(推荐下载)热力学知识点总结及习题373
- 格式:pdf
- 大小:239.23 KB
- 文档页数:21
热力学复习题及答案1. 热力学的定义是什么?答:热力学是研究能量转化和能量传递规律的一个物理学分支。
2. 什么是热力学系统?答:热力学系统是指被选定的一部分物质或空间,用于研究热力学性质和过程的对象或范围。
3. 请简要解释热力学过程中的熵变。
答:热力学过程中的熵变指系统熵的变化,代表了系统无序度的改变。
熵增加表示系统的无序度增加,熵减少表示系统的无序度减少。
4. 热力学第一定律是什么?答:热力学第一定律,也称能量守恒定律,表示能量不会被创造或破坏,只能从一种形式转化为另一种形式,能量的总量保持不变。
5. 温度和热量有什么区别?答:温度是物体分子运动的程度,用来衡量热力学系统的热平衡状态。
热量是能量的传递形式,表示因温度差而引起的能量传递。
6. 请解释等温过程和绝热过程。
答:等温过程是指系统与外界保持恒定温度的热力学过程。
绝热过程是指系统与外界无能量交换的热力学过程。
7. 热力学循环是什么?答:热力学循环是指能量转化过程中系统从一个状态经过一系列过程最终回到原来状态的过程。
8. 请解释热力学可能性原理。
答:热力学可能性原理,也称热力学第二定律,表示任何孤立系统都不可能完全转化热能为有效的功。
9. 热力学第三定律是什么?答:热力学第三定律,也称绝对温标定律,指出在绝对零度(0K)下,所有物质的熵可以达到最低值,即熵的极限为零。
10. 请解释吉布斯自由能。
答:吉布斯自由能,简称G,是热力学系统在等温等压条件下的可用能量。
它在化学平衡时取最小值,可用于预测化学反应的方向。
热学热力学知识点总结热学热力学是物理学中的重要分支,研究物质热现象和热传递规律,深入了解这一领域的知识对于我们理解自然界的运行机制至关重要。
本文将对热学热力学的一些重要知识点进行总结。
一、热力学基本概念1. 系统与环境:热力学中,我们将要研究的物体或者系统称为“系统”,而其周围的一切称为“环境”。
2. 边界与界面:系统与环境之间通过一条虚线或者实际存在的物理情况进行分界,在这个分界线上,称为“边界”。
而边界之间的物理现象发生的地方称为“界面”。
二、热力学定律1. 第一定律:能量守恒定律,描述了能量的转化和守恒规律。
能量从一个系统传递到另一个系统,既不会凭空产生,也不会消失。
2. 第二定律:熵增原理,描述了自然界热现象的方向性。
热量不会自动从低温物体传递到高温物体,而是相反的。
这个定律也说明了热量的传递需要有势差。
3. 第三定律:绝对零度定律,描述了当温度接近绝对零度时,物体的一些性质将趋近于零。
三、热力学过程1. 等压过程:系统中的压强恒定,系统对外界做功或者从外界接收到的功相等。
2. 等温过程:系统内部温度恒定,根据热容量对外界做功或者从外界接收到的功相等。
3. 绝热过程:系统与环境没有热量交换,系统内部熵不变。
四、热力学函数1. 内能:系统中分子的热运动所具有的能量总和称为内能。
内能是状态函数,与系统的初始状态和末状态有关。
2. 焓:系统的内能加上对外做的功,称为焓。
焓也是状态函数。
3. 熵:描述了系统的无序程度,并且是一个状态函数。
熵增原理通过熵的变化来预测自然界的趋势,即系统熵会不断增大。
4. 自由能:描述了系统能做到的最大非体积功。
分为Helmholtz自由能和Gibbs自由能两种。
五、热力学循环1. 卡诺循环:由两个等温过程和两个绝热过程组成的循环,是一个理想的热力学循环。
卡诺循环的效率反映了热机的工作效率。
2. 标准焓:在25摄氏度和1 atm压强下,各物质的标准热力学性质,如标准焓变等。
概 念 部 分 汇 总 复 习第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。
2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。
3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。
6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。
7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。
绝热过程中内能U是一个态函数:A B UU W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分形式:W Q Ud d d +=11、态函数焓H :pV U H +=,等压过程:Vp U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。
13.定压热容比:ppT H C ⎪⎭⎫⎝⎛∂∂=;定容热容比:V V T U C ⎪⎭⎫⎝⎛∂∂= 公式:nR C C V p=-14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=-γγT p 。
高考热力学知识点归纳总结热力学是自然科学中的一个重要分支,它研究能量转化和能量传递的规律。
作为高考物理的一部分,热力学知识占据了相当重要的位置,以下是对高考热力学知识点的归纳总结。
一、热力学基本概念1. 系统与环境:热力学研究的对象被称为系统,系统与系统的外界称为环境。
2. 定态与非定态:当系统的温度、压强、体积等宏观性质保持不变时,系统处于定态;反之则为非定态。
3. 热平衡与热不平衡:当系统与环境达到温度相等且无任何宏观性质发生变化时,称为热平衡;反之则为热不平衡。
二、温度和热量1. 温度:温度是物体冷热程度的度量,常用单位为摄氏度(℃)。
2. 热量:热量是能量的一种传递方式,是由高温物体向低温物体传递的能量。
3. 内能:内能是系统中各个微观粒子的能量总和,表示为U。
4. 热容:热容是单位质量的物质在温度变化下所吸收(释放)的热量,表示为C。
- 定压热容:在恒定压力下吸收(释放)的热量,表示为Cp。
- 定容热容:在恒定体积下吸收(释放)的热量,表示为Cv。
三、热力学第一定律1. 能量守恒定律:能量不会自发消失,也不会自发产生。
2. 系统的内能变化:系统的内能变化等于系统所吸收的热量减去对外界所做的功。
△U = Q - W其中,△U为内能变化,Q为系统吸收的热量,W为对外界所做的功。
四、热容与焓1. 热容与温度变化关系:当物体的温度变化很小的情况下,热容可以看作是与温度变化成正比的。
