徐州 2016-2017 学年度第一学期期末抽测数学试卷
- 格式:doc
- 大小:492.50 KB
- 文档页数:4
【题文】
已知A (3,1),B (﹣4,0),P 是椭圆19
y 25x 2
2=+上的一点,则PA+PB 的最大值为 . 【答案】
10+
【解析】
【考点】椭圆的简单性质.
【分析】由题意画出图形,可知B 为椭圆的左焦点,A 在椭圆内部,设椭圆右焦点为F ,借助于椭圆定义,把|PA|+|PB|的最大值转化为椭圆上的点到A 的距离与F 距离差的最大值求解.
【解答】解:由椭圆方程,得a 2=25,b 2=9,则c 2=16, ∴B (﹣4,0)是椭圆的左焦点,A (3,1)在椭圆内部,
如图:设椭圆右焦点为F ,由题意定义可得:|PB|+|PF|=2a=10,
则|PB|=10﹣|PF|,
∴|PA|+|PB|=10+(|PA|﹣|PF|).
连接AF 并延长,交椭圆与P ,则此时|PA|﹣|PF|有最大值为|AF|=
∴|PA|+|PB|的最大值为10+
.
故答案为:10+
【标题】江苏省徐州市2016-2017学年高二上学期期末数学试卷(文科)
【结束】。
2016-2017学年江苏省徐州市九年级(上)期末数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.一元二次方程x2﹣4=0的解是()A.x=2 B.x1=,x2=﹣ C.x=﹣2 D.x1=2,x2=﹣22.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.若甲、乙两个样本的方差分别为0.4、0.6,则下列说法正确的是()A.甲比乙稳定B.乙比甲稳定C.甲、乙一样稳定 D.无法比较4.关于x的一元二次方程x2﹣kx﹣1=0的根的情况是()A.没有实数根B.有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.如图,⊙O的直径AB=10,CD是⊙O的弦,CD⊥AB,垂足为M,若OM:OB=3:5,则CD的长为()A.8 B.6 C.4 D.6.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.7.正六边形的周长为6,则它的面积为()A.9 B.3 C.D.8.两个相似三角形的最短边分别是5cm和3cm,它们的周长之差为12cm,那么小三角形的周长为()A.14cm B.16cm C.18cm D.30cm二、填空题(本题有8小题,每小题3分,共24分)9.在Rt△ABC中,∠C=90°,sinA=,则∠A=度.10.将抛物线y=﹣3x2向上平移1个单位长度,所得抛物线的函数表达式为.11.若⊙O的半径为4cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是.12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.13.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.14.如图,AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D=°.15.如图,点B、C都在x轴上,AB⊥BC,垂足为B,M是AC的中点.若点A 的坐标为(3,4),点M的坐标为(1,2),则点C的坐标为.16.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+3上运动,过点A作AB⊥x轴于点B,以AB为斜边作Rt△ABC,则AB边上的中线CD的最小值为.三、解答题(本题有9小题,共72分)17.(1)计算:(3+1)0﹣()﹣1+2cos60°(2)解方程:x2﹣4x﹣5=0.18.一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.19.九年级某班部分同学利用课外活动时间,积极参加篮球定点投篮的训练,训练后的测试成绩如下表所示:进球数(个)876543人数214782回答下列问题:(1)训练后篮球定点投篮进球数的众数是个,中位数是个;(2)若训练后的人均进球数比训练前增加25%,求训练前的人均进球数.20.如图,在平面直角坐标系中,△ABC中的三个顶点坐标分别为A(1,4)、B (﹣1,2)、C(3,3).在x轴上方,请画出以原点O为位似中心,相似比为2:1.将△ABC放大后得到的△A1B1C1,并写出△A1B1C1各顶点的坐标.21.如图,AB是⊙O的直径,CD是⊙O的切线,切点为C,BE⊥CD,垂足为E,连接AC、BC.(1)求证:BC平分∠ABE;(2)若∠A=60°OA=4,求CE的长.22.如图,在∠A=30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形,计算tan15°的值.23.