七年级数学实数第一课时 新人教版
- 格式:ppt
- 大小:358.00 KB
- 文档页数:12
人教版七年级数学下册第六章第三节《实数》教学设计(第1课时)一、教学目标知识技能1.了解无理数及实数的概念,并会对实数进行分类.2.会对实数按照一定标准进行分类,培养分类能力.3.知道实数和数轴上的点一一对应.数学思考1.经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.2.经历对实数进行分类,发展学生的分类意识.解决问题1.通过无理数的引入,使学生对数的认识由有理数扩充到实数.2在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1.通过无理数的引入,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2.通过了解数系扩充体会数系扩充对人类发展的作用.3.敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、教学重点和难点教学重点:使学生了解无理数和实数的意义,熟练掌握实数的分类教学难点:无理数意义的理解.三、教学方法讲练结合启发教学学生为主四、教学手段多媒体五、课时安排一课时六、教学设计(一).数学故事——无理数的发现:通过俗语“有理走遍天下,无理寸步难行”引入数学故事,古希腊著名的数学家,哲学家毕达哥拉斯有一句名言“万物皆为数。
”他认为宇宙间的一切事物都归为整数或整数的比。
问:整数的比是什么数?答:分数。
问:整数和分数统称为什么数?答:有理数。
〖设计说明〗让学生了解无理数是怎么发现的,经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的,从而对数学充满兴趣(二)、回顾旧知,检查预习:1.有理数怎样分类?有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负整数负整数负有理数零正分数正整数正有理数有理数 〖设计说明〗让学生进行简单的练习,帮助学生回顾旧知识:有理数,为本节课的迁移伏笔. (三)、创设情境,导入新课:1.展示问题,引导学生探究。
本章复习整体设计第一课时教学目标1.结合实际理解算术平方根以及平方根、立方根的概念.2.掌握平方根及算术平方根的区别与联系.3.了解平方根及立方根的工具求法(用数学表、计算器等).教学重难点教学重点:1.平方根、算术平方根和立方根的概念及性质.2.理解实数的有关概念及实数的运算.教学难点:灵活运用算术平方根的非负性解题.教学过程一、平方根设计说明算术平方根、平方根是本章的重点和难点之一,这其中算术平方根、平方根与平方的互逆关系部分学生可能有不适应的地方,实际上逆向思维本身就有难度,再加上平方根与平方不是一对一的数字往来,无形中增加了思维的跨度.本环节的复习围绕着这一点展开,使基础知识更明确,计算更熟练.知识点一:平方根例1 144的算术平方根是________.解析:利用算术平方根的意义求解,得144=12.答案:12例2 169的平方根是________.解析:因为(±13)2=169,所以169的平方根为±13,即±169=±13.用计算器计算.例3 求下列各数的平方根及算术平方根:(1)0.64;(2)3625;(3)0;(4)⎝ ⎛⎭⎪⎫-322. 解:(1)∵(±0.8)2=0.64, ∴0.64的平方根为±0.8,即±0.64=±0.8.0.64的算术平方根是0.8,即0.64=0.8. (2)∵⎝ ⎛⎭⎪⎫±652=3625, ∴3625的平方根为±65,即±3625=±65. 3625的算术平方根为65,即3625=65. (3)∵02=0,∴0的平方根是0,0的算术平方根是0,即0=0.(4)∵⎝ ⎛⎭⎪⎫±322=⎝ ⎛⎭⎪⎫322=⎝ ⎛⎭⎪⎫-322,∴⎝ ⎛⎭⎪⎫-322的平方根是±32, 即±⎝ ⎛⎭⎪⎫-322=±32,⎝ ⎛⎭⎪⎫-322的算术平方根为32,即⎝ ⎛⎭⎪⎫-322=32. 例4 求(-7)的平方的平方根.分析:错解:(-7)的平方的平方根为-7.习惯地认为(-7)2的平方根为-7,没有进一步想到(-7)2=49,求(-7)2的平方根,就是求49的平方根. 解:(-7)的平方是49,而±7的平方等于49,则(-7)的平方的平方根是±7.例5 求81的平方根和算术平方根.分析:错解:81的平方根为±9,算术平方根为9.事实上,81表示的是81的算术平方根9.因此问题实质上是求9的平方根和算术平方根.解:81=9,所以81的平方根为±3,81的算术平方根为3.拓展探究1.25的算术平方根是( ).A .5 B. 5 C .-5 D .±5答案:A2.已知a +2+|b -1|=0,那么(a +b )2 007的值为( ).A .