C = △Q / △T其中,C为热容,△Q为物体吸收(释放)的热量,△T为温度变化。
2. 焓:焓是系统在恒定压力下的热力学函数,表示为H。
H = U + PV其中,H为焓,U为内能,P为压强,V为体积。
五、等容、等压、等温过程1. 等容过程:系统发生变化时,体积保持不变的过程称为等容过程。
2. 等压过程:系统发生变化时,压强保持不变的过程称为等压过程。
功W = P△V其中,W为对外界所做的功,P为压强,△V为体积变化。
热力学基础知识点总结热力学是研究热现象中物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的学科。
以下是对热力学基础知识点的详细总结。
一、热力学系统与状态热力学系统是指被研究的对象,它可以是一个封闭的容器中的气体,也可以是一个热机的工作物质等。
根据系统与外界的物质和能量交换情况,热力学系统可分为三类:1、孤立系统:与外界既无物质交换,也无能量交换。
2、封闭系统:与外界只有能量交换,无物质交换。
3、开放系统:与外界既有物质交换,又有能量交换。
系统的状态是由一些宏观物理量来描述的,比如压强(P)、体积(V)、温度(T)等,这些物理量被称为状态参量。
当系统的状态参量确定时,系统的状态就确定了。
二、热力学第零定律如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),那么它们彼此也必定处于热平衡。
这一定律为温度的测量提供了理论依据。
三、热力学第一定律热力学第一定律就是能量守恒定律在热现象中的应用。
其表达式为:ΔU = Q + W,其中ΔU 表示系统内能的变化,Q 表示系统吸收的热量,W 表示系统对外所做的功。
当系统从外界吸收热量时,Q 为正;向外界放出热量时,Q 为负。
当系统对外做功时,W 为正;外界对系统做功时,W 为负。
例如,在一个绝热容器中,有一个热的物体和一个冷的物体,热的物体向冷的物体传热,最终两者温度相同。
这个过程中,没有对外做功或外界对系统做功,也没有与外界进行热交换,系统的内能变化就等于热传递的热量。
四、热力学第二定律热力学第二定律有多种表述方式,常见的有克劳修斯表述和开尔文表述。
克劳修斯表述:热量不能自发地从低温物体传到高温物体。
开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
热力学第二定律揭示了热现象的方向性和不可逆性。
例如,热机在工作过程中,总是会有一部分能量以废热的形式散失到环境中,无法将所有的输入能量都转化为有用功。
热力学重点知识总结(期末复习必备)热力学重点知识总结 (期末复必备)1. 热力学基本概念- 热力学是研究物质和能量转化关系的科学领域。
- 系统:研究对象,研究所关注的物体或者物质。
- 环境:与系统相互作用的外部世界。
- 边界:系统与环境之间的分界面。
2. 热力学定律第一定律:能量守恒定律- 能量既不会凭空产生,也不会凭空消失,只会在不同形式之间转化。
- $\Delta U = Q - W$,其中 $U$ 表示内能,$Q$ 表示传热量,$W$ 表示对外界做功。
第二定律:热力学箭头定律- 热量不会自发地从低温物体传递到高温物体,而是相反的方向。
- 热量自发地会沿着温度梯度从高温物体传递到低温物体。
- 第二定律的一个重要应用是热机效率计算:$\eta =\frac{W}{Q_H}$,其中 $Q_H$ 表示从高温热源吸收的热量,$W$ 表示对外界做的功。
第三定律:绝对零度定律- 温度无法降低到绝对零度,即 $0$K 是一个温度的下限。
- 第三定律提供了热力学的温标基准,即绝对温标。
3. 热力学过程绝热过程- 绝热过程是指在过程中不与环境发生热量交换的过程。
- 绝热过程中,系统的内能会发生改变,但传热量为零。
等温过程- 等温过程是指在过程中系统与环境保持恒定的温度。
- 在等温过程中,系统的内能不变,但会发生热量交换。
绝热可逆过程- 绝热可逆过程是指绝热过程与可逆过程的结合。
- 在绝热可逆过程中,系统不仅不与环境发生热量交换,还能够在过程中达到热力学平衡。
4. 热力学系统分类封闭系统- 封闭系统是指与环境隔绝,但能够通过物质和能量交换来进行工作的系统。
开放系统- 开放系统是指与环境可以进行物质和能量交换的系统,也称为流体系统。
孤立系统- 孤立系统是指与环境既不进行物质交换,也不进行能量交换的系统。
5. 热力学熵- 熵是热力学中一个重要的物理量,表示系统的无序程度或混乱程度。
- 熵的增加反映了系统的混乱程度的增大,熵的减少反映了系统的有序程度的增大。
热力学知识点总结一、热力学基本概念1. 系统和环境在热力学中,将研究的对象称为系统,系统的边界与外界相隔,系统内部可以发生物质的交换和能量的转化。
与系统相对应的是环境,它包括了系统外部的一切与系统有关的物体和能量。
2. 状态函数状态函数是描述系统状态的函数,它的值只与系统的初末状态有关,而与系统的历程无关。
常见的状态函数有热力学势函数、温度、压强、内能、焓等。
3. 热力学过程系统经历的状态变化称为热力学过程,根据系统对外界的能量交换形式,热力学过程可以分为等容过程、等压过程、等温过程、绝热过程等。
4. 热平衡与机械平衡当系统与外界不存在能量和物质的交换时,系统与外界达到热平衡;当系统与外界不存在能量的交换时,系统与外界达到机械平衡。
5. 热力学第一定律热力学第一定律是能量守恒定律在热力学的表述,它表明一个系统的内能变化等于系统所吸收的热量与对外做功的代数和。
6. 热力学第二定律热力学第二定律是热力学的一个重要定律,它包括卡诺定律、热力学温标等内容。
热力学第二定律表明自然界的热力学过程是具有一定方向性,永远不可能自发地从低熵状态转变到高熵状态。
7. 热力学第三定律热力学第三定律是阐述了当系统的温度趋近绝对温度零度时,系统的熵趋近于一个有限值的定律,也被称为凝固定律。
二、热力学定律1. 卡诺定律卡诺定律是热力学中的一个重要定律,它规定了热机的最大功率和最大效率。
卡诺定律为研究热机的效率提供了理论基础。
2. 克劳修斯不等式克劳修斯不等式是热力学中的一个重要不等式,它表明热量永远不能完全从低温物体传递到高温物体,且不可能使一个孤立系统中的能量完全转化为功。
3. 热力学温标热力学温标是热力学中的一个重要概念,它是以气体温度的等温过程作为标准的温标。
热力学温标的零点称为绝对零度,对应于绝对热量为零的状态。
