步冷曲线金属相图
- 格式:ppt
- 大小:58.50 KB
- 文档页数:22
JX-3D型金属相图(步冷曲线)实验装置使用书南京大学应用物理研究所此装置是专门为金属相图(步冷曲线)。
本装置可实现按设定速度升温、保温,并可方便地控制降温速度,可实现定时报警读数。
本装置由以下两部分组成:一、JX-3D型金属相图(步冷曲线)实验加热装置二、JX-3D型金属相图测定装置实验装置实物如下:加热装置使用说明本装置可满足各种硬质试管的加热实验。
(一)、加热装置结构说明1) 在装置上方有十个圆孔,分别标有数字1,2,3...10,此数字分别对应装置中的十个加热炉;2)装置前面板有一加热旋钮,其中有0,1,2...10共11种选择,平时装置不用时,应将加热旋钮指向0;使用时,如加热炉选择3,则应将加热选择旋钮指向3(注:旋钮指向3意为旋钮上的白色箭头指向。
3)风扇开关:左边风扇开关对应左边的风扇,将左边的风扇打开时,左边风扇将开启,开关上面的指示灯将同时点亮;右边风扇开关对应右边的风扇,将右边的风扇打开时,右边风扇将开启,开关上面的指示灯将同时点亮;当需要加快降温速度时,可根据需要打开左边或右边的风扇,或将两边的风扇同时打开。
4)电源接头及保险丝:在装置的左侧面,有一航空插头,插头上面有一保险丝盒(3A),使用时将航空插头用我们配套的航空接头和JX-3D型金属相图测定装置后面板连接起来。
如发现保险丝烧断,请用3A保险丝换上,换时请小心,以免损坏装置。
(二)、加热装置主要技术指标1)最大加热功率:500W(通过JX-3D型金属相图测定装置程序设定)2)独立加热单元数量:10个3)加热单元中的样品管最高耐热温度:420℃(三)、操作说明1)将需要加热的样品管放入一炉子中,将加热选择旋钮指向该加热炉;2)将装置中的航空插头与JX-3D型金属相图测定装置后面板的航空插头连接起来,将测量装置的测温传感器放置于需要加热的样品管中3)在JX-3D型金属相图测定装置程序用户菜单设定好用户的具体加热的温度、加热的功率和保温功率4)降温时,观察降温速度,若降温太慢,可打开风扇;,若降温速度太快,可按下JX-3D型金属相图测定装置中的保温键,适当增加加热量,以达到所需要的降温速度。
实验名称二组分金属相图一、实验目的1.用热分析法(步冷曲线法)测绘Bi—Sn二组分金属相图。
2.了解固液相图的特点,进一步学习和巩固相律等有关知识。
3.掌握热电偶测量温度的基本原理。
二、实验原理热分析法(步冷曲线法)是绘制相图的基本方法之一。
它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。
通常的做法是先将金属或合金全部熔化,然后让其在一定的环境中自行冷却,画出冷却温度随时间变化的步冷曲线(见图1)。
图1步冷曲线图2步冷曲线与相图当熔融的系统均匀冷却时,如果系统不发生相变,则系统的冷却温度随时间的变化是均匀的,冷却速率较快(如图中ab线段);如果在冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统的冷却速率减慢,步冷曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变.因此步冷曲线上出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可以根据它的步冷曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度—组成图)。
不同组成熔液的步冷曲线对应的相图如图2所示。
用热分析法(步冷曲线法)绘制相图时,被测系统必须时时处于或接近相平衡状态,因此冷却速率要足够慢才能得到较好的结果。
三、实验装置1.调压器2.电子温度计3.热电偶4.细玻璃管5.试管6.试样7.电炉四、仪器及试剂仪器:金属相图实验装置(EF-07):温控仪1个、加热炉1个、冷却炉1个、热电偶2只试剂:100%Zn、100%Sn、70%Zn+30%Sn、25%Zn+75%Sn、8.8%Zn+91.2%Sn样品管。
一、实验目的1. 用热分析法(步冷曲线法)测绘Bi—Sn二组分金属相图。
2.了解固液相图的特点, 进一步学习和巩固相律等有关知识。
3. 掌握热电偶测量温度的基本原理。
二、实验原理热分析法(步冷曲线法)是绘制相图的基本方法之一。
它是利用金属及合金在加热和冷却过程中发生相变时, 潜热的释出或吸收及热容的突变, 来得到金属或合金中相转变温度的方法。
在定压下将从高温逐渐冷却, 作温度对时间的变化曲线, 即为步冷曲线。
体系若有相变, 必定伴随着热效应, 即从步冷曲线中会出现转折点。
从不冷曲线有无转折点就知道有无相变。
测定一系列质量百分比含量不同的样品的步冷曲线图, 从步冷曲线图上找出各相应体系发生相变的温度, 就可以绘出被测体系的金属相图, 如图22所示。
现根据一组实验数据作出步冷曲线图, 如图22所示。
纯物质的步冷曲线(曲线1.4), 以曲线1 为例。
当曲线1的温度不断冷却, 至544K时, 达到纯铋的凝固点, 铋开始转化为固体, 在低共熔混合物全部凝聚以前, 系统温度保持不变。