如图,平面直角坐标系中,矩形ABCO的边OA,OC分别在坐标轴上,OA=2,OC=1,以点A为顶点的抛物线经过点C(1)求抛物线的函数表达式;(2)将矩形ABCO绕点A旋转,得到矩形AB′C′O′,使点C′落在x轴上,抛物线是否经过点C′?请说明理由.24.某商店销售一种成本为40元/kg的水产品,若按50元/kg销售,一个月可售出500kg,售价毎涨1元,月销售量就减少10kg.(1)写出月销售利润y(元)与售价x(元/kg)之间的函数表达式;(2)当售价定为多少元时,该商店月销售利润为8000元?(3)当售价定为多少元时会获得最大利润?求出最大利润.25.将三角尺的直角顶点P放在矩形ABCD的对角线BD上,使其一条直角边经过点A,另一条直角边和CD交于点E.(1)如图①,分别过点P作PM⊥AD、PN⊥CD,垂足分别为点M、N.①求证△PMA∽△PNE;②求证:tan∠ADB=.(2)如图②,若AB=4,BC=3,过点E作EF⊥BD于点F,连接AF,则随着点P 取不同的位置,△PAF的面积是否发生变化?若不变,求出其面积;若改变,请说明理由.2016-2017学年江苏省徐州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.一元二次方程x2﹣4=0的解是()A.x=2 B.x1=,x2=﹣ C.x=﹣2 D.x1=2,x2=﹣2【考点】解一元二次方程-直接开平方法.【分析】移项后直接开平方求解可得.【解答】解:∵x2﹣4=0,∴x2=4,∴x1=2,x2=﹣2,故选:D.2.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.3.若甲、乙两个样本的方差分别为0.4、0.6,则下列说法正确的是()A.甲比乙稳定B.乙比甲稳定C.甲、乙一样稳定 D.无法比较【考点】方差.【分析】首先比较出甲、乙两个样本的方差的大小关系,然后根据方差越大,波动性越大,判断出哪个稳定即可.【解答】解:因为0.4<0.6,所以甲样本的方差小,所以甲比乙稳定.故选:A.4.关于x的一元二次方程x2﹣kx﹣1=0的根的情况是()A.没有实数根B.有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先计算判别式的值得到△=k2+4,从而可判断△>0,则根据判别式的意义可判断方程根的情况.【解答】解:∵△=(﹣k)2﹣4×(﹣1)=k2+4>0,∴方程有两个不相等的两个实数根.故选D.5.如图,⊙O的直径AB=10,CD是⊙O的弦,CD⊥AB,垂足为M,若OM:OB=3:5,则CD的长为()A.8 B.6 C.4 D.【考点】垂径定理;勾股定理.【分析】直接利用垂径定理得出MC=DM,再利用勾股定理得出CM的长,进而得出出DC的长.【解答】解:连接CO,∵⊙O的直径AB=10,∴BO=CO=5,∵OM:OB=3:5,∴OM=3,∴在直角三角形COM中,MC==4,∵CD⊥AB,∴MC=MD=4,∴DC=8.故选:A.6.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.【考点】相似三角形的判定.【分析】利用△ABC中,∠ACB=135°,AC=2,BC=,然后根据两组对应边的比相等且夹角对应相等的两个三角形相似可对各选项进行判定.【解答】解:在△ABC中,∠ACB=135°,AC=2,BC=,在A、C、D选项中的三角形都没有135°,而在B选项中,三角形的钝角为135°,它的两边分别为1和,因为=,所以B选项中的三角形与△ABC相似.故选B.7.正六边形的周长为6,则它的面积为()A.9 B.3 C.D.【考点】正多边形和圆.【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【解答】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为6,∴BC=6÷6=1,∴OB=BC=1,∴BM=BC=,∴OM==,=×BC×OM=×1×=,∴S△OBC∴该六边形的面积为:×6=.故选:C.8.两个相似三角形的最短边分别是5cm和3cm,它们的周长之差为12cm,那么小三角形的周长为()A.14cm B.16cm C.18cm D.30cm【考点】相似三角形的性质.【分析】利用相似三角形(多边形)的周长的比等于相似比得到两三角形的周长的比为5:3,于是可设两三角形的周长分别为5xcm,3xcm,所以5x﹣3x=12,然后解方程求出x后就是3x即可.【解答】解:根据题意得两三角形的周长的比为5:3,设两三角形的周长分别为5xcm,3xcm,则5x﹣3x=12,解得x=6,所以3x=18,即小三角形的周长为18cm.故选C.二、填空题(本题有8小题,每小题3分,共24分)9.在Rt△ABC中,∠C=90°,sinA=,则∠A=30度.【考点】特殊角的三角函数值.【分析】根据sin30°=解答即可.