第一节 四轮转向系统概述
- 格式:ppt
- 大小:1.93 MB
- 文档页数:40
四轮转向系四轮转向系使汽车低速行驶转向并且转向盘转动角度很大时,后轮相对于前轮反向偏转,并且偏转角度随转向盘转角增大而在一定范围内增大。
如汽车急转弯、调头行驶、避障行驶或进出车库时,从而使汽车转向半径减小,转向机动性能提高。
汽车在高速行驶转向时,后轮应相对于前轮同向偏转,从而使汽车车身的横摆角度和横摆角速度大为减小,使汽车高速行驶时的操纵稳定性显著提高。
从后轮转向装置的控制方法上,四轮转向系可分为转角随动型四轮转向系和车速感应型四轮转向系。
转角随动型四轮转向系都是采用机械式的;而车速感应型四轮转向系有液压式、电子控制液压式和全电子控制式。
下面介绍不同类型的四轮转向系。
1一、机械式四轮转向系1.机械式四轮转向系统的组成如图11-39所示,机械式四轮转向系主要由转向盘、前轮转向器、后轮取力齿轮箱、后轮转向传动轴、后轮转向器等组成。
后轮转向也是绕转向节主销偏转的,其结构与前轮相似。
图11-39 机械式四轮转向系的组成1-后轮转向取力齿轮箱2-转向盘3-后轮转向传动轴4-后轮转向器2.后轮转向取力齿轮箱1) 结构后轮转向取力齿轮箱的结构如图11-40所示。
后轮转向取力齿轮箱中只有一对齿轮—齿条传动机构,其齿条与前轮转向器中的齿条共用,取力齿轮固定2在与后轮转向传动轴相连的齿轮轴上,齿轮轴通过衬套支撑在齿轮箱壳的轴承孔中,后轮转向取力齿轮箱固定在车架上。
图11-40 后轮转向取力齿轮箱1-小齿轮输出轴2-齿条2) 工作原理当转动转向盘使前轮转向时,后轮转向取力齿轮箱中的齿条在前轮转向器中转向齿条的带动下左、右移动,驱动与其啮合的取力齿轮旋转,并带动后轮转向传动轴旋转,转向盘的转向操纵力的方向、大小、快慢就由后轮转向传动轴传给后轮转向器。
3.后轮转向器31) 功用后轮转向器的功用是利用后轮转向传动轴传来的转向操纵力,驱动后轮偏转并实现后轮转向。
另外,还要控制后轮在转向盘的不同转角下,相对于前轮作同向或异向偏转。
汽车四轮转向系统摘要:介绍四轮转向汽车的发展、构成、工作原理及类型,阐述四轮转向系统的控制策略和发展趋势,并指出四轮转向系统研究的技术难点。
关键词:四轮转向;结构;工作原理;控制;发展1、前言四轮转向(4WS,4 Wheel Steering)除了传统的以前轮为转向轮,后两轮也是转向轮,即四轮转向。
在20世纪80年代中期开始发展,其主要目的是提高汽车在高速行驶或在侧向风力作用时的操作稳定性,改善在低速下的操纵轻便性,以及减小在停车场时的转弯半径。
四轮转向主要有两种方式:当后轮转向与前轮转向方向相同时称为同向位转向;当后轮转向与前轮转向方向相反时称为逆向位转向。
随着现代道路交通系统和先进汽车技术的发展,汽车的主动安全技术日益受到重视。
先进的主动底盘控制技术是汽车发展的重要方向,而四轮转向系统是主动底盘控制的重要组成部分。
2、汽车四轮转向技术概况被很多公司所采用,其中大多应用在了大型车辆上,也有一些S U V以及跑车具有四轮转向的功能。
配备四轮转向之后,车辆可以减少转弯半径、提高低速行驶时的机动性以及高速行驶时的操纵性和可控制能力。
我们以德尔福公司的OUADRASTEER四轮转向系统为例对四轮转向进行介绍,它也是目前最为先进的四轮转向系统之一。
OUADRASTEER是在传统的前轮转向基础上增加了一个电动盾轮转向系统。
系统有四个主要部件——前轮定位传感器、可转向的整体准双曲面后轴、电动机驱动的执行器以及一个控制单元。
前轮定位传感器和车辆速度传感器连续不断地向控制单元报告数据,控制单元根据报告的数据确定后轮合适的角度。
通过计算,决定正确的操作阶段。
4WS汽车在转向过程中,根据不同的行驶条件,前、后轮转向角之间应遵循一定的规律。
该系统有三种主要运行方式:负相、中相、正相。