4. 熵增加原理熵增加原理是热力学中的一个基本定律,它表明一个孤立系统的熵永远不会减少,在任何自然过程中,系统的总熵都会增加。
3 3热学知识点总结1. 热力学定律热力学定律是热学研究的基础,主要包括热力学第一定律和第二定律。
热力学第一定律是能量守恒定律,它表明能量在系统中的转化不会产生净增加或减少,只会在不同形式之间转换。
热力学第二定律则表明热永远不能从低温物体传递到高温物体,即热能不能自发地从低温物体流向高温物体,这被称为卡诺循环定律。
2. 热力学过程热力学过程是指系统内能量的变化过程,主要包括等体过程、等压过程、等温过程和绝热过程。
在等体过程中,系统内部体积不变,而在等压过程中,系统内部压强不变。
等温过程是指系统内温度不变,而绝热过程是指系统内不进行热交换。
对于这些过程,可以通过热力学定律来分析系统内能量的变化。
3. 热容热容是指物体在吸收一定量的热量时所发生的温度变化。
对于理想气体而言,其热容分为定压热容和定容热容。
定压热容是指在恒定压力下吸收一定量的热量时系统的温度变化,而定容热容则是指在恒定体积下吸收一定量的热量时系统的温度变化。
对于固体和液体而言,它们的热容是与压力和温度相关的,可以通过实验来测量。
4. 热传导热传导是指热量在物质中传递的过程,主要通过分子的热运动来实现。
对于导热系数是介质传导热的属性,是介质单位厚度,在单位时间内通过单位横截面积,温度差为1度时的热量,标志为λ,在大气物理学中有显著的意义,地壁斗式热瑞频率通俗的讲是越高越好越高越好,常见的大气分层、席尔梅环等现象都和隔卵系数有较大的关联。
5. 热功率热功率是指单位时间内的热量传递速率,可以通过热传导方程来描述。
对于导热系数是介质传导热的属性,是介质单位厚度,在单位时间内通过单位横截面积,温度差为1度时的热量,标志为λ。
在大气物理学中有显著的意义,地壁斗式热瑞频率通俗的讲是越高越好越高越好,常见的大气分层、席尔梅环等现象都和导热系数有较大的关联。
总之,热学是一门非常重要的物理学分支,它研究了热能转化与物质内部的热运动规律。
上述介绍的知识点只是热学中的一部分,希望能对大家有所帮助。
热力学基础一、基本要求1. 理解功、热量及准静态过程的概念。
2. 掌握热力学第一定律,能分析计算理想气体等容、等压、等温过程和绝热过程中的功、热量、内能改变量;理解循环过程概念及卡诺循环的特征,并能计算效率和致冷系数。
3. 了解可逆过程、不可逆过程及卡诺定理。
4. 了解热力学第二定律及其统计意义。
二、主要内容1. 准静态过程:过程进行的每一时刻,系统的状态都无限接近平衡态。
准静态过程可以用状态图上的曲线表示。
2. 热力学第一定律(1) 热力学第一定律的数学表达式Q=E 2 - E 1 +W对微分过程为dQ=dE +d W热力学第一定律的实质是能量守恒与转换定律在热现象中的应用,其内容表示系统吸收的热量一部分转换为系统的内能,一部分对外做功。
(2) 准静态过程系统对外做功:d W=pd V ,W=⎰12V V pd V(3) 热量:系统和外界之间或两个物体之间由于温度不同而交换的热运动量,热量也是过程量。
一定摩尔的某种物质,在某一过程中吸收的热量,)(C m12m c,T T M Q -=(4) 摩尔热容:1mo1物质温度变化1K 所吸收或放出的热量,定义式为 dTQd m,=m c C 其中m 为1mo1 物质吸热。
摩尔定容热容:CV , m =摩尔定压热容:Cp, m =理想气体的摩尔热容:CV, m =,Cp, m =Cp, m =CV, m + 摩尔热容比:=3. 热力学第一定律对理想气体等值过程和绝热过程的应用,详见表1 表1 d =0 =恒量=恒量p =恒量mmmM m T1nMm T1nCV, m =Cp, m =4. 循环过程(1)循环过程的特征是E =0热循环:系统从高温热源吸热,对外做功,向低温热源放热,致效率为== 1—致冷循环:系统从低温热源吸热,接受外界做功,向高温热源放热,致冷系数为==(2)卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。
卡诺热机的效率为= 1—卡诺致冷机的致冷系数为三、习题与解答1、 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.解 S ABCD =1/2(BC +AD)×CD 故 W =150 J2、 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3倍,求空气膨胀时所作的功. 解 根据物态方程11RT pV v =, 则作功为()J 1097.92231112⨯===-=RT pv V V p W v3、64g 氧气(可看成刚性双原子分子理想气体)的温度由0℃升至50℃,〔1〕保持体积不变;(2)保持压强不变。
热力学基础知识点1、热力学特性–焓焓是热力学系统的一个特性,其计算公式为:系统内部能量加上系统内气体压力与容积的乘积。
物理意义:单位质量所增加或移走的热量就是物质的焓的变化量。
它的符号为“∆h”。
即h = E + pVh = 焓E = 内部能量p = 压力V = 容积焓的单位千焦/千克- kJ/kg英国热量单位/磅- BTU/lb2、热力学特性–熵在不做功的情况下向物质转移能量,就能增强物质的混乱程度。
这叫做物质的熵。
混乱程度越高,熵就越大。
在不施加功的情况下,这种混乱状态是不可逆的(即无法回到原来的次序)。
例如:1、在不做功的情况下转移能量,能使冰融化成水,但在不施加功的情况下,无法让水重新变成冰。
2、一盒新的扑克牌,所有牌都是依次排列。
通过洗牌,可以打乱牌的顺序。
现在取一盒顺序混乱的扑克牌,然后洗牌。
扑克牌无法回到原来的顺序。
3、拿一罐空气清新剂,按下按钮。
空气清新剂从罐中喷出,飘散到房间四周。
现在想象一下,将空气清新剂收集起来,重新放回罐子里。
做不到,对不对?∆S = Q/TQ = 吸收的热量T = 温度熵的单位千焦/千克•开氏度- kJ/kg.K英国热量单位/磅。
兰氏温标。
- BTU/lb.R2纯物质的特性纯物质的特性可以绘制成图表。
1、压力–温度图(P - T 图)2、温度–熵图(T - S 图)3、温度–焓图(T - h 图)4、压力–焓图(P - h 图)注意:压力–焓图经常用于制冷和空调系统。
