手性药物的生物合成共84页文档
- 格式:ppt
- 大小:8.80 MB
- 文档页数:84
手性合成的综述姓名:学号:专业:院系:目录手性合成的概念与简介 (2)手性药物的合成的发展历程 (3)手性合成的方法 (5)几种手性药物合成方法的比较 (7)化学—酶合成法合成手性药物的实例 (7)手性药物的研究现状和展望 (10)参考资料 (13)手性药物的概念与简介手性(英文名为chirality, 源自希腊文cheir)是用来表达化合物分子结构不对称性的术语。
人的手是不对称的,左手和右手相互不能叠合,彼此是实物和镜像的关系,这种关系在化学中称为“对映关系”,具有对映关系的两个物体互为“对映体”。
化合物的手性与其空间结构有关,因为化合物分子中的原子的排列是三维的。
例如,图1中表示乳酸分子的结构式1 a和1 b,虽然连接在中心碳原子上的4个基团,即H, COOH, OH和CH3都一样,但它们却是不同的化合物。
它们之间的关系如同右手和左手之间的关系一样,互为对映体。
手性是人类赖以生存的自然界的本质属性之一。
生命现象中的化学过程都是在高度不对称的环境中进行的。
构成机体的物质大多具有一定空间构型,如组成蛋白质和酶的氨基酸为L-构型,糖为D-构型,DNA的螺旋结构为右旋。
在机体的代谢和调控过程中所涉及的物质(如酶和细胞表面的受体)一般也都具有手性,在生命过程中发生的各种生物-化学反应过程均与手性的识别和变化有关。
由自然界的手性属性联系到化合物的手性,也就产生了药物的手性问题。
手性药物是指药物的分子结构中存在手性因素,而且由具有药理活性的手性化合物组成的药物,其中只含有效对映体或者以有效的对映体为主。
这些对映异构体的理化性质基本相似,仅仅是旋光性有所差别,分别被命名为R-型(右旋)或S-型(左旋)、外消旋。
药物的药理作用是通过与体内的大分子之间严格的手性识别和匹配而实现的。
手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予分子手性催化的主要贡献者。
自然界里有很多手性化合物,这些手性化合物具有两个对映异构体。
手性药物的合成与生物转化摘要:药物分子的立体化学决定了其生物活性,手性已成为药物研究的一个关键因素,生物技术在手性药物合成中具有重要意义,利用酶催化的相关性质,通过酶拆分外消旋体酶法不对称合成等方法合成手性药物,采用定向进化技术酶分子修饰辅酶再生等方法对手性药物合成方法进行改进。
关键词:手性药物生物转化生物合成手性(Chirality) 是自然界的本质属性之一。
构成生命有机体的分子都是不对称的手性分子,生命界中普遍存在的糖为D型,,氨基酸为L型,蛋白质和DNA的螺旋构象又都是右旋的。
手性药物( Chiral drug) 是指有药理活性作用的对映纯化合物。
手性药物的制备方法包括化学制备法和生物制备法,生物转化具有一些化学方法无可比拟的优点:反应条件比较温和;产物比较单一,具有很高的立体选择性(Enantioselectivity)、区域选择性(Regioselectivity)和化学选择性(Chemoselectivity);并且能完成一些化学合成难以进行的反应。
目前,生物转化已涉及羟基化、环氧化、脱氢、氢化等氧化还原反应;水解、水合、酯化、酯转移、脱水、脱羧、酰化、胺化、异构化和芳构化等各类化学反应。
生物合成手性药物法主要包括酶拆分外消旋体法、酶法不对称合成和微生物发酵法。
1 酶法拆分外消旋体合成手性药物近年来随着酶技术的发展,利用酶的高度立体选择性进行外消旋体的拆分从而获得光活性纯的化合物是得到手性药物的重要途径。
酶是由L-氨基酸组成,其活性中心构成了一个部队称环境,有利于对消旋体的识别,属于高度手性的催化剂,催化效率高,有很强的专一性,反应产物的对映体过量百分率(ee)可达100%。
因此,在售性药物合成过程中,用酶拆分消旋体是理想的选择。
D-苯甘氨酸金额D-对羟基苯甘氨酸是生产半合成青霉素和头孢菌类抗生素的重要侧链。
DSM公司(Geleen,荷兰)利用恶臭假单胞菌(Pseydomonas putida)和L-氨肽酶拆分DL-氨基酸酰胺获得了D-苯甘氨酸和D-对羟基苯甘氨酸。
1 引言手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予分子手性催化的主要贡献者。
自然界里有很多手性化合物,这些手性化合物具有两个对映异构体。
对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。
当一个手性化合物进入生命体时,它的两个对映异构体通常会表现出不同的生物活性。
对于手性药物,一个异构体可能是有效的,而另一个异构体可能是无效甚至是有害的。
手性制药就是利用化合物的这种原理,开发出药效高、副作用小的药物。
在临床治疗方面,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性。
因而具有十分广阔的市场前景和巨大的经济价值。
目前世界上使用的药物总数约为1900 种手性药物占50%以上,在临床常用的200种药物中,手性药物多达114种。