低速行驶时.后轮转弯方向与前轮相反,这就是负相。
中速行驶时,后轮笔直而保持中相。
高速行驶时,后轮处于正相,和前轮转弯方向相同。
在低速行驶时,负相拖曳操纵,尾部跟随车辆的真实轨迹,比两轮转向更紧密。
汽车电动助力转向技术一、技术概述电动助力转向系统是把电动机的驱动力传递给转向轴或齿条,进行转向助力的机构。
该系统由转向扭矩传感器、车速传感器、控制器、电动机、离合器和减速机构组成。
比起传统的液压助力转向,它的优点是:系统中的电机只在需要转向助力时才工作,汽车大部分时间正常行驶时电机并不工作,这样能量消耗很小,而传统的液压助力转向系统由液压泵及管路和油缸组成,为保持压力,不论是否需要转向助力,系统总要处于工作状态,能耗较高。
据估计,电动助力转向只是液压助力转向能耗的1/2,前者比后者使整车油耗下降3%。
二、现状及国内外发展趋势汽车电动助力转向技术近年来发展很快,美国德尔福等国际上大的汽车零部件公司,都已开发出产品,并在一些车上装用。
三、主要研究内容主要研究内容:传感器技术;控制技术;电机、离合器、减速机构技术等。
汽车电子控制四轮驱动与四轮转向技术一、技术概述--汽车电子控制四轮驱动技术(4 Wheels Driving System 4WD)汽车的驱动力来源于轮胎对地面的附着,四轮驱动充分利用了车轮对地面的附着,当然会获得好的驱动性能。
但因转向时各轮的转弯半径不同,车轮转动的速度也就不同(内外、前后),四个轮不能通过刚性传动系统连接,必须在左右两轮间,在前后驱动轴间设置差速器。
带来的问题是四个轮的驱动力受与地面摩擦力最小的轮的限制,需要再设置差速锁。
汽车电子控制四轮驱动技术是通过传感器感知四个轮路面的情况,通过微电脑进行分析判断,通过电磁阀驱动,改变黏液偶合器的特性,在前后驱动轴之间,在左右轮上分配驱动力。
--汽车电子控制四轮转向技术(4 Wheels Steering System 4WS )汽车在行驶中转向时,由于受恻向力的作用,前轮有不足转向的特性,后轮有过度转向的倾向。
后者会引起汽车失去转向行驶的稳定性,车速越高问题越明显,甚至出现侧滑翻车。
解决措施一般是通过使后轮在与前轮相同的方向转动1-2度角进行补偿。
有多少种四轮驱动车辆就几乎有多少种四轮驱动系统。
似乎每一家制造商都有几种为车轮提供动力的方案。
不同制造商所用的语言有时可能会有点令人迷惑,因此在开始解释车轮驱动的工作原理之前,首先让我们来澄清一些术语:四轮驱动:通常,当汽车制造商说一辆车具有“四轮驱动”时,他们指的是“分时”系统。
就本文而言,这些系统只是针对低牵引力条件,例如越野或在雪地或冰面上行驶。
全轮驱动:这些系统有时被称作“全时四轮驱动”。
全轮驱动系统是为适合在各种类型的路面上(包括公路和越野)行驶而设计的,而且这些系统大多数都不能关闭。
分时和全时四轮驱动系统可以采用相同的标准来评估。
最佳的系统会在每个车轮上施加最恰当的扭矩,也就是说,保持轮胎不会出现打滑时的最大扭矩。
悍马的四轮驱动系统本文将说明四轮驱动的原理,首先介绍一些有关牵引力的背景知识,然后了解组成一个四轮驱动系统的各个组件。
接着,我们将介绍几个不同的系统,包括由AM General为通用汽车公司制造的悍马系统。
在了解汽车的不同四轮驱动系统之前,我们需要知道一点有关扭矩、牵引力和车轮滑移的知识。
扭矩是发动机产生的扭力。
发动机的扭矩是汽车行驶的动力。
变速器和差速器中的各个挡位可以使扭矩成倍地增加,再分解到各个车轮。
一挡传送到车轮的扭矩比五挡大,因为一挡的传动比大,所以该传动比与扭矩的乘积也大。
-这张条形图显示了发动机所产生的扭矩的大小。
图中的标记显示可引起车轮滑移的扭矩。
启动条件良好的汽车的扭矩从不会超过这个值,因此车轮不会打滑;但启动条件差的汽车会超过这一扭矩,因此轮胎会出现打滑。
只要一开始打滑,扭矩就会降到几乎为零。