-1B .1C .32 007D .-32 007答案:A3.下列计算正确的是( ).A .(-2)0=0B .3-2=-9 C.9=3 D.2+3= 5答案:C4.计算:(3)2=__________.答案:3课堂练习1.如果一个数的算术平方根等于它本身,则这个数是( ).A .0B .1C .0或1D .除0和1外,还有其他数2.已知数a =3,b =1.732,c =1367500,则它们的大小关系是( ). A .a <b <c B .b <a <c C .b <c <a D .a <c <b3.利用计算器判断下列数,最接近5的数是( ).A.24B.245C.26D.2654.已知一个自然数的算术平方根等于a ,则下一个自然数的算术平方根等于( ).A .a +1 B.a 2+1 C.a +1 D .a 2+15.已知5=a ,则0.05等于( ).A .10aB .aC .0.1aD .非上述答案6.如果13是m 的一个平方根,那么m 的另一个平方根是__________.7.181的算术平方根为__________,(-5)2的平方根是__________. 8.( )2≈3,( )2≈10.(可借助于计算器,结果是近似数,保留4个有效数字)9.若a 的算术平方根等于a 的立方根,则3a 2+1=__________.10.若2≤x ≤3,化简(x -2)2+(x -3)2=__________.11.一个正方形的面积是24 cm 2,则这个正方形的周长大约是多少?(精确到0.01)12.已知x 2-9+y +3=0,求x +y 的值.答案:1.C 2.B 3.C 4.B 5.C 6.-13 7.13±5 8.±1.732 ±3.1629.1或4 10.111.设正方形的边长为x cm ,则x 2=24,所以x =24(负的平方根舍去).则正方形的周长为424≈19.60(cm).12.0或-6.教学说明在教学中无论是例题讲解,还是课堂练习,可以采取口答、小组互评、教师评价等方式来进行教学,出现问题时集中交流,讨论,明确症结所在,达到查缺补漏、共同提高的目的.二、立方根设计说明由平方根作为基础,学生接受起立方根来要轻松的多,但是平方根与立方根有明显的差别,首先被开方数的符号,再者结果的个数不同,复习要围绕着这两点来展开,对学生中存在的模糊认识,及时地讨论清楚.知识点一:立方根例1 下列说法正确的是( ). A.64的立方根是2 B.125216的立方根是±56C .(-1)2的立方根是-1D .-3是27的负立方根解析:因为正数的立方根只有一个且为正数,所以B ,C 是错误的,-3是27的立方根的相反数,所以D 错.求一个数立方根的运算,叫做开立方.开立方与立方是互逆运算,因此,可根据这种关系求一个数的立方根.注意:开平方时,被开方数是非负数,开立方时,可以是正数、负数,也可以是0. 两个重要的公式:①(3a )3=a ,②3-a =-3a . 根据3-a =-3a ,可将求负数的立方根问题转化为求正数的立方根问题,这种转化的数学思想,同学们在学习中要注意体会和运用.例2 求下列各式的值:(1)3-0.008;(2)(-30.5)3;(3)334327. 解:(1)3-0.008=-30.008=-0.2.(2)(-30.5)3=-0.5. (3)334327=3⎝ ⎛⎭⎪⎫733=73. 点评:(1)可利用3-a =-3a 进行计算.(2)(3)可利用公式(3a )3=a 计算.与立方根有关的计算问题,应根据题目的特点,灵活选择计算方法.同时,要注意符号的确定.例3 一个圆柱的体积是10 m 3,且底面圆的直径与圆柱的高相等,求这个圆柱底面的半径.(π取3.14,结果保留两个有效数字)解:设圆柱底面圆的半径是r m ,则圆柱的高为2r m ,根据题意,得πr 2·2r =10,3.14r 3=5,即r 3=1.592,所以r =31.592≈1.2(m).答:这个圆柱底面圆的半径约是1.2 m.点评:要求圆柱底面圆的半径,可设其底面圆的半径为r m ,根据体积列出关于r 的等式,进而通过开立方运算解决.在已知正方体的体积求边长、已知球的体积求半径时,常用到求立方根的知识.解决此1.求下列各式中x 的值.(1)4x 3+2716=0;(2)⎝⎛⎭⎪⎫18-12x 3=-0.125. 解:(1)∵4x 3+2716=0,∴x 3=-2764. ∴x =3-2764=-34. (2)∵⎝ ⎛⎭⎪⎫18-12x 3=-0.125, ∴18-12x =3-0.125. ∴18-12x =-0.5. ∴12x =18.5.∴x =37. 2.已知A =m -n m +n +10是m +n +10的算术平方根,B =m -2n +34m +6n -1是4m+6n -1的立方根,求B -A 的立方根.