善二维材料性能的一种最常用方法。
通过对二维材料进行离子注入,可以实现以下效果:1. 提高二维材料的载流子浓度,改变材料的电性能。
2. 通过引入局部缺陷,改变二维材料的结构和力学性质。
3. 通过添加其他元素,实现二维材料纳米结构的控制和改变。
目前,类石墨烯的二维材料已成为离子注入技术研究的主要对象。
薄石墨烯薄石墨烯是一种仅有一个原子厚度的晶体图,在其晶体结构中具有单层联通的碳原子构成。
由于其薄厚度和高表面积,使其在电子器件、催化剂、储能和传感器等方面具有潜在的应用。
晶体硅太阳能电池专业班级:机械设计制造及其自动化13秋*名:***学号: *************报告时间: 2015年12月晶体硅太阳能电池摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。
人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。
光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。
本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。
关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势前言“开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。
而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。
大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。
通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在!一、晶体硅太阳能电池工作原理太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。
在纯净的硅晶体中,自由电子和空穴的数目相等。
如果在硅晶体中掺入能够俘获电子的硼、铝、镓或铟等杂质元素,就构成了P型半导体,如果在硅晶体中掺入能够释放电子的磷、砷或锑等杂质元素,就构成了N型半导体。
第1篇一、实验目的1. 了解离子注入的基本原理和操作步骤。
2. 掌握离子注入设备的使用方法。
3. 学习离子注入在材料改性中的应用。
4. 分析实验数据,探讨离子注入对材料性能的影响。
二、实验原理离子注入是一种将高能离子束加速后,将其注入到固体材料表面,改变材料表面或内部化学成分和结构的技术。
通过控制注入离子的种类、能量、剂量和注入深度,可以实现对材料性能的优化。
三、实验仪器与材料1. 仪器:离子注入机、真空系统、样品台、样品架、电子天平、显微镜、X射线衍射仪等。
2. 材料:硅片(纯度:6N)、掺杂离子源(如硼离子源、磷离子源等)、真空泵、样品夹具等。
四、实验步骤1. 样品制备:将硅片清洗、烘干,切割成适当尺寸的样品。
2. 真空系统检查:确保真空系统无泄漏,达到实验要求。
3. 离子注入参数设置:根据实验需求,设置注入离子的种类、能量、剂量和注入深度等参数。
4. 离子注入实验:将样品放置在样品台上,启动离子注入机,进行离子注入实验。
5. 样品回收:实验结束后,关闭离子注入机,取出样品。
6. 样品分析:对注入样品进行表面形貌、成分、结构等分析。
五、实验结果与分析1. 表面形貌分析:通过扫描电子显微镜(SEM)观察注入样品表面形貌,发现注入样品表面无明显损伤,表明离子注入过程对样品表面形貌影响较小。
2. 成分分析:通过能谱分析(EDS)检测注入样品表面成分,发现注入离子成功进入样品表面,掺杂浓度与实验参数基本吻合。
3. 结构分析:通过X射线衍射(XRD)分析注入样品结构,发现注入离子成功进入样品内部,对样品晶体结构产生一定影响。
4. 性能分析:通过电学性能测试,发现注入样品的导电性、击穿电压等性能得到显著改善。
六、实验结论1. 离子注入是一种有效的材料改性技术,可以实现对材料表面或内部化学成分和结构的改变。
2. 离子注入参数对材料性能有显著影响,通过优化注入参数,可以实现对材料性能的优化。
3. 本实验成功实现了离子注入,并对注入样品的性能进行了分析,验证了离子注入技术的可行性。
离子注入相关书籍-概述说明以及解释1.引言1.1 概述离子注入是一种重要的材料表面改性技术,通过将离子束注入到材料表面,可以改变材料的化学成分、结构和性质,实现对材料的精确控制和改良。
离子注入技术广泛应用于半导体器件制造、材料研究、表面涂层、薄膜制备等领域。
离子注入的原理是利用高速离子束的能量和动量传递,将离子注入到材料表面,并与原子或分子相互作用。
离子束的束流参数(如能量、流强、注入剂量)以及注入温度和压力等条件的选择可以对材料的物理性质和化学成分进行调控。
通过改变离子束的束流参数,可以实现不同的表面改性效果,例如增强材料的硬度、改善表面的耐磨性、提高导电性等。
离子注入技术的应用非常广泛。
在半导体器件制造中,离子注入常用于掺杂、修复损伤、形成电势阱等工艺步骤,用于调控器件的电性能。