有趣的是在低牵引力条件下可以产生的最大扭矩量由牵引力的大小而不是发动机决定。
即使您在车上安装了NASCAR发动机,如果轮胎不着地,再强的动力也无法利用。
在本文中,我们将牵引力定义为轮胎所能作用于地面的最大力(或者说,地面能够施加给轮胎的最大力,这两种说法都一样)。
以下是影响牵引力的因素:轮胎承重量:轮胎承重量越大,牵引力越大。
现代汽车新技术——四轮转向技术(4WS)四轮转向技术(4WS)一、概述1、什么是4WS4 Wheel Steering 即除传统的前两轮转向外,后两轮也是转向轮。
提高高速行驶或侧向风作用下的操纵稳定性,改善低速行驶的操纵轻便性,减小转弯半径1980年代中期开始在轿车上应用2、四轮转向的几何运动关系2WS:后轮不转向,转向中心在后轴的延长线上4WS:后轮逆相转向,转中心比2WS车更靠近车辆,亦即转弯半径小四轮转向技术(4WS)u对于4WS 车,主要控制后轮的转向角u当后轮转向与前轮转向相同时称同相位转向u 当后轮转向与前轮转向相反时称逆相位转向3、后轮的两种转向方式四轮转向技术(4WS)u4、四轮转向的作用u四轮转向的主要目的是提高汽车在高速行驶或在侧向风力作用时的操纵稳定性u在汽车高速行驶时还易于由一个车道向另一个车道调整u改善在低速下的操纵轻便性,以及减小在停车场调车时的转弯半径u(1)4WS在高速行驶时的稳定性分析u4WS车高速行驶时,当受到侧向风或侧向路面干扰力时,车身姿态变化小,便于修正方向盘u在高速行驶时,后轮与前轮同相位转向,且转角较小u从转向盘到后轮转向的时间很短,转弯时车身姿态变化小,即目标行驶路线的跟踪性好u车身方向与实际行进方向没有很大差别,在高速行驶时具有稳定感u(2)4WS车在改变行车路线时的性能u后轮和前轮同一方向转动,在后轮也同样产生侧向力,于是车身的侧偏角小,甚至可以为零u汽车可以平顺地换道行使,从而提高了汽车的操纵稳定性u平动:纵向(surge)、横向(sway)、上下(heave)u转动:横摆(yaw)、侧倾(roll)、俯仰/点头(pitch)u在2WS车中,只有前轮转向,转角α,产生离心力,路面的侧向力(侧偏力)产生围绕重心的力矩u前轮转向初期,后轮直线行驶,无离心力,路面无侧向力u前轮路面的侧向力产生的围绕重心的力矩,使得车身围绕重心横向摆动(车身蛇形运动),操纵稳定性下降u理想的高速行驶转向,应该使车身方向与行进方向尽量一致,以抑制横向摆动u在4WS车中,前后轮同相转向,前后轮的同时产生离心力,路面的侧向力围绕重心的力矩互相平衡,抑制了横向摆动,保证了操纵稳定性四轮转向技术(4WS)(3)低速下的小转弯半径行驶当汽车在狭窄的停车场地转弯时,停车是否容易主要取决于转弯半径大小,4WS比2WS车转弯半径要小得多。
线控四轮转向系统的结构和原理-概述说明以及解释1.引言1.1 概述线控四轮转向系统是一种先进的汽车转向技术,通过控制车辆的四个轮子分别转向,实现更加灵活和稳定的转向效果。
与传统的前后轮联动转向系统相比,线控四轮转向系统可以提升车辆的操控性和行驶稳定性,同时也能够实现更小的转弯半径和更高的转向效率。
该系统通过电子控制单元(ECU)来实现对车辆转向的精准控制,根据车辆速度、转向角度、操控输入等参数,动态调整四个轮子的转向角度,从而使车辆实现更加灵敏和平稳的转向操作。
此外,线控四轮转向系统还可以根据不同的行驶状态和路况,自动调整转向参数,提升车辆的驾驶安全性和舒适性。
在未来的汽车发展中,线控四轮转向系统将成为越来越重要的技术,为驾驶员提供更加便捷和安全的驾驶体验,同时也有助于提升汽车的燃油经济性和环保性能。
通过深入了解线控四轮转向系统的结构和原理,我们可以更好地理解其优势和应用前景,为未来的汽车发展指明方向。
1.2 文章结构文章结构部分的内容如下:文章结构部分旨在介绍本文的整体结构和各个章节的内容安排。