分析:因为A 是m +n +10的算术平方根,可知m -n =2,B 是4m +6n -1的立方根,可知m -2n +3=3,进而求得m ,n 的值,再求出A ,B ,问题得以解决.解:由题意,得m -n =2,即m =n +2,m -2n +3=3,有m =2n .∴n =2,m =4.∴A =16=4,B =327=3.∴B -A =3-4=-1.∴3B -A =3-1=-1.真题精析:1.-27的立方根是________.解析:∵(-3)3=27,∴-27的立方根为-3. 答案:-32.如果x 3=8,那么x =________.解析:∵x 3=8,∴x =38=2.答案:2课堂练习1.给出下面四个结论:①-0.064的立方根是0.4;②81的立方根是±3;③-27的立方根是-3;④116的平方根是14.其中正确的是( ). A .①②③④ B .②③④ C .③ D .④2.下面命题正确的是( ). A.9的平方根是±3 B .平方根等于它本身的数是1C .立方根等于它本身的数是0和±1D .平方根等于立方根的数是1 3.3-32和3-(-3)2( ).A .相等B .互为相反数C .互为倒数D .以上都不对4.使3-2|a |+9为最大的负整数,则a 的值为( ).A .5B .-5C .±5D .不存在5.已知315≈2.466,则3-0.000 015约等于( ).A .-0.246 6B .-0.024 66C .-0.002 466D .-0.000 246 66.已知x 3=125,那么x =__________;已知(x -1)3=8,则x =__________.7.一个正方体形状的木箱子里装满了2立方米的沙子,这个木箱的棱长是__________米(精确到0.01米). 8.64的立方根是__________.9.解方程125x 3-27=0,得x =__________.10.若x 的立方根是-12,则x =__________. 11.计算: (1)3-64;(2)30.000 125;(3)-3338. 12.若一个偶数的立方根比2大,平方根比4小,则这个数是多少?答案:1.C 2.C 3.A 4.C 5.B 6.5 3 7.1.26 8.2 9.35 10.-1811.(1)-4;(2)0.05;(3)-32. 12.10或12或14. 小结与作业复习了平方根与立方根的有关知识.作业整理易错题.评价与反思 本节设计有两个特点:1.平方根与立方根尽管知识点少,但是考点较多,变化较多,因此本节安排了大量的练习题目,便于学生开阔视野,全面地把握问题,同时学会从各个角度、各个侧面认识问题,解决问题,这对培养学生严谨的思维习惯大有好处.2.本节安排了一些最新的中考题,方便教师和学生选择使用,也利于掌握本章内容在中考中考察的深度和广度,同时能提高学生的学习兴趣,积极的应对考试.(设计者:孙长智)。
(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。
本节内容主要包括实数的定义、实数的分类和实数的性质。
通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。
但是,对于实数的定义和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。
三. 教学目标1.理解实数的概念,掌握实数的分类和性质。
2.能够运用实数的概念和性质解决一些简单的实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数的分类。
五. 教学方法采用讲授法、引导法、讨论法等教学方法。
通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。
六. 教学准备1.教师准备教案、PPT等教学资料。
2.学生准备笔记本、文具等学习用品。
七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。
2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。
引导学生理解和记忆实数的概念和性质,掌握实数的分类。
3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。
通过练习,巩固学生对实数的理解和掌握。
4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。
5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。
6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。
