第八章 非平稳和季节时间序列模型分析方法
- 格式:ppt
- 大小:1.49 MB
- 文档页数:69
时间序列、动态计量与非平稳性时间序列分析是一种研究时间上观测到的数据的方法,它通常用来预测未来的数据走势,或者揭示数据背后的规律和模式。
时间序列分析的基本假设是数据是按照时间顺序收集和记录的,因此数据中的观测值之间存在一定的内在关联。
动态计量是时间序列分析的一种方法,它关注变量之间的相互影响和动态调整过程。
动态计量的核心思想是当前时刻的变量取值受到过去时刻的变量取值的影响,而且这种影响是不断调整和改变的。
动态计量模型通常使用回归分析、向量自回归(VAR)模型、脉冲响应分析等方法,来研究变量之间的时序关系和相互作用。
然而,时间序列和动态计量在实际应用中都面临一个重要的问题,那就是非平稳性。
非平稳性是指时间序列数据在整个时间范围内存在明显的长期趋势、季节性变化、周期性波动等,这会导致时间序列的统计性质发生变化,使得传统的时间序列模型无法有效地拟合和预测数据。
非平稳性在金融、经济学、气象学等领域中普遍存在,因此如何处理非平稳性是时间序列分析的重要课题。
为了处理非平稳性,可以使用一系列的技术,如差分、变换、季节调整和模型拟合等。
其中,差分是最常见的一种方法,它通过计算相邻时刻的观测值之间的差异,来消除数据中的趋势和季节性变化。
变换则是将原始数据进行数学变换,如对数变换、平方根变换等,以改变数据的统计性质。
季节调整是将季节性因素从数据中剔除,以便更好地研究数据的长期趋势。
而模型拟合则是利用时间序列模型来拟合和预测非平稳数据,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。
非平稳性的处理不仅能够改善模型的拟合效果,还能够提高模型的预测准确性和可解释性。
通过去除非平稳性的影响,我们可以更好地理解数据的本质和规律,更准确地进行预测和决策。
对于金融市场而言,处理非平稳性可以帮助投资者更好地判断市场趋势和价值,从而制定更科学和有效的投资策略。
总之,时间序列、动态计量和非平稳性是现代统计学中重要的研究领域。
第八章非平稳和季节时间序列模型分析方法时间序列是指观测值按照时间顺序排列的一组数据,其中具有季节性和非平稳性的时间序列数据具有特殊的分析需求。
本文将介绍非平稳和季节时间序列的分析方法。
一、非平稳时间序列分析方法非平稳时间序列是指其统计特征在时间上发生了变化,无法满足平稳性的要求。
非平稳时间序列具有趋势性、周期性、季节性和不规则性等特征。
对于非平稳时间序列的分析,我们可以采用以下方法:1.差分法:差分法是通过对时间序列取一阶或多阶差分来消除趋势性的影响。
通过差分后的时间序列进行分析,我们可以得到一个稳定的时间序列,并进行后续的建模和预测。
2.移动平均法:移动平均法是通过计算一定窗口范围内的观测值的平均值来消除短期波动的影响,从而得到一个平滑的时间序列。
通过移动平均后的时间序列进行分析,我们可以在一定程度上消除非平稳性的影响。
3.分解法:分解法是将非平稳时间序列分解为趋势项、季节项和随机项三个部分。
通过分解后的各个部分进行分析,我们可以了解趋势、季节和随机成分在时间序列中的作用,从而更好地进行建模和预测。
二、季节时间序列分析方法季节时间序列是指具有明显季节性的时间序列数据。
对于季节时间序列的分析,我们可以采用以下方法:1.季节性指数:季节性指数是用来描述季节性的强度和方向的指标。
通过计算每个季节的平均值与总平均值之比,可以得到季节性指数。
根据季节性指数的变化趋势,我们可以判断时间序列的季节性变化情况,并进行后续的建模和预测。
2.季节性趋势模型:季节性趋势模型是一种常用的季节时间序列建模方法。
该模型将时间序列分解为趋势项、季节项和随机项三个部分,并通过对这三个部分进行建模来分析季节性时间序列。
常用的季节性趋势模型包括季节性自回归移动平均模型(SARIMA)、季节性指数平滑模型等。
总结起来,非平稳和季节时间序列模型的分析方法主要包括差分法、移动平均法和分解法等对非平稳时间序列进行分析,以及季节性指数和季节性趋势模型等对季节性时间序列进行分析。
