第84讲、勾股定理与弦图---加深版
- 格式:docx
- 大小:187.75 KB
- 文档页数:5
第一章 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
勾股定理(讲义) -CAL-FENGHAI.-(YICAI)-Company One1勾股定理一、知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222+=a b c2.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC∠=︒,则c=b=,a=∆中,90C②知道直角三角形一边,可得另外两边之间的数量关系二、题型题型一:直接考查勾股定理例1. 在ABC∠=︒∆中,90C⑴已知6BC=.求AB的长AC=,8⑵已知17AC=,求BC的长AB=,15解:题型二:应用勾股定理建立方程例2.⑴在ABCBC=cm,CD AB⊥于D,CD=AB=cm,3∠=︒,5∆中,90ACB⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个三角形的面积为21DCB AAB CD E例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m三、勾股定理的逆定理知识归纳 1. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
2. 常用的平方数112=_______,122=_______,132=_______,142=_______,152=_______,162=_______,172=_______,182=_______,192=_______,202=_______,252=_______.注意.如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。
第84讲、勾股定理与弦图-----加深版知识导引一、基础知识;我国是最早了解勾股定理的国家之一,在直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。
二、图形的构造定理;1、勾股定理: 在直角三角形中,两条直角边的平方和等于斜边的平方和。
a c 222cb a =+b2、勾理的证明:大家注意到,每个长方形可用一条对角线分为两个同样大小的直角三角形,如下图。
设这个直角三角形的两条直角边为a ,b ,斜边为c ,则4个直角三角形可以拼成一个斜边为c 的正方形。
中间空一格边长为a-b 的小正方形。
显然这个图形是大正方形ABCD 的一部分。
由图中可见。
b2)(b a -证明:ab b a c 214)(22⨯+-= ab b a 2)(2+-=ab b ab a 2222++-= 22b a += =a 2-2ab+b 2+2ab完全平方和公式:2222)(b ab a b a ++=+完全平方差公式:2222)(b ab a b a +-=-知识窗金典例题1.四个完全一样的长方形木板,拼成如图的正方形,大正方形周长32厘米,小正方形周长24厘米。
求:每块长方形木板的面积和周长。
CBADABC2. 如图,在△ABD 中,∠A 是直角,AB =3,AD =4,BC =12,DC =13,求四边形ABCD 的面积3、以直角三角形ABC 各边为直径的三个半圆围成两个新月形(阴影部分),已知AC 长3厘米,长4米.则新月形(阴影部分)的面积和是多少平方厘米。
4、同样大小的长方形小纸片摆成了下图所示的图形,已知小纸片的宽是12厘米,求阴影部分的总面积。
基础入门1、所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积之和为cm2.B ADBAOBA2、如下图所示,小圆直径与大圆直径在同一条直线上,弦AB=10厘米,弦AB 与直径平行且与小圆相切,求阴影面积。
勾股定理勾股定理在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。
数学公式中常写作a^2+b^2=c^2目录概述定义简介勾股定理指出勾股数组推广勾股定理定理勾股定理的来源毕达哥拉斯树常见的勾股数勾、股、弦的比例最早的勾股定理应用《周髀算经》中勾股定理的公式与证明加菲尔德证明勾股定理的故事多种证明方法证法1证法2证法3证法4证法5(欧几里得的证法)证法6(欧几里德(Euclid)射影定理证法)证法七(赵爽弦图)证法8(达芬奇的证法)证法9习题及答案定义介绍勾股定理逆定理概述定义简介勾股定理指出勾股数组推广勾股定理定理勾股定理的来源毕达哥拉斯树常见的勾股数勾、股、弦的比例最早的勾股定理应用《周髀算经》中勾股定理的公式与证明加菲尔德证明勾股定理的故事多种证明方法证法1证法2证法3证法4证法5(欧几里得的证法)证法6(欧几里德(Euclid)射影定理证法)证法七(赵爽弦图)证法8(达芬奇的证法)证法9习题及答案定义介绍勾股定理逆定理展开编辑本段概述定义在任何一个直角三角形中,两条直角边的长的平方和等于斜边长的平方。
勾股定理(6张)简介勾股定理是余弦定理的一个特例。
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。
(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。
他们发现勾股定理的时间都比我国晚,我国是最早发现这一几何宝藏的国家。
目前初二学生学,教材的证明方法采用赵爽弦图,证明使用青朱出入图。
勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。
直角三角形两直角边的平方和等于斜边的平方。
如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。
第84讲、勾股定理与弦图
-----加深版
一、基础知识;
我国是最早了解勾股定理的国家之一,在直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。
二、图形的构造定理;
1、勾股定理: 在直角三角形中,两条直角边的平方和等于斜边的平方和。
a c 2
2
2c
b
a=
+
b
2、勾理的证明:大家注意到,每个长方形可用一条对角线分为两个同样大小的直角三角形,如下图。
设这个直角三角形的两条直角边为a,b,斜边为c,则4个直角三角形可以拼成一个斜边为c的正方形。
中间空一格边长为a-b的小正方形。
显然这个图形是大正方形ABCD的一部分。
由图中可见。
证明:ab
b
a
c
2
4
)
(⨯
+
-
=
ab
b
a2
)
(2+
-
=
ab
b
ab
a2
22
2+
+
-
=
=a2-2ab+b2+2ab
=a2+b2
完全平方和公式:
完全平方差公式:
1. 四个完全一样的长方形木板,拼成如图的正方形,大正方形周长32厘米,小正方
形周长24厘米。
求:每块长方形木板的面积和周长。
2. 如图,在△ABD 中,∠A 是直角,AB =3,AD =4,BC =12,DC =13,求四边形
ABCD 的面积
3、以直角三角形ABC 各边为直径的三个半圆围成两个新月形(阴影部分),已知AC 长3厘米,长4米.则新月形(阴影部分)的面积和是多少平方厘米。
4、同样大小的长方形小纸片摆成了下图所示的图形,已知小纸片的宽是12厘米,求阴影部分的总面积。
1、所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A ,B ,C ,D 的面积之和为 cm2.
2、如下图所示,小圆直径与大圆直径在同一条直线上,弦AB=10厘米,弦AB 与直径平行且与小圆相切,求阴影面积。
3、如图,大小两个半圆,它们的直径在同一直线上,弦AB 与小半圆相切,且与直径平行,弦AB 长12厘米,求阴影部分的面积。
4、 科技小组演示自制的机器人,若机器人从A 点向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再想东行走2米,最后又向南行走1米到达B 点,则B 点到A 点的直线距离是多少米?
1、如图,正方形ABCD ,以各边为直径作4个半圆,且A 、B 、C 、D 为正方形EFGH 各边的中点。
再以正方形EFGH 各边的一半作为直径作8个小半圆。
这样形成的8个月牙形的总面积为8平方厘米,问:正方形ABCD 的面积是多少平方厘米?正方形EFGH 的面积又是多少平方厘米?
1. 右图中的正方形的边长为 10, 则阴影部分的面积为。
(十九届华赛初赛试题)
1、两个大小不同的正方体积木粘在一起, 构成右图所示的立体图形,其中, 小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点. 如果大积木的棱长为 3, 则这个立体图形的表面积为________. (十八届华赛决赛试题)。