现在举例如下:1、温度–焓图(T-h 图)水的温度–焓图水的温度–焓图(不同压力)2、压力–温度图(CO2 相态图)CO2 的压力–温度图3、压力–焓图(P-h 图)4、压力–焓图(P-h 图)1、压力-焓图是纯物质的特性图。
2、图中包含物质的一些更为重要的特性,例如温度、压力、比容、密度、比热、焓或熵。
5、P-h 图和Log(P)-h 图3压力–焓图(Log(P)-h 图)1、压焓图概述1)、图中有三个区域,分别表示液体-混合物- 蒸气2)、这些区域用蓝色的半圆形曲线隔开,这条曲线叫做饱和曲线。
热力学定律归纳复习知识点一、功和内能1、绝热过程:热力学系统只由于外界对它做功而与外界交换能量,它不从外界吸热,也不向外界传热的热力学过程,称为绝热过程。
2、内能:内能是一种与热运动有关的能量。
在物理学中,我们把物体内所有分子作无规则运动的动能和分子势能的总和叫做物体的内能。
内能用字母U表示。
在宏观上,热力学系统的内能U是状态量的函数,由系统的分子数、温度、体积决定。
3、绝热过程功和能的关系功是过程量,能量是状态量,功是能量变化的量度。
某热力学系统从状态1经过绝热过程达到状态2时,内能的增加量就等于外界对系统所做的功W,即ΔU=W可见,这一过程实现了其它形式的能与内能之间的转化。
知识点二、热和内能1、热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。
2、热传递的方式:热传导、对流热、热辐射。
3、热传递过程热和能的关系某热力学系统从状态1经过单纯的传热过程达到状态2时,内能的增加量就等于外界对系统传递的热量Q,即ΔU=Q可见,这一过程只是实现了内能与内能之间的转移。
知识点三、热力学第一定律、能量守恒定律1、热力学第一定律①热力学第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。
②热力学第一定律表达式ΔU=W+Q③应用热力学第一定律解题的思路与步骤:1)、明确研究对象是哪个物体或者是哪个热力学系统。
2)、分别列出物体或系统(吸收或放出的热量)和外界对物体或系统所做的功。
3)、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。
4)、几种特殊情况:若过程是绝热的,即Q=0,则:W=ΔU,外界对物体做的功等于物体内能的增加。
若过程中不做功,即W=0,则:Q=ΔU,物体吸收的热量等于物体内能的增加。
若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。
1.热力学第零定理:如果两个物体各自与第三个物体达到热平衡,他们彼此也必然处于热平衡2.热力学第一定律:能量可以从一种形式转变为另一种形式,但在转化过程中能量的总量保持不变3.热力学第二定理:实质:自然界中一切与热现象有关的实际过程都是不可逆过程,他们有一定的自发进行的方向开式:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化 克式:不可能把热量从低温物体传到高温物体而不引起其他变化热力学第三(绝对零度定理):不可能通过有限步骤是一个物体冷却到热力学温度的零度4.孤立系统:与外界无物质、无能量交换 dQ=0 dW=05.封闭系统:与外界无物质交换、有能量交换 dQ ≠0 dW=06.准静态过程:是一个进行得无限缓慢以致系统连续不断的经历着一些列平衡态的过程。
只有系统内部各部分之间及系统与外界之间始终同时满足力学、热学、化学平衡条件的过程才是准静态过程(准静态过程是一个理想过程)7.熵增加原理:系统经可逆绝热过程熵不变,经不可逆绝热过程熵增加,在绝热条件下,熵减少过程是不可能实现的。
8.广延量:与系统大小成正比的热力学量(如质量M 、体积V 、内能U 等) 强度量:不随系统大小变化的热力学量(如系统的P 、T 、ρ等)9.获得低温的方法:节流过程、节流过程与绝热膨胀相结合、绝热去磁制冷、激光制冷、核绝热去磁10.特性函数的定义:在适当选择独立变量条件下,只要知道系统的一个热力学函数,就可以用只求偏导数的方法求出系统的其他基本热力学函数,从而完全确定均匀系统的平衡性质,这个热力学函数就称为特性函数。
11.一级相变:在相变点两点的化学势连续,但化学势的一阶偏导数存在突变12.二级相变:在相变点两点的化学势及一阶导数连续,但二阶导数存在突变13.单元复相系平衡条件:一个单元两个系统(ɑ相和β相)组成一孤立系统,其总内能总体积和总物质的量恒定。
14.中肯半径:在一定的蒸气压下,于正其达到平衡的液滴半径称为中肯半径15.能量均分定理:对于外在温度为T 的平衡状态的经典系统,例子的能量中每一个平方项的平均值等于(1/2)KT16.微观粒子全同性原理:微观粒子全同性原理指出,全同粒子是不可分辨的,在含有多个全同粒子的系统中,将任何两个全同粒子加以对换,不改变整个系统的微观运动状态。
高考物理最新力学知识点之热力学定律知识点总复习附答案解析(3)一、选择题1.2018年3月2日上映的《厉害了我的国》的票房和评分都极高。
影片中展示了我们中国作为现代化强国的方方面面的发展与进步。
如图是影片中几个场景的截图,则下列说法正的是A.甲图中火箭点火后加速上升阶段,舱内的物体处于失重状态B.乙图中的光伏电池能把太阳光的光能转化为内能C.丙图中静止站立在电缆上的工作人员受到的合力垂直于倾斜的电线D.丁图中某根钢索对桥面的拉力和桥面对该钢索的拉力是一对作用力和反作用力2.下列有关热学的叙述中,正确的是()A.同一温度下,无论是氢气还是氮气,它们分子速率都呈现出“中间多,两头少”的分布规律,且分子平均速率相同B.在绝热条件下压缩理想气体,则其内能不一定增加C.布朗运动是指悬浮在液体中的花粉分子的无规则热运动D.液体表面层分子间距离大于液体内部分子间距离,故液体表面存在张力3.根据学过的热学中的有关知识,判断下列说法中正确的是()A.机械能可以全部转化为内能,内能也可以全部用来做功转化成机械能B.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体C.尽管科技不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降到-293 ℃D.第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,随着科技的进步和发展,第二类永动机可以制造出来4.关于永动机和热力学定律的讨论,下列叙述正确的是()A.第二类永动机违背能量守恒定律B.