7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。
6.3 第1课时 实数的概念知识点 1 无理数的定义 1.下列说法正确的是( ) A .无限小数是无理数 B .有根号的数是无理数 C .无理数是开方开不尽的数D .无理数包括正无理数和负无理数 2.任何一个有理数都可以写成________________的形式,反过来,任何________________都是有理数.3.下列各数中:-14,3.14159,-π,π5,0,0.3,15,5.2·01·,2.121122111222…,其中无理数有________________________.知识点 2 实数的定义与分类 4.能够组成全体实数的是( ) A .自然数和负数 B .整数和分数 C .有理数和无理数D .正数和负数 5.下列说法正确的是( ) A .正实数和负实数统称实数 B .正数、零和负数统称为有理数 C .带根号的数和分数统称实数 D .无理数和有理数统称为实数6.按大小分,实数可分为________、________、________三类. 7.把下列各数分别填入相应的数集里.-13π,-2213,7,327,0.324371,0.5,39,-0.4,16,0.8080080008… 无理数集合{ …}; 有理数集合{ …}; 分数集合{ …}; 负实数集合{ …}.知识点 3 实数与数轴的关系8.和数轴上的点成一一对应关系的数是( ) A .自然数 B .有理数 C .无理数 D .实数9.如图6-3-1,数轴上的A ( )A .点AB .点BC .点CD .点D知识点 4 实数的相反数、绝对值 10.2的相反数是( )A .- 2 B. 2 C.12D .211.若m ,n 互为相反数,则式子|m -5+n |=________. 12.在数轴上表示-6的点到原点的距离为________. 13.求下列各数的相反数和绝对值.(1)-2; (2)-364; (3)π-3.14.求下列各式中的x . (1)|x |=35; (2)|x |=17.15.下列各组数中互为相反数的是( ) A .5和(-5)2B .-|-5|和-(-5)C .-5和3-125 D .-5和1516.实数a 对应的点在数轴上的位置如图6-3-2所示,则a ,-a ,1a的大小关系为( )图6-3-2A.1a <a <-a B .-a <1a<aC .a <1a <-a D.1a<-a <a17.已知a 为实数,则下列四个数中一定为非负数的是( )A .a B.3a C .|-a | D .-|-a |18.如图6-3-3,数轴上A ,B 两点表示的数分别为2和5.1,则A ,B 两点之间表示整数的点共有( )图6-3-3A .6个B .5个C .4个D .3个19.3-2的相反数是________,绝对值是________.20.有九个数:0.1427,(-0.5)3,3.1416,121,327,2.5,227,-2π,0.2020020002…,若无理数的个数为x ,整数的个数为y ,非负数的个数为z ,则x +y +z =________.21.如图6-3-4,A 是硬币圆周上一点,硬币与数轴相切于原点O (点A 与点O 重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上的点A ′重合,则点A ′对应的实数是________.图6-3-422.已知实数a ,b 在数轴上的对应点的位置如图6-3-5所示,试化简:(a -b )2-|a +b |.图6-3-523.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值.24.先阅读下面的文字,再解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用2-1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.已知:10+3=x+y,其中x是整数,且0<y<1,求x-y的值.教师详解详析1.D [解析] A 项不正确,无限不循环小数是无理数.B 项不正确,有根号的数不一定是无理数,如4,38等.C 项不正确,π及类似1.010010001…(两个1之间0的个数逐次加1)的数也是无理数.2.有限小数或无限循环小数 有限小数或无限循环小数3.-π,π5,2.121122111222…4.C 5.D 6.正实数 0 负实数7.解:无理数集合{-13π,7,39,-0.4,0.8080080008…,…};有理数集合{-2213,327,0.324371,0.5,16,…};分数集合{-2213,0.324371,0.5,…};负实数集合{-13π,-2213,-0.4,…}.8.D [解析] ∵任何实数都可以用数轴上的点来表示,数轴上的任何一点都表示一个实数,∴和数轴上的点成一一对应关系的数是实数. 