2015何业军电磁场与电磁波期末复习资料
- 格式:docx
- 大小:11.68 MB
- 文档页数:22
电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
西电电磁场与电磁波15年期末试题15《电磁场与电磁波》期末考试题答案(A 卷)(120分钟)一、 简答题. (40分)1求标量函数23u x yz =的梯度u ∇;以及矢量函数x y z A xe ye ze =++v v v v的散度A∇⋅v 及旋度A ∇⨯v ;(其中,,x y z e e e v v v为x , y , z 为三个方向单位矢量)(6分)解:3232223x y z x y z u u u u e e e e xyz e x z e x yz x y z∂∂∂∇=++=++∂∂∂v v v v v v (2分)3y x z A A AA x y z ∂∂∂∇⋅=++=∂∂∂r (2分)0xy z x y z xyz e e e e e e A x y z x y z A A A xyz∂∂∂∂∂∂∇⨯===∂∂∂∂∂∂v v v v vv v (2分)2 写出均匀各向同性媒质中时域麦克斯韦方程组的微分形式、本构关系及边界条件;(8分) 解:麦克斯韦方程组0D H J t B E t B D ρ⎧∂∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩vv v vv vv (4分) 本构关系D EB H JEεμσ⎧=⎪=⎨⎪=⎩v v vv v v (2分) 边界条件()()()()21212121ˆ0ˆˆˆ0S s n E E nD D nH H J n B B ρ⎧⨯-=⎪⎪⋅-=⎪⎨⨯-=⎪⎪⋅-=⎪⎩v v v v v v v v v (2分) 3 将下面复数形式表示的场矢量变换为瞬时值,或做相反的变换;(4分)1)0jkzx E e jE e -=v v , 2)0sin()y E e E t kz ω=+v v解:1){}/200(t)Re cos(/2)j jkz j t x x E e E e e e e E t kz πωωπ-==-+v v v (2分)2)时域:0cos(/2)y E e E t kz ωπ=+-v v复数形式:0jkzy E e jE e =-v v (2分)4 描述平面电磁波极化概念,可分为哪三种极化状态?(4分)解: 在空间任一固定点上电磁波的电场强度矢量的空间取向(矢端)随时间的变化方式(轨迹)称之为极化 (1分) 线极化、圆极化、椭圆极化(3分)5 给出驻波比的数学表达式,同时解释其为行波,驻波和行驻波的三种情况;(4分)解:max min 11E S E +Γ==-Γ(1分) 当|Γ| = 0、S = 1时,为行波状态;(1分) 当|Γ| = 1、S = ∞时,为驻波状态;(1分) Γ= -1 ~ 1, S =1 ~ ∞,为行驻波状态;(1分)6 已知平面电磁波在良导体中传播,写出集肤深度及表面阻抗的表达式;(2分)解:集肤深度 1δα===(1分)表面阻抗1)(1)S Z j j σδ=+=+ (1分) 7 对于非磁性介质,写出斜入射的均匀平面波产生全反射及全透射的条件;(6分)解: 对于非磁性媒质,产生全透射的条件是:① 均匀平面电磁波平行极化斜入射; ② 入射角等于布儒斯特角,即θi =θB ;arctanB θ=或 B θ=(3分) 对于非磁性媒质,斜入射的均匀平面电磁波产生全反射的条件是: ① 入射波自媒质1向媒质2斜入射,且ε2 <ε1; ② 入射角等于或大于临界角,即θc ≤θi ≤90°c θ=(3分)8计算长度0.1dl λ=的电基本振子的辐射电阻以及电流振幅值为2mA 时的辐射功率。
电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n 由理想导体2指向介质1,则磁场满足的边界条件:01=⋅B n ,s J H n =⨯1 。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数ϕ满足的关系式n ∂∂=ϕεσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ⋅-∇=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q)E =24rQπε;无限长线电荷(电荷线密度为λ)E =rπελ2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ= 的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