如果物体从外界吸收了热量,则物体的内能一定增加C.保持气体的质量和体积不变,当温度升高时,每秒撞击单位面积器壁的气体分子数增多D.做功和热传递都可以改变物体的内能,但从能的转化或转移的观点来看这两种改变方式没有区别5.一定质量的理想气体由状态A变化到状态B,气体的压强随热力学温度变化如图所示,则此过程()A.气体的密度减小B.外界对气体做功C.气体从外界吸收了热量D.气体分子的平均动能增大6.下列说法正确的是()A.气体的温度升高,分子动能都增大B.功可以全部转化为热,但吸收的热量一定不能全部转化为功C.液晶显示器利用了液晶的光学性质具有各向异性的特点D.凡是符合能量守恒定律的宏观过程一定自发地发生而不引起其他变化7.关于物体内能的变化情况,下列说法中正确的是( )A.吸热的物体,其内能一定增加B.绝热压缩的物体,其内能一定增加C.放热的物体,其内能一定减少D.体积膨胀的物体,其内能一定减少8.用相同材料制成质量相等的圆环A 和圆盘B,厚度相同,且起始温度也相同,把它们都竖立在水平地面上,如图所示.现给它们相同的热量,假设它们不与任何其他物体进行热交换,则升温后,圆环A的温度t A与圆盘B的温度t B的大小关系是A.t A>t B B.t A=t B C.t A<t B D.无法确定9.如图所示,A、B为两相同的绝热气缸,用绝热活塞封闭了压强、体积、温度、质量均相同的同种气体,活塞和杠杆质量不计,活塞和杠杆接触,忽略一切摩擦.O为固定轴,且MO=NO,将A中气体温度升高(变化不大)到杠杆MN重新平衡,下列说法正确的是()A.B中气体温度不变B.B中气体温度降低C.A中气体克服外力做功,外界对B气体做功D.A中气体内能增加,B中气体内能减少10.关于能量的转化与守恒,下列说法正确的是()A.任何制造永动机的设想,无论它看上去多么巧妙,都是一种徒劳B.空调机既能致热,又能致冷,说明热传递不存在方向性C.由于自然界的能量是守恒的,所以说能源危机不过是杞人忧天D.一个单摆在来回摆动许多次后总会停下来,说明这个过程的能量不守恒11.一定质量的理想气体,从状态M开始,经状态N、Q回到原状态M,其p-V图象如图所示,其中QM平行于横轴,NQ平行于纵轴.则()A.M→N过程气体温度不变B.N→Q过程气体对外做功C.N→Q过程气体内能减小D.Q→M过程气体放出热量12.一定质量的理想气体在某一过程中,气体对外界做功1.6×104J,从外界吸收热量3.8×104J,则该理想气体的()A.温度降低,密度减小B.温度降低,密度增大C.温度升高,密度减小D.温度升高,密度增大13.下列说法正确的是()A.一个绝热容器中盛有气体,假设把气体中速率很大的如大于v的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v的分子B.温度高的物体的分子平均动能一定大,内能也一定大C.气体压强的大小跟气体分子的平均动能、分子的密集程度、气体的重力都有关D.熵值越大,代表系统分子运动越无序14.下列关于热现象和热力学规律的说法正确的是()A.布朗运动就是液体分子的无规则运动B.物体的温度越高,其分子平均动能一定越大C.热量不可能从低温物体传到高温物体D.压缩气体需要用力,这是气体分子间斥力的宏观表现15.如图所示为一个斯特林热气机理想循环的V–T图像,一定质量理想气体从状态A依次经过状态B、C和D后再回到状态A完成一个循环过程,则()A .气体从状态A 变化到状态C 的过程当中,气体的内能减小B .气体从状态C 变化到状态D 的过程中,气体分子单位时间内碰撞容器壁的次数增多 C .气体从状态D 变化到状态A 的过程中,气体放热D .气体从状态D 变化到状态A 的过程中,气体吸热16.如图所示,一定质量的理想气体从状态A 变化到状态B ,再到状态C ,最后变化到状态A ,完成循环。
热力学基础知识点总结热力学是研究能量转化和传递的物理学分支,它研究了热量、温度和能量之间的关系。
在热力学中,有一些基础知识点是我们必须要了解的。
本文将对热力学的一些基础知识点进行总结和介绍。
一、热力学系统和热力学过程热力学系统是指我们要研究的对象,可以是一个物体、一组物体或者一个系统。
热力学过程是系统从一个状态到另一个状态的变化过程,可以是恒温过程、绝热过程等。
在热力学中,我们通常通过观察系统的性质变化来研究热力学过程。
二、热力学函数热力学函数是描述热力学系统性质的函数,常见的热力学函数有内能、焓、自由能和吉布斯自由能等。
内能是系统热力学性质的基本函数,它是系统的微观状态和能量之间的函数关系。
焓是在恒压条件下的热力学函数,它对应于系统对外做功的能力。
自由能是系统的可用能量,它对应于系统在恒温恒容条件下对外做功的能力。
吉布斯自由能是系统在恒温恒压条件下的可用能量,它对应于系统在外界条件不变的情况下能够发生的最大非体积功。
三、热力学定律热力学定律是热力学研究的基本规律,包括零th定律、第一定律、第二定律和第三定律。
零th定律指出当两个物体与第三个物体处于热平衡时,它们之间也处于热平衡。
第一定律是能量守恒定律,它指出能量可以转化形式,但不能被创造或破坏。
第二定律是热力学不可逆性定律,它指出任何一个孤立系统的熵都不会减少,即系统总是趋于混乱。
第三定律是关于绝对零度的定律,它指出在0K时,系统的熵为零。
四、热力学平衡和热力学态热力学平衡是指系统内各部分之间不存在宏观差异,不再发生宏观的变化。
热力学态是指系统所处的状态,它可以通过温度、压力等宏观性质来描述。
在热力学中,我们通常通过热力学函数的变化来研究系统的平衡和态的变化。
五、热力学的应用热力学是一门广泛应用于工程和科学领域的学科,它在能源转换、化学反应、材料科学等方面有着重要的应用。
热力学的应用可以帮助我们理解和优化能量转化和传递的过程,提高能源利用效率。
物理热学大题知识点总结热力学基本概念热力学是研究物质内能和热量相互转化的学科,是热学、力学和化学的综合。
热力学的基本概念有:热力学系统、状态函数、热力学过程、热力学平衡、热力学第一定律等。
热力学系统是指进行热力学研究的对象,可以是封闭系统、开放系统或孤立系统。
状态函数是系统的性质,它只取决于系统的初始状态和终了状态,与系统的过程无关。
热力学过程是指系统由一个状态变成另一个状态的过程,可以是等温过程、绝热过程、等压过程、等体过程等。
热力学平衡是指系统达到热平衡、力学平衡和化学平衡的状态。
热力学第一定律是能量守恒定律,在能量转化的过程中,能量的增减等于对外做功和热交换之和。