【解答】解:∵Rt△ABC中,∠C=90°,sinA=,∵sin30°=,∴∠A=30°.10.将抛物线y=﹣3x2向上平移1个单位长度,所得抛物线的函数表达式为y=﹣3x2+1.【考点】二次函数图象与几何变换.【分析】直接根据二次函数图象平移的法则即可得出结论.【解答】解:将抛物线y=﹣3x2向上平移1个单位长度,所得抛物线的函数表达式为y=﹣3x2+1,故答案为:y=﹣3x2+1.11.若⊙O的半径为4cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是相离.【考点】直线与圆的位置关系.【分析】由题意得出d>r,根据直线和圆的位置关系的判定方法判断即可.【解答】解:∴⊙O的半径为4cm,如果圆心O到直线l的距离为5cm,∴5>4,即d>r,∴直线l与⊙O的位置关系是相离,故答案为:相离.12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是0.3.【考点】概率公式.【分析】让1减去摸出红球和白球的概率即为所求的概率.【解答】解:根据概率公式摸出黑球的概率是1﹣0.2﹣0.5=0.3.13.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.【考点】弧长的计算.【分析】利用底面周长=展开图的弧长可得.【解答】解:,解得r=.故答案为:.14.如图,AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D=30°.【考点】切线的性质.【分析】连接OC,如图,根据切线的性质得∠OCD=90°,再根据圆周角定理得到∠BOC=2∠A=60°,然后利用互余计算∠D的度数.【解答】解:连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠BOC=2∠A=60°,∴∠D=90°﹣∠COD=30°.故答案为30.15.如图,点B、C都在x轴上,AB⊥BC,垂足为B,M是AC的中点.若点A 的坐标为(3,4),点M的坐标为(1,2),则点C的坐标为(﹣1,0).【考点】坐标与图形性质.【分析】作MN⊥BC于点N,则易证△CMN∽△CAB,根据相似三角形的性质即可求解.【解答】ji解:作MN⊥BC于点N,如下图所示:∵AB⊥BC,垂足为B,∴MN∥AB,∴△CMN∽△CAB,∴,即:解得:x=﹣1即:点C的坐标为(﹣1,0)16.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+3上运动,过点A作AB⊥x轴于点B,以AB为斜边作Rt△ABC,则AB边上的中线CD的最小值为1.【考点】二次函数图象上点的坐标特征.【分析】先根据直角三角形斜边上的中线性质得到CD=AB,再把抛物线解析式配成顶点式得到抛物线的顶点坐标为(1,2),从而得到垂线段AB的最小值为2,所以中线CD的最小值为1.【解答】解:∵CD为Rt△ABC中斜边AB边上的中线CD,∴CD=AB,∵y=x2﹣2x+3=(x﹣1)2+2,∴抛物线的顶点坐标为(1,2),∴点A到x轴的最小距离为2,即垂线段AB的最小值为2,∴中线CD的最小值为1.故答案为1.三、解答题(本题有9小题,共72分)17.(1)计算:(3+1)0﹣()﹣1+2cos60°(2)解方程:x2﹣4x﹣5=0.【考点】解一元二次方程-因式分解法;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)根据零指数幂和非负指数幂、特殊锐角三角函数值代入计算可得;(2)因式分解法求解可得.【解答】解:(1)原式=1﹣2+2×=1﹣2+1=0;(2)∵x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得:x=5或x=﹣1.18.一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.【考点】列表法与树状图法;概率公式.【分析】(1)从箱子中任意摸出一个球是白球的概率即是白球所占的比值;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于不放回实验,此题要求画树状图,要按要求解答.【解答】解:(1)从箱子中任意摸出一个球是白球的概率是;(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率.19.九年级某班部分同学利用课外活动时间,积极参加篮球定点投篮的训练,训练后的测试成绩如下表所示:876543进球数(个)人数214782回答下列问题:(1)训练后篮球定点投篮进球数的众数是4个,中位数是5个;(2)若训练后的人均进球数比训练前增加25%,求训练前的人均进球数.【考点】众数;中位数.