电磁场与电磁波总复习一、单项选择题 1.两个矢量的矢量积(叉乘)满足以下运算规律( B )A. 交换律A B B A⨯=-⨯ B. 分配率()A B C A B A C⨯+=⨯+⨯C. 结合率D. 以上均不满足2. 下面不是矢量的是( C ) A. 标量的梯度B. 矢量的旋度C.矢量的散度D. 两个矢量的叉乘3. 下面表述正确的为( B )A. 矢量场的散度结果为一矢量场B. 标量场的梯度结果为一矢量(具有方向性,最值方向)C. 矢量场的旋度结果为一标量场D. 标量场的梯度结果为一标量4. 矢量场的散度在直角坐标下的表示形式为( D ) A.A A A x y z∂∂∂++∂∂∂B .y x z x y z A A A e e e x y z∂∂∂++∂∂∂ C .x y z A A Ae e e x y z∂∂∂++∂∂∂D .y x zA A A x y z∂∂∂++∂∂∂5. 散度定理的表达式为( A )体积分化为面积分 A.sVA ds AdV ⋅=∇⋅⎰⎰⎰⎰⎰ÒB.sVA ds A dV⨯=∇⋅⋅⎰⎰⎰⎰⎰ÒC.sVA ds A dV ⨯=∇⨯⋅⎰⎰⎰⎰⎰ÒD.sVA ds A dV ⋅=∇⨯⋅⎰⎰⎰⎰⎰Ò6. 斯托克斯定理的表达式为( B )面积分化为线积分A. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ B.()LsA dl A ds⋅=∇⨯⋅⎰⎰⎰ÑC. ()LsA dl A ds ⨯=∇⨯⋅⎰⎰⎰Ñ D.()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ7. 下列表达式成立的是( C ) 两个恒等式()0A ∇∇⨯=g ,()0u ∇⨯∇=A. ()sVAds A dV =∇⨯⋅⎰⎰⎰⎰⎰Ò; B.()0u ∇∇=g ;C.()0A ∇∇⨯=g ; D.()0u ∇⨯∇=g8. 下面关于亥姆霍兹定理的描述,正确的是( A )(注:只知道散度或旋度,是不能全面反映场的性质的)A. 研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
物理与电信工程学院《电磁场与电磁波》 期末复习题库一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ∇⋅=DB. 0∇⨯=EC. 0C d ⋅=⎰ E lD.0S q d ε⋅=⎰ E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___ A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0∇⨯=B 说明 __A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:( D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位ϕ所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D BH J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 简述穿过闭合曲面的通量及其物理定义2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 在直角坐标系证明0A ∇⋅∇⨯= 2.()[()()()]()()()0y x x x z z xy z x y z y y x x z z AA A A A A A e e e e e e x y z y z z x x y A A A AA A x y z y z x z x y ∇⋅∇⨯∂∂∂∂∂∂∂∂∂=++⋅-+-+-∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=-+-+-=∂∂∂∂∂∂∂∂∂ 1. 简述亥姆霍兹定理并举例说明。
2. 亥姆霍兹定理研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
例静电场sD ds q⋅=∑⎰⎰ 0Dρ∇⋅= 有源0lE dl ⋅=⎰ 0E ∇⋅= 无旋1. 已知 R r r '=-,证明R R R R e R''∇=-∇==。
电磁场与电磁波期末考试复习资料4简答题电磁场与电磁波期末考试复习资料1.写出介电常数为ε的介质中静电场基本方程的积分式。
2.用简单的语言描述电介质极化的过程,并说明极化的结果是什么?3.写出法拉第电磁感应定律,并说明其物理含义。
4.电磁波在空间传播时,根据其电场强度的取向,分哪几种极化方式?并分别加以说明。
1.电子仪器设备或电气装置常需要接地,接地电阻要求越小越好,实际中如何减小接地电阻?2.如图3-2所示两半板距离为d 的平行板电容器存在着体电荷密度为V ρ恒定电荷,其中一块板的电位为0,另一块板的电位为U 0,试写出槽内电位函数所满足的方程及其边界条件。
1.求无限长直线电流I 在周围空间任一点产生的磁场强度和磁通密度。
2.叙述什么是镜像法?其关键和理论依据各是什么?3.简述麦克斯韦的位移电流假设的重要意义。