热力学第一定律热力学第一定律是能量守恒定律,它描述了能量转化的规律。
它可以用以下公式表示:ΔU=Q-W其中,ΔU代表系统内能的增加量,Q代表系统所吸收的热量,W代表系统所做的功。
系统的内能增加量等于系统所吸收的热量与所做的功之差。
这个定律说明了在能量的转化过程中,能量的增减等于对外做功和热交换之和。
这个定律对于理解各种物质内能变化的规律具有重要意义。
热力学第二定律热力学第二定律是描述热现象的一个重要规律,它说明了一系列热现象的普遍规律。
热力学第二定律有克劳修斯表述和开尔文表述两种形式。
克劳修斯表述指出,热量不会自发地从低温物体传递到高温物体,而是从高温物体传递到低温物体。
开尔文表述则指出,不存在一个能够将热量完全转化为功的热机,即不存在一个能够从单一热源中吸收热量并将其完全转化为功的装置。
这两种表述都强调了热传递的方向性和热量转化的不可逆性。
这对于研究热机和热泵的效率、研究新能源的开发和利用等方面具有重要的理论和实际意义。
热容和热容率热容是物体吸收单位热量时温度升高的大小,通常用C表示。
单位制下,它的单位是焦耳/摄氏度J/℃。
热容率是单位质量物质吸收单位热量时温度升高的大小,通常用c表示。
单位制下,它的单位是焦耳/千克·摄氏度J/(kg·℃)。
2023年高考经济3-3热学必背重点知识归
纳
以下是2023年高考经济3-3热学必背的重点知识归纳:
1. 热学基本概念:
- 热量:物体之间传递的能量,也是物体内部的能量转化形式。
- 温度:物体热平衡状态下的标志,是物体分子运动速度的表现。
- 热平衡:当物体间无能量传递时,它们处于热平衡状态。
- 热力学第一定律:能量守恒定律,系统内能的增加等于系统
对外做功和从外界吸收热量之和。
2. 热力学过程:
- 等体过程:系统中体积保持不变,内能变化不仅由热量决定,还与对外界做功有关。
- 等压过程:系统中压强保持不变,内能变化只与吸收或放出
的热量有关。
- 等温过程:系统中温度保持不变,内能变化只与对外界做功
有关。
- 绝热过程:系统与周围无能量交换,内能变化只由对外界做功决定。
3. 理想气体的热力学过程:
- 等容过程:理想气体体积保持不变,内能变化只由对外界做功决定。
- 等压过程:理想气体压强保持不变,内能变化只与吸收或放出的热量有关。
- 等温过程:理想气体温度保持不变,内能变化只与对外界做功有关。
- 绝热过程:理想气体与周围无能量交换,内能变化只由对外界做功决定。
4. 热力学方程:
- 内能变化:ΔU = Q - W,其中ΔU为内能变化,Q为吸收的热量,W为对外界做的功。
- 理想气体的状态方程:PV=nRT,其中P为压强,V为体积,n为物质的物质量,R为气体常数,T为温度。
这些是2023年高考经济3-3热学必背的重点知识归纳,希望对你的研究有所帮助!。
高考物理最新力学知识点之热力学定律知识点总复习附答案(3)一、选择题1.如图,一定质量的理想气体,由a经过ab过程到达状态b或者经过ac过程到达状态c.设气体在状态b和状态c的温度分别为T b和T c,在过程ab和ac中吸收的热量分别为Q ab和Q ac.则.A.T b>T c,Q ab>Q ac B.T b>T c,Q ab<Q acC.T b=T c,Q ab>Q ac D.T b=T c,Q ab<Q ac2.二氧化碳是导致“温室效应”的主要原因之一,人类在采取节能减排措施的同时,也是在研究控制温室气体的新方法,目前专家们正在研究二氧化碳的深海处理技术.在某次实验中,将一定质量的二氧化碳气体封闭在一个可以自由压缩的导热容器中,将容器缓慢移到海水某深处,气体体积减小为原来的一半,温度逐渐降低.此过程中()A.封闭的二氧化碳气体对外界做正功B.封闭的二氧化碳气体压强一定增大C.封闭的二氧化碳气体分子的平均动能增大D.封闭的二氧化碳气体一定从外界吸收热量3.图为某种椅子与其升降部分的结构示意图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,当人从椅子上离开,M向上滑动的过程中()A.外界对气体做功,气体内能增大B.外界对气体做功,气体内能减小C.气体对外界做功,气体内能增大D.气体对外界做功,气体内能减小4.如图所示为一定质量的理想气体压强随热力学温度变化的图象,气体经历了ab、bc、cd、da四个过程。
其中bc的延长线经过原点,ab与竖直轴平行,cd与水平轴平行,ad与bc平行。
则气体在A.ab过程中对外界做功B.bc过程中从外界吸收热量C.cd过程中内能保持不变D.da过程中体积保持不变5.下列说法正确的是A.物体吸收热量,其内能一定增加B.不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响C.第二类永动机不能制成是因为违背了能量守恒定律D.热量能够自发地从低温物体传递到高温物体6.关于热力学定律,下列说法正确的是()A.在一定条件下物体的温度可以降到0 KB.物体从单一热源吸收的热量可全部用于做功C.吸收了热量的物体,其内能一定增加D.压缩气体气体的温度一定升高7.带有活塞的汽缸内封闭一定量的理想气体.气体开始处于状态a;然后经过过程ab到达状态b或经过过程ac到状态c,b、c状态温度相同,如V﹣T图所示.设气体在状态b 和状态c的压强分别为P b和P c,在过程ab和ac中吸收的热量分别为Q ab和Q ac,则()A.p b>p c,Q ab>Q ac B.p b>p c,Q ab<Q acC.p b<p c,Q ab<Q ac D.p b<p c,Q ab>Q ac8.重庆出租车常以天然气作为燃料,加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)( )A.压强增大,内能减小B.吸收热量,内能增大C.压强减小,分子平均动能增大D.对外做功,分子平均动能减小9.用相同材料制成质量相等的圆环A 和圆盘B,厚度相同,且起始温度也相同,把它们都竖立在水平地面上,如图所示.现给它们相同的热量,假设它们不与任何其他物体进行热交换,则升温后,圆环A 的温度t A 与圆盘B 的温度t B 的大小关系是A .t A >tB B .t A =t BC .t A <t BD .无法确定10.下列说法正确的是_________.A .布朗运动是液体分子的无规则运动B .只有外界对物体做功才能增加物体的内能C .功转变为热的实际宏观过程是可逆过程D .