故选D . 9.B [解析] ∵3≈1.732, ∴-3≈-1.732.∵点A ,B ,C ,D 表示的数分别为-3,-2,-1,2,∴与数-3表示的点最接近的是点B.故选B . 10.A11. 5 [解析] 由题意m ,n 互为相反数,可知m +n =0,则|m -5+n|= 5.12. 6 [解析] 数轴上表示-6的点到原点的距离为-6的绝对值,|-6|= 6. 13.解:(1)-2的相反数为2,绝对值为||-2= 2. (2)-364的相反数为364=4,绝对值为⎪⎪⎪⎪-364=364=4.(3)π-3的相反数为3-π,因为π>3,所以绝对值为||π-3=π-3.14.解:(1)x =±35.(2)x =±17.15.B [解析] 只有符号不同的两个数互为相反数,它们的和为0,由此可判定选项.A 中(-5)2=5,两个数相等,故错误;B 中-|-5|=-5,-(-5)=5,-5与5互为相反数,故正确;C 中3-125=-5,两个数相等,故错误;D 中-5和15既不是相反数,也不是倒数,故错误.故选B .16.A [解析] 采用特殊值法来解决.不妨设a =-12,则-a =12,1a =-2.因为-2<-12<12,所以1a<a <-a.故选A .17.C [解析] 选项A 中的a 可以表示任何实数.选项B 中的3a 的符号与a 相同,所以也可以表示任何实数.选项C 中的|-a|表示-a 的绝对值,根据绝对值的意义,可知|-a|为非负数.选项D 中的-|-a|表示|-a|的相反数,由于|-a|为非负数,所以-|-a|为非正数.故选C .18.C [解析] 因为1<2<2,5<5.1<6,所以A ,B 两点之间表示整数的点有表示2,3,4,5的点,共有4个.故选C .19.2- 3 3- 2 [解析] 3-2的相反数是-(3-2)=-3+2=2-3.3-2是一个正实数,正实数的绝对值等于它本身.20.12 [解析] 无理数有 2.5,-2π,0.2020020002…,所以x =3.整数有121,327,所以y =2.非负数有0.1427,3.1416,121,327, 2.5,227,0.2020020002…,所以z=7,所以x +y +z =3+2+7=12.21.π [解析] 将硬币沿数轴正方向滚动一周,点A 恰好与数轴上的点A′重合,则点A 转过的距离是圆的周长,即π,因而点A′对应的实数是π.22.解: 根据数轴可得出:a -b >0,a +b <0,∴(a -b )2-|a +b|=(a -b)+(a +b)=2a. 23.解:因为a ,b 互为倒数,所以ab =1. 因为c ,d 互为相反数,所以c +d =0. 因为e 的绝对值为2,所以e =±2,所以e 2=(±2)2=2.因为f 的算术平方根是8,所以f =64,所以3f =364=4,所以12ab +c +d 5+e 2+3f =12+0+2+4=612.24.解:由1<3<2,得11<10+3<12.由x 是整数,且0<y<1,得x =11, y =10+3-11=3-1,从而x -y =11-(3-1)=12- 3.。
人教版义务教育课程标准实验教科书七年级下册6.3.1实数(第1课时)教学设计一、教材分析1、地位作用:本章内容相当于旧教材《数的开方》一章,但编排顺序有所差别,旧教材先学习平方根,再将算术平方根作为其中的一种特例进行学习,而本套教材先联系实际学习认识算术平方根后,再进一步认识平方根。
这样可以引发学生的疑惑,激发学生学习兴趣,从而使学生积极主动地投入到数学活动中去。
本节篇幅不长,内容也不多,但知识比较抽象,而且与学生以前接触的数学知识差异较大,根据以前的教学经验,我感觉学生学习起来不会很顺手,而且它又是以后学习二次根式、一元二次方程的基础,需要老师在教学中精心构思,认真落实。
2、教学目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想。
3、教学重、难点:重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系。
难点:理解实数的概念突破重难点的方法:观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的,从而理解学习实数的必要性。
二、教学准备:多媒体课件、导学案三、教学过程.圆周率及一些含有3、下列结论正确的是( )A.无限小数是无理数B.实数不是正数就是负数合起来就是:数轴上的点。
C.无理数都是带根号的数D.无理数都是无限不循环小数 4、判断:(1).实数不是有理数就是无理数。
( ) (2).无理数都是无限不循环小数。