全球2001年以单一光学异构体形式出售的市场额达到1 472亿美元,相比于2000年的1 330亿美元增长了10%以上。
预计手性药物到2010年销售额将达到2 000亿美元。
2、手性药物的制取方法一般可通过从天然产物中提取、外消旋体拆分法获取手性药物,近年来,随着合成法的发展和先进分析技术的出现,越来越多的手性化合物可通过化学合成法得到不对称合成己成为获取手性物质的重要手段,与此同时,随着生物技术的不断进步以及生物技术与有机化学的交叉融合也使得生物合成成为手性药物生产取得突破的关键技术。
2.1 从天然产物中提取在某些生物体中含有具备生理活性的天然产物,可用适当的方法提取而得到手性化合物,某些手性药物是从动植物中提取的氨基酸、萜类化合物和生物碱。
如: 具有极强抗癌活性的紫彬醇最初是从紫彬树树皮中发现和提取的。
2.2 外消旋体拆分法通过拆分外消旋体在手性药物的获取方法中是最常用的方法。
目前为止报道的拆分方法有机械拆分法、化学拆分法、微生物拆分法和晶种结晶法等。
药物合成中的手性合成技术研究手性合成技术是药物合成领域的一个重要研究方向。
在药物化学中,手性合成的目标是获得光学纯度高的手性分子,因为手性分子的生物活性往往和其立体构型密切相关。
本文将介绍手性合成技术的基本原理、常用方法以及其在药物合成中的应用。
一、手性合成技术的基本原理手性分子是指这样的分子,它的结构与其镜像不能完全重合。
由于分子的化学性质主要由其立体构型决定,具有不同立体构型的手性分子往往会表现出不同的药理活性。
因此,合成手性纯度高的药物分子对于提高药物的疗效和减少副作用具有重要意义。
在手性合成技术中,需要选择合适的手性合成方法来实现目标手性分子的合成。
常用的手性合成方法包括催化剂法、拆分法、对映体选择性晶体化学和不对称反应等。
二、手性合成技术的常用方法1. 催化剂法催化剂法是一种常用的手性合成方法,它通过引入手性催化剂来促进手性分子的选择性形成。
手性催化剂通常是具有手性结构的金属配合物或有机化合物,如金属卡宾配合物、手性亲核试剂等。
手性催化剂可以通过催化不对称反应来实现手性分子的合成,例如不对称咔唑烷化反应、不对称氢化反应等。
2. 拆分法拆分法是一种将已有手性源分子转化为目标手性分子的方法。
手性分子通常可以从天然产物或商业化合物中拆分得到。
拆分法中的常用技术包括拆分结构、拆分反应和拆分还原等。
通过拆分法,可以利用已有的手性分子资源来合成目标手性分子,具有经济高效的特点。
3. 对映体选择性晶体化学对映体选择性晶体化学是一种通过晶体结构的对称性选择性地诱导对映体的合成方法。
通过选择合适的手性配位配体和晶体溶剂,可以在晶体生长过程中选择性地合成目标手性分子。
目前,对映体选择性晶体化学已经广泛应用于手性分离和手性药物合成。
4. 不对称反应不对称反应是一种通过不对称的催化剂或试剂来实现手性分子的合成方法。
不对称反应中的常用技术包括不对称烯烃反应、不对称环氧化反应和不对称亲核取代反应等。
利用不对称反应,可以直接合成高光学纯度的手性分子,具有高效、高选择性的特点。
手性药物的合成与化学分离作为化学的一个重要分支,有机化学在制药领域中扮演着至关重要的角色。
随着医学技术的发展,人们对于药物的需求也变得越来越高,而手性药物的应用也越来越广泛。
在这篇文章中,我们将探讨手性药物的合成和化学分离。
一、手性分离技术手性分离技术是一种用于分离并纯化手性化合物的方法。
由于手性分子的对映异构体之间无法互相转化,因此分离这些化合物不仅是研究手性药物的必要条件,也是合成手性药物的必要步骤。
手性分离技术主要包括晶体分离、色谱法和毒性微生物法等方法。
在晶体分离中,手性化合物会形成不同形态的晶体,使得两个对映异构体之间无法逆转。
而色谱法则是通过不同的分离机制来分离不同对映异构体。
毒性微生物法则利用微生物对手性分子的选择性反应来分离手性化合物。
二、手性药物的合成合成手性药物的方法有很多种。
一种常见的方法是使用对映异构体选择性催化剂进行手性合成。
拿丁酰-L-苏氨酸甲酯是一种常见的手性选择催化剂,它可以选择性地催化合成一种手性异构体。
另一种合成手性药物的方法是使用手性诱导剂。
手性诱导剂可以选择性地诱导手性反应产生一种手性异构体。
目前,最常见的手性诱导剂是金属有机配合物和手性有机催化剂。
三、化学分离在手性药物的制造过程中,手性分离技术被广泛应用。
随着手性药物合成技术的不断发展,手性分离技术的重要性也逐渐凸显。
其中,手性毛细管电泳和手性透析法是目前使用最广泛的两种手性分离方法。
手性毛细管电泳是一种基于分子大小和表面电荷的分离方法,它可以高效地分离手性异构体。
手性透析法则是通过使用手性透析膜来分离手性化合物。
这些透析膜可以具有选择性通透不同对映异构体的能力。
总结随着人们对于手性药物的研究不断深入,手性分离技术和手性药物的合成技术也在不断完善。
虽然手性分离技术已经非常成熟,但是仍然存在许多挑战。
其中,手性化合物的选择性分离和灵敏度仍然是需要解决的核心问题。
无论如何,研究人员仍然持续探索新的方法和技术,以便更好地满足人们对手性药物的需求。