一定量的气体,在压强不变时,分子每秒对器壁单位面积平均碰撞次数随着温度降低而增加11.关于能量的转化与守恒,下列说法正确的是 ( )A .任何制造永动机的设想,无论它看上去多么巧妙,都是一种徒劳B .空调机既能致热,又能致冷,说明热传递不存在方向性C .由于自然界的能量是守恒的,所以说能源危机不过是杞人忧天D .一个单摆在来回摆动许多次后总会停下来,说明这个过程的能量不守恒12.一定量的理想气体,从状态a 开始,经历ab 、bc 、ca 三个过程,其图象如图所示,下列判断正确的是( )A .a b →过程气体吸收的热量大于内能的增加B .b c →过程气体吸收的热量全部用于对外做功C .c a →过程外界对气体做的功大于放出的热量D .b c →过程的体积变化量大于c a →过程的体积变化量13.如图所示,导热的气缸开口向下,缸内活塞封闭了一定质量的理想气体,活塞可自由滑动且不漏气,活塞下挂一个砂桶,砂桶装满砂子时,活塞恰好静止,现将砂桶底部钻一个小洞,让细砂慢慢漏出.气缸外部温度恒定不变,则A .缸内的气体压强减小,内能减小B .缸内的气体压强增大,内能减小C .缸内的气体压强增大,内能不变D .外界对气体做功,缸内的气体内能增加14.关于物体内能的变化,以下说法中正确的是( )A .物体吸收热量,内能一定增大B .物体对外做功,内能一定减少C .物体吸收热量,同时对外做功,内能可能不变D .物体放出热量,同时对外做功,内能可能不变15.一定质量的理想气体,由初始状态A 开始,状态变化按图中的箭头所示方向进行,最后又回到初始状态A ,对于这个循环过程,以下说法正确的是( )A .由A→B ,气体的分子平均动能增大,放出热量B .由B→C ,气体的分子数密度增大,内能减小,吸收热量C .由C→A ,气体的内能减小,放出热量,外界对气体做功D .经过一个循环过程后,气体内能可能减少,也可能增加16.如图所示,一定质量的理想气体从状态A 变化到状态B ,再到状态C ,最后变化到状态A ,完成循环。
1.热力学第零定理:如果两个物体各自与第三个物体达到热平衡,他们彼此也必然处于热平衡2.热力学第一定律:能量可以从一种形式转变为另一种形式,但在转化过程中能量的总量保持不变3.热力学第二定理:实质:自然界中一切与热现象有关的实际过程都是不可逆过程,他们有一定的自发进行的方向开式:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化克式:不可能把热量从低温物体传到高温物体而不引起其他变化热力学第三(绝对零度定理):不可能通过有限步骤是一个物体冷却到热力学温度的零度4.孤立系统:与外界无物质、无能量交换dQ=0 dW=05.封闭系统:与外界无物质交换、有能量交换dQ≠0 dW=06.准静态过程:是一个进行得无限缓慢以致系统连续不断的经历着一些列平衡态的过程。
只有系统内部各部分之间及系统与外界之间始终同时满足力学、热学、化学平衡条件的过程才是准静态过程(准静态过程是一个理想过程)7.熵增加原理:系统经可逆绝热过程熵不变,经不可逆绝热过程熵增加,在绝热条件下,熵减少过程是不可能实现的。
8.广延量:与系统大小成正比的热力学量(如质量M、体积V、内能U等)强度量:不随系统大小变化的热力学量(如系统的P、T、ρ等)9.获得低温的方法:节流过程、节流过程与绝热膨胀相结合、绝热去磁制冷、激光制冷、核绝热去磁10.特性函数的定义:在适当选择独立变量条件下,只要知道系统的一个热力学函数,就可以用只求偏导数的方法求出系统的其他基本热力学函数,从而完全确定均匀系统的平衡性质,这个热力学函数就称为特性函数。
11.一级相变:在相变点两点的化学势连续,但化学势的一阶偏导数存在突变12.二级相变:在相变点两点的化学势及一阶导数连续,但二阶导数存在突变13.单元复相系平衡条件:一个单元两个系统(ɑ相和β相)组成一孤立系统,其总内能总体积和总物质的量恒定。
14.中肯半径:在一定的蒸气压下,于正其达到平衡的液滴半径称为中肯半径15.能量均分定理:对于外在温度为T 的平衡状态的经典系统,例子的能量中每一个平方项的平均值等于(1/2)KT16.微观粒子全同性原理:微观粒子全同性原理指出,全同粒子是不可分辨的,在含有多个全同粒子的系统中,将任何两个全同粒子加以对换,不改变整个系统的微观运动状态。
17.等概率原理:对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的18.经典极限条件:在所有能量级,粒子数都远远小于量子)(对所有l 1a l l pp ϖ态数。
19.能态方程:就是给出温度与状态参量之间的函数20.卡诺定理:(可逆机)在相同的高温热源与相同的低温热源之间工作的一切可逆机,不论用什么工作物质,效率相等。
(不可逆机)在相同的高温热源与相同的低温热源之间工作的一切不可逆机的效率小于可逆机的效率2.7 实验发现,一气体的压强与体积V 的乘积以及内能U 都只是温度的函数,即p (),().pV f T U U T ==试根据热力学理论,讨论该气体的物态方程可能具有什么形式.解:根据题设,气体具有下述特性:(1)(),pV f T =(2)().U U T =由式(2.2.7)和式(2),有 (3)0.T V U p T p V T ∂∂⎛⎫⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭而由式(1)可得(4).V p T df T T V dT ∂⎛⎫= ⎪∂⎝⎭将式(4)代入式(3),有(5).df dT f T =积分得ln ln ln ,f T C =+或式中C 是常量.,pV CT =3.8 在三相点附近,固态氨的蒸气压(单位为Pa )方程为3754ln 27.92.p T=-液态氨的蒸气压力方程为3063ln 24.38.p T=-试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热.解:固态氨的蒸气压方程是固相与气相的两相平衡曲线,液态氨的蒸气压方程是液相与气想的两相平衡曲线. 三相点的温度可由两条相平衡曲线的交点确定:t T (1)3754306327.9224.38,t t T T -=-由此解出195.2.t T K =将代入所给蒸气压方程,可得t T 5934Pa.t p =将所给蒸气压方程与式(3.4.8) (2)In L p A RT =-+比较,可以求得443.12010J,2.54710J.L L =⨯=⨯升汽氨在三相点的熔解热等于L 溶40.57310J.L L L =-=⨯溶升汽1.17 温度为的1kg 水与温度为的恒温热源接触后,水温达到。