出现水平线段。
当溶液完全凝固后, 温度才迅速下降。
混合物的步冷曲线(曲线2、3)不同于纯物质, 当温度下降到拐点a 时出现一段曲线ao, 当温度下降到o点后, 温度维持不变, 然后才直线下降。
这是因为当温度下降到a点时, 开始有固体凝固出来, 液相成分不断变化故其平衡温度也随之不断变化, 直到达到低共熔点温度o时, 体系平衡, 温度保持不变, 直到液相完全凝固后, 温度才又迅速下降。
用步冷曲线绘制相图是以横坐标表示混合物的成分, 在对应的纵坐标上标出开始出相变的温度, 连接并作出其延长线相交于o点(o点为铋铬的最低共熔点), 即可作出相图。
三、仪器及试剂仪器: SWKY数字控温仪1台, KWL-08可控升降温电炉1台, 硬质玻璃试管6只, 炉膛保护筒1个。
试剂:纯铋, 纯锡, 松香, 液体石蜡。
四、实验注意事项1、加热时, 将传感器至于炉膛内;冷却时, 将传感器放入玻璃试管中, 以防止温度过冲。
金属相图一、实验目的1、用热分析法(步冷曲线法)测绘Bi-Sn二组分金属相图2、掌握热分析的测量技术3、了解热电偶测量温度进行热电偶矫正的方法二、实验原理研究多相体系的状态随浓度、温度、压力等变量的改变而发生变化的规律,并用图形来表示体系状态的变化,这种图形就称为相图或称为状态图。
用热分析法可绘制相图,测绘一系列不同组成的金属混合物的步冷线,然后把各步冷曲线上物态变化的温度绘在温度--组成图上,即把图中各步冷曲线的转折点和水平段所对应的温度用。
表示在温度--组成图中,即得到该体系的相图。
液相完全互溶的二组分体系,在凝固时有的能完全互溶成为固溶体,有的仅部分互溶,如本实验的Bi--Sn体系。
本实验用热电偶作为感温元件,自动平衡电位差计测量各样品冷却过程中的热电势,作出电位—时间曲线(步冷曲线),再由热电偶的工作曲线找出相变温度,从而作出Bi-Sn体系的相图三、实验试剂与仪器坩埚电炉(含控温仪);自动平衡电位差计;冷却保温装置;样品管;杜瓦瓶;镍铬---镍铝(或含其他材料);热电偶.锡(AR)232;铋(AR)271四、实验步骤1、准备工作在杜瓦瓶中装入室温水,按图连接路线并检查线路。
热电偶调零:在测温热电偶为室温温度时开启记录仪开关,调量程为10mV,走纸温度为0,调节零旋纽使记录笔位于记录纸左边零线处。
这时位置所指温度热电势为0,代表温度为室温。
2、测量(1)加热试样:置纯Sn样品坩埚于管式电炉中,置电热偶温度计于坩埚中细玻璃管内,并插入底部.调调压器使加热电压为150mV,加热至坩埚中细玻璃管能动则说明试样已熔化,停止加热。
(2)测量步冷曲线当发现记录笔开始向左移动(降温)时,放下记录笔,调走纸速度为4mm/min,开始测量。
当平台出现后一会抬起记录笔并调节走纸速度为0。
同上步骤,依次测量含Bi 20%, 30%,80% ,0%的混合物。
五、数据处理数据记录室温:19.8℃ 压强:101.31Kpa金属相图数据记录表二:金属相图三:数据分析由二元金属相图可知,合金的最低共熔点温度是145℃,即含50%Bi 时,此点为三相点。
实验六步冷曲线法绘制二元合金相图实验六步冷曲线法绘制二元合金相图一、目的要求1. 用热分析法测熔融体步冷曲线,再绘制绘Bi-Sn二元合金相图。
2. 了解热分析法的实验技术及热电偶测量温度的方法。
二、实验原理1.相图相图是多相(二相或二相以上)体系处于相平衡状态时体系的某些物理性质(如温度或压力)对体系的某一变量(如组成)作图所得的图形,因图中能反映出相图平衡情况(相的数目及性质等),故称为相图。
由于相图能反映出多相平衡体系在不同自变量条件下的相平衡情况,因此,研究多相体系相平衡情况的演变(例如钢铁及其它合金的冶炼过程,石油工业分离产品的过程),都要用到相图。
由于压力对仅由液相和固相构成的凝聚体系的相平衡影响很小,所以二元凝聚体系的相图通常不考虑压力的影响,而常以组成为自变量,其物理性质则取温度。
2.热分析法测绘步冷曲线热分析法是绘制相图常用的基本方法。
其原理是将体系加热融熔成一均匀液相,然后让体系缓慢冷却,用体系的温度随时间的变化情况来判断体系是否发生了相变化。
记录体系的温度随时间的变化关系,再以时间为横坐标,温度为纵坐标,绘制成温度--时间曲线,称为步冷曲线(如图6-1)。
从步冷曲线中一般可以判断在某一温度时,体系有无相变发生。
当系统缓慢而均匀地冷却时,若系统内无相的变化,则温度将随时间而均匀地改变,即在T-t曲线上呈一条直线,若系统内有相变化,则因放出相变热,使系统温度变化不均匀,在T-t图上有转折或水平线段,由此判断系统是否有相变化。
对于二组分固态不互溶凝聚系统(A-B系统),其典型冷却曲线形状大致有三种形态,见图6-1所示。
图6-1(a) 图6-1(b) 图6-1(c)图6-1(a)体系是单组分体系。
在冷却过程中,在a~a1段是单相区,只有液相,没有相变发生,温度下降速度较均匀,曲线平滑。
冷却到a1时,达到物质的凝固点,有固相开始析出,两相共存,自由度为零,温度保持不变,冷却曲线出现平台(温度不随时间而改变)。