( ) (3).无理数都是无限小数。
( ) (4).带根号的数都是无理数。
( ) 2、下列说法中,正确的是()、都是无理数234、、A 、B 、无理数都是带根号的数C 、实数分为正实数和负实数D 、实数和数轴上的点是一一对应的D。
人教版七年级数学下册第六章《实数》教案执教七年级数学集体备课组2013。
3。
8第六章实数6.1平方根【第一课时】教学目标:【知识与技能】了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
【过程与方法】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示.【教具准备】小黑板科学计算器【教学过程】一、导入1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣.2、板书:实数 1.1 平方根二、新授(一)探求新知1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?(,)、、1/3是无理数吗?4、有理数和无理数统称为实数。
(二)知识归纳:1、板书:1。
1平方根2、李老师家装修厨房,铺地砖10。
8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)3、怎么算?每块地砖的面积是:10。
8120=0。
09平方米。
由于0.32=0。
09,因此面积为0。
09平方米的正方形,它的边长为0.3米。
4、练习:由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。
人教版 数学七年级下册 第六章 实数6.3 实数第1课时 实数的概念1.(教材P57,习题6.3,T1改编)下列说法正确的是( C )A .带根号的数一定是无理数B .无限小数一定是无理数C .无理数一定是无限小数D .无理数是开平方或开立方开不尽的数2.(2019·湖南邵阳中考)下列各数中,属于无理数的是( C ) A.13 B .1.414 C. 2 D. 43.(2018·湖北咸宁中考)写出一个比2大比3小的无理数(用含根号的式子表示)__5(答案不唯一)__.4.下列说法中,正确的是( C )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .正实数包括正有理数和正无理数D .实数可以分为正实数和负实数两类5.把下列各数填在相应的大括号内:0,8,-3827,16,-27,-2,3,227,π4,0.101 001 000 1…(每两个1之间依次多一个0).自然数集合:{0,16,…};有理数集合:⎩⎨⎧⎭⎬⎫0,-3827,16,-2,227,…;正数集合:{8,16,3,227,π4,0.101 001 000 1…(每两个1之间依次多一个0),…};整数集合:{}0,16,-2,…;非负整数集合:{}0,16,…;无理数集合:{8,-27,3,π4,0.101 001 000 1…(每两个1之间依次多一个0),…}.6.(2019·湖北宜昌中考)如图,A,B,C,D是数轴上的四个点,其中最适合表示无理数π的点是( D)A.点A B.点BC.点C D.点D7.如图,O是原点,实数a,b,c在数轴上对应的点分别为A,B,C,则下列结论错误的是( B)A.a-b>0 B.ab<0C.a+b<0 D.b(a-c)>08.(2019·安徽合肥蜀山区期末)如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径作圆,交数轴于点A,B,则点A表示的数为__1-3__.易错点对无理数的概念理解不清而致错9.(2019·湖北黄冈期末)在实数:3.141 59,364,0.4.6.,1.010 010 001…(每两个1之间依次多1个0),π,227中,无理数有( B)A.1个B.2个C .3个D .4个10.已知点A 为数轴上表示实数2-1的点,将点A 沿数轴平移3个单位得到点B ,则点B 表示的实数为__2-4或__2+2__. 11.(2019·福建泉州惠安一模)任何一个无限循环小数都可以写成分数的形式.我们以无限循环小数0.5·为例说明如下:设0.5·=x ,由0.5·=0.555…可知,10x =5.555…,所以10x -x =5,解方程得x =59,于是,0.5·=59.请你把0.2·7·写成分数的形式:__311__.12.先阅读材料,再回答问题.因为12+1=2,且1<2<2,所以12+1的整数部分为1; 因为22+2=6,且2<6<3,所以22+2的整数部分为2; 因为32+3=12,且3<12<4,所以32+3的整数部分为3.(1)20的整数部分是__4__,小数部分是__20-4__;(2)以此类推,n 2+n (n 为正整数)的整数部分是__n __,请说明理由.解:(2)n ,理由如下:因为n 2<n 2+n <(n +1)2,即n <n 2+n <n +1,所以n 2+n 的整数部分为n .。