本文主要分为引言、正文和结论三个部分。
在引言部分,我们将概述线控四轮转向系统的基本概念和重要性,介绍文章的结构和目的,旨在引导读者对本文进行初步了解和认识。
在正文部分,我们将详细介绍线控四轮转向系统的概述、结构和原理,包括系统的组成部分、工作原理和技术特点,以及系统在汽车行驶中的作用和应用场景。
在结论部分,我们将对本文进行总结,概括线控四轮转向系统的关键信息和特点,展望其未来的发展方向和应用前景,为读者提供对该系统的深入理解和思考。
通过以上内容安排,本文将全面介绍线控四轮转向系统的结构和原理,帮助读者深入了解和掌握该技术的核心知识和应用价值。
1.3 目的目的部分:本文旨在深入探讨线控四轮转向系统的结构和原理,旨在帮助读者更好地理解这一先进的汽车转向技术。
通过对线控四轮转向系统的概述、结构和原理进行分析和解释,读者将能够全面了解该系统的工作原理和优势,从而对其应用前景有更清晰的认识。
不知道大家有没有想过这样一个问题,汽车转向轮为什么是前轮?为什么不是后轮或者四轮?当然,工程师们早就想到这个问题了!并且早在一个世纪以前就已经成功研制出了四轮转向技术。
四轮转向系统图解考德威尔谷卡车和客车公司是一个澳大利亚的汽车制造商,该公司早在1907年就已生产出了具有四驱系统以及四轮转向功能的拖拉机。
对,没错,由于拖拉机的工作及使用环境比较复杂,需要具有一定的越野能力,所以第一辆使用四轮转向技术的轮式车辆是考德威尔谷卡车和客车公司生产的拖拉机。
然而这并不是世界上公认的最早使用四轮转向功能的汽车,首先这并不是一辆汽车,并且也没有实现大规模的量产,在1912年该公司的卡车生产资质就被取消了。
那么第一辆采用四轮转向系统的汽车是由谁制造的呢?在四轮转向拖拉机问世三十年后,梅赛德斯奔驰于1937年推出其越野车家族中的新一代产品——Gelndewagen G5(W152),不同于之前的G1、G4车型,G5采用了常规的双车轴结构,并且车身尺寸也因此而减小,更重要的是采用了四轮驱动以及四轮转向系统。
采用双车轴的Gelndewagen G5可以容纳4至5名乘员,并支持个性化定制,多种车身选择以及各种衍生车型使得它成为了早起梅赛德斯奔驰越野家族中最受欢迎的车型之一,在军方以及民有市场都获得了不错的反响。
但是总共不到四百台的销量以及仅五年的生命周期,使它并不能称之为最早采用四轮转向系统的量产车型。
直到1987年,汽车史上第一个真正意义上采用四轮转向系统的量产车型出现在了本田的产品目录中。
也是从本田推出搭载四轮转向系统的第三代Prelude那个时期开始,日本、欧洲的一些汽车厂商也纷纷开始研究四轮转向系统,并很快就推出了相应车型。
然而,作为一个刚开始大规模使用的新技术,四轮转向系统的研究方向以及实际使用效果在各大汽车厂商之间出现了明显的差异。
后轮随动与主动转向系统经典的后轮随动转向比起四轮转向,国人可能对后轮转向会更加熟悉,而这与早期进入中国市场的雪铁龙富康不无关系。
简析汽车四轮转向系统摘要:本文介绍了汽车四轮转向系统(4WS )的分类,主要构造,工作原理,分析了它的工作特性并阐述了其转向角比例控制原理,还对四轮转向与前轮转向(2WS )进行了对比,分析了它的优点,并对它的未来发展做出了展望。
1 概述目前的轿车转向分为前轮转向(2WS )和四轮转向(4WS ),前者普遍使用,而后者则是一种新技术,主要应用于中高级车上。
所谓四轮转向,是指后轮和前轮相似,也具有一定的转向功能,不仅可以与前轮同向旋转,也可以与前轮反向旋转。
其主要目的是增强汽车在高速行驶或侧向风力作用下的操纵稳定性,改善低速行驶时的操纵轻便性,便于汽车高速行驶时急转弯和由一个车道向另一个车道移动调整,减少调头时的转弯半径,以及在极狭窄的位置“平移”进入车位停泊。
四轮转向系统,对于底盘较长,且经常需要在窄小地方行驶时的汽车有着明显的作用。