在材料研究中,离子注入可以用于制备新型材料、改变材料的晶格结构,研究材料的辐照损伤效应等。
此外,离子注入还广泛应用于表面涂层技术,通过注入不同材料的离子,可以改善材料表面的硬度、耐腐蚀性和摩擦性能。
离子注入技术还可用于制备薄膜材料和纳米材料,具有独特的制备过程和特殊的性质。
本文将重点介绍离子注入的原理和应用。
通过对离子注入技术的深入了解,可以更好地理解和应用这一重要的材料表面改性技术。
此外,文章还将展望离子注入技术未来的发展方向,以及在新材料制备和器件制造中的潜在应用。
1.2 文章结构文章结构部分应该包括对整个文章的组织和内容进行概述。
在本文中,文章结构的目的是为了引导读者了解整篇文章的内容以及各个部分之间的关系。
在离子注入相关书籍的文章中,文章结构可以按照以下方式来进行描述:文章结构:本文分为引言、正文和结论三个部分。
1. 引言部分介绍了离子注入的概述、文章的结构以及写作的目的。
在概述中,会简要讲解离子注入的基本概念和应用领域,引起读者对这一主题的兴趣。
接着,介绍文章结构,说明本文将会对离子注入原理和应用展开讨论。
太阳能电池材料期末预测题一,填空题1,晶体硅太阳能电池生产工艺有___________,___________,___________,___________,___________,___________。
2,太阳能电池按照架构可分为___________,___________,___________,___________。
3,太阳能电池按照材料可分为___________,___________,___________,___________,___________,___________。
4,直拉单晶硅中碳杂质来源于石英坩埚。
5,金属杂质在直拉单晶硅中的扩散机制间隙扩散机制,空位机制,踢出机制,分离机制。
6,吸杂技术根据吸杂点的不同可分为内吸杂和外吸杂。
7,铸造单晶硅常用的吸杂技术:磷吸杂和铝吸杂。
8,原子能级分裂是因为___________。
9,用化学提纯制备高纯多晶硅的方法二氯二氢还原法硅三氯氢硅氢还原法四氯化硅氢还原法硅烷热分解法补充9,半导体材料的基本特征电阻率特性,导电特性,负的电阻率温度系数,、整流特性,光电特性10,常用的形成p-n结的工艺主要有合金法、扩散法、离子注入法、薄膜生长法。
合金法是目前硅太阳电池的p-n结形成的主要方法11,晶体硅太阳电池的结构构成有绒面结构、PN结、铝背场、正面和背面金属接触、减反射层12,单晶硅棒生长的主要方法有区熔法、直拉法。
13,从单晶硅棒到单晶硅片的制备工艺包括切断滚圆切片化学腐蚀14,根据两个晶粒之间夹角的大小对晶界结构进行分类小角度晶界,大角度晶界。
15,太阳电池用硅材料按照结晶形态划分单晶硅、多晶硅、非晶硅。
按材料纯度划分冶金级硅(也称金属硅、工业硅)、太阳能级硅、电子级硅。
16,碳在硅中的分凝系数很小,在单晶硅的生长过程中,碳的浓度为______高,_____低。
17,直辣单晶硅中的缺陷有___________,___________,___________,___________。
离子渗离子注入-概述说明以及解释1.引言1.1 概述概述离子渗透注入是一种新型的材料表面处理技术,通过在材料表面注入离子,可以改变材料的表面性质和结构。
与传统的表面涂层技术相比,离子渗透注入具有许多优势,如处理效率高、处理深度大、处理温度低、处理不会改变材料基体性质等。
本文将重点探讨离子渗透注入的原理、应用及未来发展方向,以期为相关领域的研究和应用提供参考和启示。
1.2 文章结构本文主要分为三个部分,包括引言、正文和结论。
在引言部分,将对离子渗透注入进行概述介绍,同时说明文章的结构和目的,为读者提供一个整体了解的框架。
正文部分将分为三个小节,分别是离子渗透的概念、离子注入的原理以及离子渗透注入的应用。
每个小节将详细阐述相关概念、原理和应用,并通过实例和数据来说明。
最后,在结论部分,将总结离子渗透注入的优势和重要性,展望未来的发展趋势,并通过一个简短的结束语来总结全文的内容。
1.3 目的离子渗透注入作为一种先进的材料表面改性技术,其主要目的在于提高材料的表面性能和功能,以满足特定的工程要求和应用需求。
通过对材料表面进行离子注入处理,可以实现增强材料的硬度、耐磨性、耐腐蚀性和耐高温性能,同时还能改善材料的润滑性、导热性和光学性能。
离子渗透注入技术具有高效、环保、低能耗等优势,可广泛应用于金属、陶瓷、聚合物等材料的表面改性和功能化处理,为材料行业的发展和进步提供重要支持和推动。
本文旨在深入探讨离子渗透注入技术的原理、应用及发展前景,为读者提供关于该领域的相关知识和信息。
2.正文2.1 离子渗透的概念离子渗透是一种物质在通过半透膜时受到的渗透作用。
在生物学和化学领域,离子渗透通常指的是离子在细胞膜或其他生物膜上的渗透过程。
这个过程是由生物膜上的蛋白质通道或者活性转运器所控制的。
在物理化学领域,离子渗透是指在离子浓度差异引起的离子通过半透膜的不同速率。
半透膜是一种只允许特定粒子通过的膜,将高浓度的物质与低浓度的物质隔开。