【分析】(1)根据众数和中位数的定义可得;(2)先根据加权平均数求得训练后的人均进球数,再训练前的人均进球数为x,根据训练后的人均进球数比训练前增加25%,列方程求解可得.【解答】解:(1)由表格可知,4出现的次数最多,故众数为4,中位数为=5,故答案为:4,5;(2)训练后人均进球数为=5,设训练前的人均进球数为x,则(1+25%)x=5,解得:x=4,答:训练前的人均进球数为4个.20.如图,在平面直角坐标系中,△ABC中的三个顶点坐标分别为A(1,4)、B (﹣1,2)、C(3,3).在x轴上方,请画出以原点O为位似中心,相似比为2:1.将△ABC放大后得到的△A1B1C1,并写出△A1B1C1各顶点的坐标.【考点】作图-位似变换.【分析】延长OA到A1时OA1=2OA,延长OB到B1时OB1=2OB,延长OC到C1时OC1=2OC,于是可得到△A1B1C1,然后写出△A1B1C1各顶点的坐标.【解答】解:如图,△A1B1C1为所作,A1(2,8),B1(﹣2,4),C1(6,6).21.如图,AB是⊙O的直径,CD是⊙O的切线,切点为C,BE⊥CD,垂足为E,连接AC、BC.(1)求证:BC平分∠ABE;(2)若∠A=60°OA=4,求CE的长.【考点】切线的性质.【分析】(1)根据切线的性质得OC⊥DE,则可判断OC∥BE,根据平行线的性质得∠OCB=∠CBE,加上∠OCB=∠CBO,所以∠OBC=∠CBE,(2)利用圆周角定理得到∠ACB=90°,再根据正弦的定义可计算出BC=4,然后在Rt△CBE中可得到CE=BC=2.【解答】(1)证明:∵CD是⊙O的切线,∴OC⊥DE,而BE⊥DE,∴OC∥BE,∴∠OCB=∠CBE,而OB=OC,∴∠OCB=∠CBO,∴∠OBC=∠CBE,即BC平分∠ABE;(2)解:∵AB为直径,∴∠ACB=90°,∵sinA=,∴BC=8sin60°=4,∵∠OBC=∠CBE=30°,在Rt△CBE中,CE=BC=2.22.如图,在∠A=30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形,计算tan15°的值.【考点】解直角三角形;等腰三角形的性质.【分析】此题可设AB=AC=2x,由已知可求出CD和AD,那么也能求出BD=AB﹣AD,从而求出tan15°.【解答】解:由已知设AB=AC=2x,∵∠A=30°,CD⊥AB,∴CD=AC=x,∵AD2+CD2=AC2,根据勾股定理得,AD2=AC2﹣CD2=(2x)2﹣x2=3x2,∴AD=x,∴BD=AB﹣AD=2x﹣x=(2﹣)x,∴tan15°===2﹣.23.如图,平面直角坐标系中,矩形ABCO的边OA,OC分别在坐标轴上,OA=2,OC=1,以点A为顶点的抛物线经过点C(1)求抛物线的函数表达式;(2)将矩形ABCO绕点A旋转,得到矩形AB′C′O′,使点C′落在x轴上,抛物线是否经过点C′?请说明理由.【考点】二次函数图象与几何变换;矩形的性质.【分析】(1)该抛物线顶点坐标是(0,2),故设抛物线解析式为y=ax2+2,把点C(﹣1,0)代入求得a的值即可.(2)根据旋转的性质求得点C与C′关于y轴对称,结合抛物线的对称性质进行解答.【解答】解:(1)∵OA=2,∴抛物线顶点坐标A是(0,2),C(﹣1,0),∴设抛物线解析式为y=ax2+2,把点C(﹣1,0)代入,得0=a+2,解得a=﹣2.则该抛物线解析式为:y=﹣2x2+2;(2)如图,连接AC,AC′.根据旋转的性质得到AC=AC′,OA⊥CC′,即点C与C′关于y轴对称,又因为该抛物线的对称轴是y轴,点C在该抛物线线上,所以抛物线经过点C′.24.某商店销售一种成本为40元/kg的水产品,若按50元/kg销售,一个月可售出500kg,售价毎涨1元,月销售量就减少10kg.(1)写出月销售利润y(元)与售价x(元/kg)之间的函数表达式;(2)当售价定为多少元时,该商店月销售利润为8000元?(3)当售价定为多少元时会获得最大利润?求出最大利润.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)由月销售利润=每千克的利润×可卖出千克数,把相关数值代入即可;(2)根据“月销售利润为8000元”列出一元二次方程,解之可得答案;(3)将函数解析式配方成顶点式可得二次函数的最值.【解答】解:(1)可卖出千克数为500﹣10(x﹣50)=1000﹣10x,y与x的函数表达式为y=(x﹣40)=﹣10x2+1400x﹣40000;(2)根据题意得﹣10x2+1400x﹣40000=8000,解得:x=60或x=80,答:当售价定为60元或80元时,该商店月销售利润为8000元;(3)∵y=(x﹣40)[500﹣10(x﹣50)]=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∴当x=70时,利润最大为9000元.答:当售价为70元,利润最大,最大利润是9000元.25.将三角尺的直角顶点P放在矩形ABCD的对角线BD上,使其一条直角边经过点A,另一条直角边和CD交于点E.