按照前后轮的偏转角和车速之间的关系,4WS 可分为转角传感型和车速传感型;按照控制和驱动后轮转向机构的方式,可分为机械式、液压式、电控机械式、电控液压式和电控电动式等。
2 四轮转向的基本原理2.1低速时的转向特征2.1.1理论准备缩小最小转弯半径当前轮与后轮逆向转向时,前轴距中心的轴线与后轴距中心的轴线交点为转向中心P 。
图1 4WS 的转向中心P 点的坐标(0x ,0y )的计算公式为rf lx δδtan tan 0+=(2.1)rf ll l y δδδtan tan tan 0+⋅⋅= (2.2)如果前外轮的转弯半径为R ,前后外侧车轮之间的转弯半径差值为R ∆,则BP R =222020)tan tan tan ()tan tan 2()()2(rf f r f f f l lb y l x b δδδδδ+⋅+++⋅-++= (2.3)CP AP R -=∆20202020)2()()2(y x b y l x b r f ++--++-=(2.4) 22)tan tan tan ()tan tan 2(r f f r f fl l b δδδδδ+⋅+++-=22)tan tan tan ()tan tan 2(rf f r f r l l b δδδδδ+⋅+++--式中f δ——前轮的偏转角(左、右两前轮偏转角的平均值); r δ——后轮的偏转角(左、右两前轮偏转角的平均值); f b ——前轮距; r b ——后轮距; l ——轴距。
四轮转向原理四轮转向是指车辆前后轴都具备转向功能的一种设计。
传统的汽车通常只有前轴具备转向功能,而后轴则是固定的,这种设计称为前轮转向。
而四轮转向则在汽车的前后轴都加入了转向机构,使得车辆在行驶时可以更加灵活和稳定地转弯。
四轮转向可以提供以下几个优势:1.提高操控性能:四轮转向可以使得车辆在低速行驶时更加灵活,半径更小地完成转弯操作。
同时,在高速行驶时,四轮转向可以提供更好的稳定性和操控性能。
2.减少制动距离:在紧急制动时,四轮转向可以使得车辆更好地保持平衡,并减少制动距离。
3.增加安全性:四轮转向可以提供更好的操控稳定性和抓地力,在避免碰撞和应对突发状况时具有优势。
4.提高驾驶舒适度:四轮转向可以使得车辆在变道和并线时更加平稳,减少侧倾感。
现代汽车中常见的四轮转向系统有两种基本原理:被动式四轮转向和主动式四轮转向。
被动式四轮转向被动式四轮转向是指根据车辆速度和转向角度的变化,通过机械连接实现前后轴的协同转向。
常见的被动式四轮转向系统有前后轴联动转向和后轴逆相转向两种方式。
前后轴联动转向前后轴联动转向是通过机械连接将前后两个方向盘联动起来,使得前后轴同时进行转弯。
当车辆处于低速行驶或者倒车时,前后轴联动可以提供更小的转弯半径,增加操控性能。
而在高速行驶时,前后轴联动则可以提供更好的稳定性。
具体实现方式为,在汽车底盘上安装一个称为“中央连杆”的机构,通过它将前后方向盘连接起来。
当驾驶员操作前方方向盘时,中央连杆会传递给后方方向盘相应的指令,使得车辆同时进行左右两个方面的转弯。
后轴逆相转向在某些情况下,为了进一步提高车辆的灵活性和操控性能,可以采用后轴逆相转向的方式。
后轴逆相转向是指在低速行驶时,后轴与前轴方向相反地转动,以减小车辆的转弯半径。
实现后轴逆相转向的方式有多种,其中一种常见的方式是通过一个称为“后桥横臂”的机构来实现。
当驾驶员操作前方方向盘时,后桥横臂会根据车速和转弯角度的变化,在一定条件下使得后轮逆相旋转。
四轮转向系统概述摘要:一般的前轮转向系统存在响应滞后、转向不灵活、高速行驶时操作稳定性差而渐渐无法满足人们对车辆主动安全性越来越高的要求,迫切需要一种高效的转向系统来实现良好的车辆安全性,在这种形势下,电子控制四轮转向系统应运而生。