6.3实数第1课时实数教学内容第1课时实数课时1核心素养目标1.会用数学的眼光观察现实世界:经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数,培养自主学习的习惯,发展理论与实践相结合的.2.会用数学的思维思考现实世界:进一步理解有理数和无理数的概念,会把实数进行分类,培养归纳、分类的实践能力,发展数据意识.3.会用数学的语言表示现实世界:理解实数与数轴的关系,并进行相关运用,初步培养数学结合思想,形成数学的表达能力.知识目标1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;2.进一步理解有理数和无理数的概念,会把实数进行分类;3.理解实数与数轴的关系,并进行相关运用.教学重点1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;2.进一步理解有理数和无理数的概念,会把实数进行分类.教学难点理解实数与数轴的关系,并进行相关运用.教学准备课件教学过程主要师生活动设计意图一、新课导入一、创设情境导入新知数学危机师生活动:教师播放课件准备的视频,并跟随视频介绍著名数学家毕达哥拉斯及他的伟大发现.填一填师生活动:学生独立思考共同完成填空.提问1:上表中所填的这些数都是有理数吗?预设:±1,±2,-1,1 都是有理数提问2:,也是有理数吗?设计意图:运用数学家的伟大发现吸引学生的注意力,感受本节课在数学研究历史中的重要地位,激发学习兴趣.设计意图:回顾平方和立方根的计算方法,引出无理数及实数的概念.33224 ,,二、探究新知二、探究新知知识点一:实数的概念和分类问题 1 我们知道有理数包括整数和分数,利用计算器把下列分数写成小数的形式,它们有什么特征?-师生活动:学生独立完成操作后,小组讨论,并派代表回答发现,教师总结——它们都可以化成有限小数或无限循环小数的形式.追问:把导入中的 , 以及我们学习过的π化成小数,你能发现什么?预设: , 和π都能化成无限不循环小数.总结:1.有理数(整数、分数)可以写成有限小数或无限循环小数;2.反过来,任何有限小数或无限循环小数也都是有理数;3.很多数的平方根和立方根都是无限不循环小数.无理数的概念 无限不循环小数叫做无理数. 例如导入中的 ,以及我们学习过的π. 思考1: 是无理数吗?2.020 020 002 000 02…是无理数吗?师生活动:学生独立思考并作答,教师完成总结.常见的一些无理数:(1) 化简后含有 π 的数;(2) 开不尽方的数开方所得结果;(3) 有规律但不循环的小数,如1.01001000…思考2:我们将有理数和无理数统称为实数.你能设计意图:层层深入,加强新旧知识之间的练习,让学生自主探究,感悟无理数的概念.设计意图:锻炼学生归纳总结的能力吗,培养迁移思想.254911-,,,,532711933224±,,33224±,33224±,,π2仿照有理数的分类给实数分类吗?师生活动:学生独立思考,在教师的引导下共同完成实数思维导图.合作交流因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小对实数分类吗?师生活动:学生独立思考,在教师的引导下共同完成实数思维导图.练习1.下列说法中,正确的是().A.实数分为正实数和负实数B.无限小数都是无理数C. 无理数都是无限小数D. 带根号的数都是无理数2.有一个数值转换器,原理如图所示,当输入的x 为81 时,输出的y是().A. 9B.C.3D.9393知识点二:实数与数轴上的点思考1:每个有理数都可以用数轴上的点来表示,无理数是否也能用数轴上的点表示出来呢?探究:能不能在数轴上找的表示π 的点呢?师生活动:学生独立思考,教师提示学生思考π在几何图形上的作用——π可以用于计算圆的周长和面积.教师播放课件,展示半径为 1 的圆上的点A滚动一周的运动路径,顺势指出——因为半径为 1 的圆的周长为π,所以数轴上点A表示的数是无理数π.思考2:你能在数轴上表示出和-吗?师生活动:学生独立思考,因为之前学习是利用正方形边长进行探究,学生容易联想到边长为1 的正方形的对角线长就是.教师引导学生利用尺规作图,自己在数轴上尝试画出和- 的点.追问:通过思考1、思考2你能发现什么呢?设计意图:从学生熟悉的无理数着手,让学生自主探究无理数在数轴上的表示方法;进一步发展数形结合思想,培养自主学习能力.设计意图:进一步发展数形结合思想,培养自主学习能力,发展学生的作图能力.2222222222师生活动:学生独立思考后小组讨论,选代表回答.