时间序列模型的分析时间序列模型是一种用于分析时间序列数据的统计模型,在许多领域都有广泛的应用,如经济学、金融学、自然科学等。
时间序列模型通过建立数学模型,来描述随时间变化而产生的观测数据的模式和规律,从而可以预测未来的变化趋势。
时间序列模型的分析过程一般包括数据收集、数据预处理、模型选择和评估以及预测。
首先,收集数据是分析时间序列的第一步,可以通过各种途径获得观测数据。
然后,对数据进行预处理,包括去除趋势、季节性和异常值等,以保证模型分析的准确性。
接下来,选择适当的时间序列模型是至关重要的,常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归积分移动平均模型(SARIMA)等。
根据观测数据的特点和分析目的,选择合适的模型对数据进行拟合和预测。
最后,通过对模型进行评估,可以判断模型的拟合效果和预测准确性,如果模型不理想,需要对模型进行优化或者选择其他模型。
时间序列模型的选择和评估涉及到许多统计方法和技术。
首先,可以通过观察自相关图(ACF)和偏自相关图(PACF)来初步判断时间序列是否存在自相关性和季节性。
自相关图展示了观测值与某个滞后阶数的观测值之间的相关性,而偏自相关图则展示了在排除其他相关性的情况下,某个滞后阶数的观测值与当前观测值之间的相关性。
接着,可以使用信息准则(如赤池信息准则、贝叶斯信息准则)和残差分析等方法来选择合适的模型。
信息准则是一种模型选择标准,通过最小化信息准则的值来选择最优模型。
残差分析则用于检验模型的拟合效果,通常要求残差序列是白噪声序列,即残差之间不存在相关性。
在时间序列模型的预测过程中,常用的预测方法包括移动平均法、指数平滑法、ARMA模型预测法等。
其中,移动平均法用于捕捉序列的平稳性和周期性,指数平滑法适用于序列有趋势性和趋势变化的场景,而ARMA模型则可应对序列存在自相关性的情况。
根据实际情况,可以选择不同的方法进行预测。
第八章、非平稳时间序列分析很多时间序列表现出非平稳的特性:随机变量的数学期望和方差随时间的变化而变化。
宏观经济数据形成的时间序列中有很多是非平稳时间序列。
非平稳时间序列与平稳时间序列具有截然不同的特征,研究的方法也很不一样。
因此,在对时间序列建立模型时,必须首先进行平稳性检验,对于平稳时间序列,可采用第七章的方法进行分析,对于非平稳时间序列,可以将采用差分方法得到平稳时间序列,然后采用平稳时间序列方法对差分数据进行研究,对于多个非平稳时间序列则可以采用协整方法对其关系进行研究。
8.1 随机游动和单位根8.1.1随机游动和单位根如果时间序列t y 满足模型t t t y y ε+=-1 (8.1)其中t ε为独立同分布的白噪声序列, ,2,1,)(2==t Var t σε,则称t y 为标准随机游动(standard random walk )。
随机游动表明,时间序列在t 处的值等于1-t 时的值加上一个新息。
如果将t y 看作一个质点在直线上的位置,当前位置为1-t y ,则下一个时刻质点将向那个方向运动、运动多少(t ε)是完全随机的,既与当前所处的位置无关(t ε与1-t y 不相关),也与以前的运动历史无关(t ε与 ,,32--t t y y 不相关),由质点的运动历史和当前位置不能得出下一步运动方向的任何信息。
这便是 “随机游动”的由来。
随机游动时间序列是典型的非平稳时间序列。
将(8.1)进行递归,可以得出010211y y y y t s s t t t t t t t +==++=+=∑-=----εεεε (8.2)。
如果初始值0y 已知,则可以计算出t y 的方差为2)(σt y Var t =。
由此看出随机游动在不同时点的方差与时间t 成正比,不是常数,因此随机游动是非平稳时间序列。
下图给出了随12机游动时间序列图:图8.1 随机游动时间序列图将随机游动(8.1)用滞后算子表示为t t y L ε=-)1( (8.3),滞后多项式为L L -=Φ1)(。