目前的 4WS 系统中,多数采用的是电控液压式4WS 系统,这种系统工作压力大、工作平稳可靠,但由于液压系统在结构、系统布置、密封性、能耗、效率等方面存在的缺点,以及在转向过程中存在响应滞后等缺陷,使得电控液压式 4WS 系统很难适应现代四轮转向汽车在转向灵敏性、快速性方面的要求,降低了汽车高速行驶稳定性。
1992 年日本本田汽车上采用了电控电动式4WS 系统。
该 4WS 系统由于结构简单、控制效果好、燃油经济性好等优点而得到了迅猛发展,电控电动式 4WS 将是 4WS 汽车的发展趋势。
1 四轮转向系统( 4WS )及其控制目标1.1 四轮转向系统四轮转向(4-Wheel Steering ,简称 4WS)系统是指车辆在转向过程中,前后两组 4 个车轮都能根据需要起转向作用,能有效改善车辆的机动灵活性和操纵稳定性。
4WS 汽车在低速转弯时,前后车轮逆相位转向,可减小车辆的转弯半径;在高速转弯时,前后轮主要作同相位转向,能减少车辆质心侧偏角,降低车辆横摆率的稳态超调量等,进一步提高车辆操纵稳定性。
1.2 四轮转向系统的分类按功能分为后轮小角度偏转系统和后轮在中高速时小角度偏转在低速时大角度偏转系统。
按照车轮偏转执行机构的动力形式可以分为液压四轮转向系统、机械液压四轮转向系统和电子控制四轮转向系统等三大类。
1.3 电子控制四轮转向系统的整体目标对电子控制四轮转向系统的基本性能要求:汽车低速行驶时,能够减小驾驶员作用于转向盘上的转向力;高速行驶时,能够通过转向盘向驾驶员反馈适度的转向反力。
具体要求:(1)既要保证转向轻便省力,又要能够很好地反馈“路感”;(2)当计算机控制系统发生故障时,转向系统仍然能够保留人力转向功能;(3)在保证转向性能的前提下,尽可能降低转向时的动力消耗。
第六章电控动力转向与四轮转向系统一、教学目的和基本要求通过此章内容的教学,让学生了解对转向系统的要求和动力转向系统分类;掌握传统动力转向系统、液压式电控动力转向系统、电动式电控动力转向系统的结构与工作原理;了解四轮转向控制系统(4WS)的转向特性、转向角比例控制及横摆角速度比例控制系统的组成、控制状态和控制逻辑。
二、教学内容及课时安排第一节概述理论教学:1学时。
第二节液压式电控动力转向系统理论教学:2学时。
第三节电动式电控动力转向系统理论教学:2学时;电控动力转向的拆检实践技能:4学时。
第四节四轮转向控制系统理论教学:1学时。
三、教学重点及难点重点:传统动力转向系统、液压式电控动力转向系统、电动式电控动力转向系统的结构与工作原理。
难点:四轮转向控制系统(4WS)车的转向特性、转向角比例控制及横摆角速度比例控制系统的组成、控制状态和控制逻辑。
四、教学基本方法和教学过程此内容采用理实一体化教学方法,对动力转向系统的结构与工作原理内容的授课采用先理论后实践的方法。
五、作业1.液压式电控动力转向系统工作原理2.电动式电控动力转向系统的结构与工作原理3.四轮转向控制系统(4WS)车的转向特性4.四轮转向控制系统转向角比例控制及横摆角速度比例控制系统的组成第六章电控动力转向与四轮转向系统第一节概述一、对转向系统的要求二、动力转向系统的分类机械转向系统按转向的能源不同动力转向系统传统动力转向系统:设计缺陷按控制方式不同电子控制转向系统:EPS三、传统动力转向系统的结构与工作原理1. 传统液压动力转向系统传统液压动力转向系统的组成,如图7-1所示。
Array⑴转向液压泵⑵转向动力缸⑶转向控制阀2.传统液压动力转向系统结构形式分开式——转向器、转向动力缸和转向控制阀三者分开布置半分开式——是将转向动力缸和转向控制阀组合制成整体整体式——将转向控制阀、转向动力缸和机械转向器三者组合成一个整体⑵整体式和半分开式按照转向控制阀的形式不同可分为:滑阀式瓣阀式转阀式3.整体式液压动力转向系统的结构和工作原理⑴整体滑阀式液压动力转向系统液压动力转向系统的组成如图7-3所示。