试分别0C o 100C o 100C o求水和热源的熵变以及整个系统的总熵变。
欲使参与过程的整个系统的熵保持不变,应如何使水温从升至?已知水的比热容为0C o 100C o 114.18J g K .--⋅⋅解:设有一系列彼此温差为无穷小的热源,其温度分布在与之间。
令水依次从0C o 100C o这些热源吸热,使水温由升至。
在这可逆过程中,水的熵变为0C o 100C o (1)37331273373373ln 10 4.18ln 1304.6J k .273273p p mc dT S mc T -∆===⨯⨯=⋅⎰水水从升温至所吸收的总热量为0C o 100C oQ 3510 4.18100 4.1810J.p Q mc T =∆=⨯⨯=⨯为求热源的熵变,可令热源向温度为的另一热源放出热量。
在这可逆过程中,热100C oQ 源的熵变为 (2)514.18101120.6J K .373S -⨯∆=-=-⋅热源由于热源的变化相同,式(2)给出的熵变也就是原来的不可逆过程中热源的熵变。
则整个系统的总熵变为 (3)1184J K .S S S -∆=∆+∆=⋅总水热源 (4)37312731304.6J K .p mc dT S T -∆=-=-⋅⎰%热源参与过程的整个系统的总熵变为 (5)0.S S S ∆=∆+∆=%%%总水热源3.12 蒸气与液相达到平衡. 以表示在维持两相平衡的条件下,蒸气体积随温度的变mdV dT 化率. 试证明蒸气的两相平衡膨胀系数为111.m m dV L V dT T RT ⎛⎫=- ⎪⎝⎭解:蒸气的两相平衡膨胀系数为 (1)11.m m m p m m T dV V V dp V dT V T p dT ⎡⎤⎛⎫∂∂⎛⎫=+⎢⎥ ⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦将蒸气看作理想气体,,则有m pV RT =在克拉珀龙方程中略去液相的摩尔体积,因而11,11.m p m m m T V V T TV V p p ∂⎛⎫= ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭(3)2.m dp L Lp dT TV RT ==将式(2)和式(3)代入式(1),即有(4)111.m m dV L V dT T RT ⎛⎫=- ⎪⎝⎭4.7实验测得碳燃烧为二氧化碳和一氧化碳燃烧为二氧化碳的燃烧热,其数值分Q H =-∆别如下:522CO C O 0,3.951810J;H --=∆=-⨯5221CO CO O 0, 2.828810J.2H --=∆=-⨯试根据赫斯定律计算碳燃烧为一氧化碳的燃烧热.解:本题给出了两个实验数据,在291K 和下,有1n p(1)522CO C O 0, 3.951810J;H --=∆=-⨯ (2)5221CO CO O 0, 2.828810J.2H --=∆=-⨯式(1)的含义是,的与的燃烧为的,放出燃烧热1mol C 1mol 2O 1mol 2CO 由于等压过程中系统吸收的热量等于焓的增量,所以燃烧热为53.951810J.Q =⨯11.Q H =-∆式(2)的含义是,的与的燃烧为的,放出燃烧热1mol CO 1mol 22O 1mol 2CO 52222.828810J,.Q Q H =⨯=-∆ 焓是态函数,在初态和终态给定后,焓的变化就有确定值,与中间经历的过程无H ∆关. 将式(1)减去式(2),得(3)5221CO CO O 0, 1.123010J.2H --=∆=-⨯式中 式(3)意味着,的与的燃烧为的312.H H H ∆=∆-∆1mol C 1mol 22O 1mol 将放出燃烧热燃烧为CO 的燃烧热是不能直接测量的. 上面的计算CO 51.123010J.C ⨯表明,它可由C 燃烧为CO2和CO 燃烧为CO2的燃烧热计算出来. 这是应用赫斯定律的一个例子.7.11 表面活性物质的分子在液面上作二维自由运动,可以看作二维气体. 试写出二维气体中分子的速度分布和速率分布,并求平均速率,最概然速率和方均根速率υm υs .υ 解: 参照式(7.3.7)—(7.3.9),可以直接写出在液面上作二维运动的表面活性物质分子的速度分布和速率分布. 速度分布为(1)()222e d d .2x y m υυkT x y m υυkT π-+速率分布为(2)222e d .2m υkT m υυkT ππ-平均速率为2220e d m υkT m υυυkT -+∞=⎰(3)=速率平方的平均值为22320e d 2.m υkT m υυυkT kT m -+∞==⎰因此方均根速率为(4)s υ==最概然速率条件m υ22d e 0d m υkT υυ-⎛⎫= ⎪ ⎪⎝⎭确定. 由此可得(5)m υ=值得注意,上述三种速率均小于三维气体相应的速率,这是由于二维和三维气体,,s m υυυ中速率在到中的分子数分别与速度空间的体积元和成正比,因而υd υυ+2d υυπ24d υυπ二维气体中大速率分子的相对比例低于三维气体的缘故.7.16 已知粒子遵从经典玻耳兹曼分布,其能量表达式为()22221,2x y z p p p ax bx mε=++++其中是常量,求粒子的平均能量.,a b 解: 应用能量均分定理求粒子的平均能量时,需要注意所难能量表达式中和两面ε2ax bx三刀项都是的函数,不能直接将能量均分定理用于项而得x 2ax 出的结论. 要通过配方将表达为212ax kT =ε (1)()222221.224x y z b b p p p a x m a a ε⎛⎫=++++- ⎪⎝⎭在式(1)中,仅第四项是的函数,又是平方项. 由能量均分定理知x ()22222124x y z b b p p p a x m a a ε⎛⎫=++++- ⎪⎝⎭ (2)22.4b kT a =-证明:1.14试根据热力学第二定律证明两条绝热线不能相交。
解:假设在图中两条绝热线交于点,如图所示。
设想一等温线与pV -C 两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总A B 是存在的),则在循环过程中,系统在等温过程中从外界吸取热量,而在循ABCA AB Q 环过程中对外做功,其数值等于三条线所围面积(正值)。