非平稳和季节时间序列模型分析方法时间序列分析是指对时间序列数据进行建模和预测的统计方法。
根据数据的特点,时间序列可以分为平稳序列和非平稳序列。
在实际应用中,很多时间序列数据并不满足平稳性的假设,因此需要对非平稳序列进行处理和分析。
非平稳序列分析的方法之一是差分法。
差分法的基本思想是通过对原始序列进行差分,得到一个新的序列,使其成为平稳序列。
差分法可以通过一阶差分、二阶差分等方法来实现。
一般来说,一阶差分可以用来处理线性趋势,而二阶差分可以用来处理二次趋势。
另一种非平稳序列分析的方法是趋势-季节分解法。
这种方法首先对时间序列进行趋势分解,将原始序列拆分为趋势、季节和残差三个部分。
然后对残差序列进行平稳性检验,判断是否需要进一步进行差分。
最后,可以利用拆分后的趋势和季节序列进行预测。
对于带有季节性的时间序列数据,还可以采用季节时间序列模型进行分析。
常见的季节时间序列模型包括季节自回归移动平均模型(SARIMA)和季节指数平滑模型。
这些模型可以对季节性进行建模,并利用历史数据进行预测。
总结起来,非平稳和季节时间序列的分析方法可以包括差分法、趋势-季节分解法和季节时间序列模型。
这些方法能够有效地处理和分析非平稳和带有季节性的时间序列数据,为实际应用提供了重要的参考。
时间序列分析是一种广泛应用于金融、经济、气象、销售、股票市场等领域的数据分析方法,它的目标是根据过去的数据模式,预测未来的趋势和行为。
在时间序列分析中,平稳性是一个重要的概念,指的是在时间序列的整个时间范围内,序列的统计特性不会随着时间的推移而发生显著的变化。
然而,在实际应用中,很多时间序列数据并不满足平稳性的假设,因此需要对非平稳序列进行处理和分析。
非平稳序列的特点是随着时间的推移,其均值、方差和协方差等统计特性会发生显著的变化。
这使得对其进行建模和预测变得困难。
因此,我们需要采取一些方法来处理非平稳序列,使其满足平稳性的假设。
差分法是一种常用的处理非平稳序列的方法。
非平稳和季节时间序列模型分析方法非平稳时间序列是指在时间序列数据中,均值、方差、自相关函数等统计性质随时间变化的数据。
这种时间序列模型常常由于其自身的特性而较难进行分析和预测。
不过,季节时间序列是非平稳时间序列的一种特殊类型,其特点是在数据中存在明显的季节性变化。
对于这种时间序列,可以采用不同的分析方法进行预测和建模。
一、非平稳时间序列分析方法:1.差分法:差分法是通过对序列数据进行相邻时间点的差分,使得序列转变为平稳时间序列。
差分法有一阶差分、二阶差分等。
通过差分法可以使得序列的单位根等统计性质得到稳定。
2.滑动平均法:滑动平均法基于序列的平均值,将序列转化为平稳时间序列。
该方法通过计算序列的滑动平均值来消除序列的变化趋势。
3.指数平滑法:指数平滑法是一种通过加权平均的方法来消除序列的变化趋势。
指数平滑法可以根据实际情况选择不同的权重系数来进行计算。
4.回归分析:对于非平稳时间序列,通过引入自变量,建立回归模型来描述序列的变化。
回归分析可以通过多个变量的关系来解释序列的变动。
二、季节时间序列分析方法:1.季节分解法:季节分解法是将季节时间序列分解为长期趋势、季节性和随机成分的组合。
这种方法可以将季节性的变动独立出来,从而更好地进行建模和预测。
2.季节移动平均法:季节移动平均法通过计算时间序列在相邻季节的平均值,消除序列的季节性变动。
这种方法可以降低季节时间序列的变化趋势。
3.季节差分法:季节差分法是将季节时间序列转化为其相邻时间点的差分。
通过差分法可以去除序列的季节性变化,使得序列更为平稳。
4.季节ARIMA模型:季节ARIMA模型是一种结合了季节差分和ARIMA 模型的方法。
该方法可以同时考虑序列的季节性变化和非平稳性,通过建立ARIMA模型来进行预测和分析。
以上所述是常用的非平稳和季节时间序列模型分析方法。
根据实际情况,我们可以选择合适的方法来分析和预测时间序列数据,以提高分析的准确性。