预设1:每一个实数都可以用数轴上的一个点来表示;预设2:数轴上的每一点都表示一个实数.总结:实数和数轴上的点是一一对应的.例2如图所示,数轴上A,B两点表示的数分别为-1 和,点B关于点A的对称点为C,求点C所表示的实数.师生活动:学生独立思考解答问题,教师提示可以利用作图帮助计算,选一名学生板书,教师规范解题思路.例3如图所示,数轴上A,B两点表示的数分别为和5.1,则A,B两点之间表示整数的点共有()A.6 个B.5 个C.4 个D.3 个师生活动:数轴上的点与实数一一对应,结合数轴分析,可轻松得出结论.学生独立完成操作.比较大小教师叙述:与有理数一样,实数也可以比较大小:数轴上右边的点表示的实数比左边的点表示的实数大.与有理数一样,在实数范围内:正实数大于零,负实数小于零,正实数大于负实数.设计意图:掌握实数和数轴上的点是一一对应的的性质,培养总结归纳和交流合作能力.设计意图:提高学生的运用能力和解题能力,渗透数形结合思想.设计意图:进一步掌握实数和数轴上的点是一一对应的的性质,锻炼学生的运用能力和解题能力.设计意图:学习并掌握实数范围内比较大小的方法.三、当堂练习例4 在数轴上表示下列各点,比较它们的大小,并用“ < ”连接它们.师生活动:学生独立完成习题,选学生回答,其他同学判断正误,教师总结解题技巧:熟记常见数的算术平方根的约数值有助于解题. 三、当堂练习 1. 下列说法正确的是( )A. a 一定是正实数B. 是有理数C. 是有理数D. 数轴上任一点都对应一个有理数2.把下列各数填入相应的括号内: (1)有理数: (2)无理数: (3)整数: (4)负数: (5)分数: (6)实数:3. 比较下列各组数的大小. -3;设计意图:锻炼并掌握实数范围内比较大小的方法,提高解题能力.设计意图:考查学生对实数的概念及性质的掌握.设计意图:帮助学生巩固梳理有理数、无理数、正数、负数、分数、实数的概念.设计意图:考查学生运用立方根几何意义的进行计算的能力.板书设计第1课时 实数无限不循环小数叫做无理数.★实数和数轴上的点是一一对应的.正实数大于零,负实数小于零,正实数大于负实数.课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.221722(1)π 3.146(2)31.731,;,;52(3)53223(4)23--,;,;(1)π 3.146(2)31.731,;,;52(3)53223(4)23--,;,;本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理。
人教版七年级数学下册6.3.1《实数的概念》教学设计一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在掌握了有理数的基础上,进一步对实数进行学习。
本节内容主要介绍实数的概念,包括实数的定义、实数的性质等。
教材通过实例和问题,引导学生理解实数的意义,并能够运用实数进行简单的运算和解决问题。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的概念和运算方法,具备一定的数学基础。
但实数概念相对抽象,学生可能存在一定的理解难度。
因此,在教学过程中,需要结合学生的实际情况,通过实例和问题,引导学生理解和掌握实数的概念。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够运用实数进行简单的运算和解决问题。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数的运算方法。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生思考,实例帮助学生理解,小组合作促进学生交流和讨论。
六. 教学准备1.教材、PPT等相关教学资料。
2.实例和问题。
3.小组合作学习分组。
七. 教学过程1. 导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数,那么有理数能表示所有的数吗?还有哪些数是有理数无法表示的?”2. 呈现(15分钟)利用PPT展示实数的定义和性质,结合实例进行讲解。
例如,通过数轴展示实数,解释实数包括有理数和无理数,以及实数的性质如大小关系、加减乘除等。
3. 操练(15分钟)让学生进行实数的运算练习,巩固所学知识。
例如,给出一些实数的运算题目,让学生独立完成,然后集体讲解答案。
4. 巩固(10分钟)通过问题和小测验的形式,巩固学生对实数的理解和掌握。
例如,提出一些关于实数的问题,让学生回答,或者让学生解决一些实际问题,运用实数进行计算。
5. 拓展(10分钟)引导学生思考实数在实际生活中的应用,拓展学生的思维。