4.请写出时变电磁场的麦克斯韦方程组的微分形式,并写出其辅助方程;5.试简要说明导电媒质中的电磁波具有什么样的性质?(假设导电媒质无限大)1.求无限长线电荷l ρ在空间任一点产生的电场强度和电通密度。
2.分离变量法的基本步骤有哪些?3.波的极化方式有哪几类?并说明它们各自的特点。
4.写出理想介质在无源区的麦克斯韦方程组的复数形式。
1.什么是趋肤效应?写出趋肤深度的计算公式。
2.如图3-1示长方形截面的导体槽,其上有一块与槽绝缘的盖板,槽的电位为0,盖板的电位为μ0,试写出槽内电位函数所满足的方程及其边界条件。
1.写出两种介质分界面上的静电场的边界条件。
2.将一媒质放在磁场中时,就会发生磁化现象,请解释此现象,并且说明磁化的结果是什d 0图3-2图3-1o么?3.“变化的电场可以产生磁场”,请写出能准确描述这句话的麦克斯韦方程及位移电流的定义式。
4.沿+z方向传播的右旋圆极化波应该满足什么条件?。
电磁场与电磁波复习资料标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字 母或带箭头的字母表示。
矢量用坐标重量表示矢量的混合运算—— 分配律—— 分配律—— 标量三重积—— 矢量三重积1. 电荷体密度电荷连续分布于体积V 内,用电荷体密度来描述其分布依照电荷密度的定义,假如已知某空间区域V 中的电荷体密度,则区域V 中的总电量q 为2. 电荷面密度若电荷分布在薄层上的情形,当仅考虑薄层外,距薄层的距离要比薄层的厚度大得多处的电场,而不分析和运算该薄层内的电场时,可将该薄层的厚度忽略,认为电荷是面分布。
面分布的电荷可用电荷面密度表示。
单位: C/m2 (库仑/米2)假如已知某空间曲面S 上的电荷面密度,则该曲面上的总电量q 为 3. 电荷线密度在电荷分布在细线上的情形,当仅考虑细线外,距细线的距离要比细线的直径大得多处的电场,而不分析和运算线内的电场时,可将线的直径忽略,认为电荷是线分布。
单位: C/m2 (库仑/米2)假如已知某空间曲线上的电荷线密度,则该曲线上的总电量q 为 4. 点电荷点电荷的电荷密度表示电流 —— 电荷的定向运动而形成,用i 表示,其大小定义为:单位时刻内通过某一横截面S 的电荷量,即说明:电流通常时时刻的函数,不随时刻变化的电流称为恒定 电流,用I 表示。
zz y y x x e A e A e A A++=γβαcos cos cos A A A A A A z y x ===)cos cos cos (γβαz y x e e e A A ++=γβαcos cos cos z y x A e e e e ++=CB C A C B A⋅+⋅=⋅+)(CB C A C B A⨯+⨯=⨯+)()()()(B A C A C B C B A⨯⋅=⨯⋅=⨯⋅C B A B C A C B A)()()(⋅-⋅=⨯⨯Vr q V r q r V d )(d )(lim )(0 =∆∆=→∆ρ⎰=VV r q d )( ρSr q S r q r S S d )(d )(lim )(0 =∆∆=→∆ρ⎰=Ss S r q d )( ρl r q l r q r l l d )(d )()(lim0 ==→∆∆ρ∆⎰=Cl l r q d )(ρ)()(r r q r '-= δρ0lim ()d d t i q t q t ∆→=∆∆=形成电流的条件: • ①存在能够自由移动的电荷 •② 存在电场1、 体电流电荷在某一体积内定向运动所形成的电流称为体电流,用电流密度矢量 J 来描述。
何业军
2015 电磁场与电磁波复习大纲参考
手稿
一、概念与简答
亥姆霍兹定理P42,电磁模型的源与场量P7,媒质本构关系,Maxwell方程微分与积分形式,Maxwell方程相量形式,电场边界条件,磁场边界条件,瞬时坡印廷矢量,时间平均坡印廷矢量,坡印廷定理,位移电流,静电场中的导体,欧姆定律点函数,电流连续性方程,洛伦兹条件,导电媒质的复介电常数,损耗角正切,良导体,良绝缘体?本征阻抗,TEM波,电磁波的极化,导体的趋肤深度,驻波与驻波比,总场的波阻抗?
二、分析计算
chp3)例3-5高斯定律计算导线电场,3.6节,静电场中的导体?例3-11,3-12球壳电场与电位计算,例3-13两导体球电场击穿,例3-18,P.3-31同轴线电容计算,例3-25电场能量计算电容,P.3-25电场边界条件?
Chp5)电阻计算?例5-5同轴线绝缘电阻,P.5-21接地电阻
Chp6)例6-1安培定律计算导线磁场,例6-15螺线管电感计算?,例6-16同轴线电感计算?例6-20磁场能量计算同轴电感?例6-10,,P.6-27磁路计算?Chp7)7.3节,例7-5,位移电流,欧姆定律点函数?7.4节,7.6节,7.7节,洛伦兹条件,电荷守恒,波动方程,相量?例7-7损耗角正切?
Chp8)Maxwell方程,8.2节,例8-4,趋肤深度?8.2节,8.6节,8.8节,本征阻抗,TEM波,驻波?例8-1,P.8-5,例8-7?。