81❝§8.1 季节性时间序列的重要特征82❝§8.2 季节性时间序列模型❝§8.3 季节性检验❝§8.4 季节性时间序列模型的建立所谓是指具有某种周期性变化季节性时间序列,是指具有某种周期性变化规律的随机序列,并且这种周期性的变化规律往往是由于季节变化引起由于季节变化引起。
如果一个随机序列经过个时间间隔后观测数据呈现相似性比如同处于波峰或波谷则我们称该序S 呈现相似性,比如同处于波峰或波谷,则我们称该序列具有以为周期的周期特征,并称其为季节性时S 间序列,为季节长度。
S季节性时间序列存在着规则的周期如果我们把季节性时间序列存在着规则的周期,如果我们把原序列按周期重新排列,即可得到一个所谓的二维表。
对于季节性时间序列按周期进行重新排列是极其有益的不仅有助于考察同周期点的变化情况加有益的,不仅有助于考察同一周期点的变化情况、加深对序列周期性的理解,而且对于形成建模思想和理解季节模型的结构也都是很有帮助的。
影响一个季节性时间序列的因素除了季节因素外❝影响一个季节性时间序列的因素除了季节因素外,往往还存在趋势变动和随机变动等。
t t t tX S T I =++❝研究季节性时间序列的目的,就是分解影响经济指标变动的季节因素、趋势因素和随机因素,从而了解它们对经济的影响。
❝1. 简单季节模型❝2. 乘积季节模型季节性时间序列表现出也就是说时间 同期相关性,也就是说时间相隔为的两个时间点上的随机变量有较强的相关性。
比如对于月度数据S 12比如,对于月度数据则与相关性较强。
我们可以利用这种同期相关性在与之12,S =t X 12t X -t X 12t X -间进行拟合。
简单季节模型通过简单的趋势差分季节差分之通过简单的趋势差分、季节差分之后序列即可转化为平稳,它的模型结构通常表示如下:()(1)(),(*)S S D St tB B X B aΦ-=ΘSAR算子其中为白噪声序列,{}ta2()1,S S S pSB B B BΦ=-Φ-Φ--Φ12212()1.pS S S qSqB B B BΘ=-Θ-Θ--ΘSMA算子称(*)为简单季节模型,或季节性自回归求和移动SARIMA p D q平均模型,简记为模型。
第8章季节性时间序列模型由于在日常生活中经常遇到季节性时间序列,因此我们为其单辟一章。
在引入一些基本概念和常用模型之后,我们将自回归求和移动平均模型加以推广,用来描述季节时间序列。
另外,为了说明该方法,我们还给出了详细例子。
8.1 基本概念许多商业和经济时间序列都包含有季节现象,即在一段时期后不断地对自身作有规律的重复。
重复现象出现的最小时间间隔称为季节周期。
例如,并吉林小玲的季度序列在夏季最高,序列在每年都重复这一现象,相应的季节周期为4。
类似地,汽车的月度销量和销售额在每年7月和8月也趋于下降,因为这是经常更换新的车型。
而玩具的月销售量在每年的12月增加。
后两种情形的季节周期是12。
季节现象源于一些因素,如气候影响许多商业和经济活动,如旅游和房屋建筑;一些习惯性事件,如圣诞节就与珠宝、玩具、贺卡及邮票的销售密切相关;夏季几个月的毕业典礼直接关系到这几个月的劳动力状况。
作为说明的例子,图8-1给出了1971-1981年美国月度就业人数,调查对象是美国16-19周岁的男性。
序列的季节特性是明显的,在夏季几个月人数急剧增加,在学期结束的6月出现高峰,而在秋季学校开学后就下降了。
这种现象每12个月重现一次,因而季节周期是12。
8.2 传统方法通常,时间序列被看做由趋势项(P t),季节项(S t)以及不规则分量(e t)混合而成。
如果这些分量被假定为是可加的,可以将时间序列Z t写成Z t =P t+ S t+ e t (8.2.1)为了估计这些分量,文献中引入了一些分解方法。
8.2.1 回归方法在回归方法中,可加性时间序列可以写成下面的回归模型 Z t =P t + S t + e t=011kmi it j jt t i j U V e ααβ==+++∑∑ (8.2.2)其中01mt i it i P U αα==+∑,U it 是趋势-循环变量;S t =1kj jt j V β=∑和jt V 是季节变量。