(1)如图①,分别过点P作PM⊥AD、PN⊥CD,垂足分别为点M、N.①求证△PMA∽△PNE;②求证:tan∠ADB=.(2)如图②,若AB=4,BC=3,过点E作EF⊥BD于点F,连接AF,则随着点P 取不同的位置,△PAF的面积是否发生变化?若不变,求出其面积;若改变,请说明理由.【考点】相似形综合题.【分析】(1)①根据两角相等证明相似;②根据上问的三角形相似得:,根据根据矩形DMPN得:DM=PN,由直角△DMP的锐角正切可得结论;(2)作辅助线,构建相似三角形,根据(1)中的结论得:tan∠ADB==,证明△GAP∽△FPE,则,可求得PF的长,利用面积法求出AG的长,代入面积公式可得结论.【解答】证明:(1)如图①,①∵∠EPA=90°,∴∠APM+∠MPE=90°,∵四边形ABCD是矩形,∴∠ADC=90°,∵PM⊥AD,PN⊥DC,∴∠DMP=∠PND=90°,∴四边形DMPN为矩形,∴∠MPN=90°,∴∠EPN+∠MPE=90°,∴∠APM=∠EPN,∵∠AMP=∠PNE=90°,∴△PMA∽△PNE;②∵△PMA∽△PNE,∴,∵四边形DMPN为矩形,∴DM=PN,在Rt△DPM中,tan∠ADB=,∴tan∠ADB=;(2)△PAF的面积不发生变化,理由是:如图②,过A作AG⊥BD于G,∵AD=BC=3,AB=4,∠DAB=90°,∴BD=5,=BD•AG=AD•AB,∴S△ABD∴BD•AG=AD•AB,∴AG==,∵∠APE=90°,∴∠APG+∠GPE=90°,∵∠AGP=90°,∴∠APG+∠GAP=90°,∴∠GPE=∠GAP,∵∠AGP=∠EFP=90°,∴△GAP∽△FPE,∴,由(1)得:tan∠ADB==,∴=,∴3AG=4PF,∴PF=3××=,=PF•AG=××=.∴S△APF答:△PAF的面积是.2017年2月26日。
江苏省徐州市丰县2016-2017学年九年级(上)第一次质检数学试卷(解析版)一.选择题1.已知一元二次方程x2﹣4x+3=0两根为x1、x2,则x1•x2=()A.4 B.3 C.﹣4 D.﹣32.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=153.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=900 5.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定6.下列语句正确的有()①直径是弦;②半圆是弧;③长度相等的弧是等弧;④经过圆内一定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A.3 个 B.2个C.1 个 D.4个7.如图所示,在⊙O中,,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°8.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A.10 B.8 C.5 D.3二、填空题(共10小题,每小题3分,满分30分)9.方程x(4x+3)=3x+1化为一般形式为.10.若关于x的方程x a﹣1﹣3x+2=0是一元二次方程,则a的值为.11.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.12.一元二次方程x2﹣2x=0的解是.13.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.14.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为.15.已知⊙O的半径为5cm,点A为线段OP的中点,当OP=11cm时,点A和⊙O的位置关系是.16.在同一平面上,⊙O外一点P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.17.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是.18.如图,AB为⊙O的直径,半径OC⊥AB,点D在上,DE⊥OC,DF⊥AB,垂足分别为E、F.若EF=5,则AB=.三、解答题(共7小题,满分66分)19.(20分)解方程:(1)x2﹣3=0(2)x2+4x﹣12=0(3)x2﹣6x+8=0 (配方法)(4)4x(2x﹣1)=3(2x﹣1)20.(6分)已知:当x=2时,二次三项式x2﹣2mx+4的值等于﹣4.当x为何值时,这个二次三项式的值是﹣1?21.(7分)已知关于x的方程x2+10x+24﹣a=0.(1)若此方程有两个不相等的实数根,求a的范围;(2)在(1)的条件下,当a取满足条件的最小整数,求此时方程的解.22.(7分)如图,在△ABC中,∠C=90°,∠B=28°,以C为圆心,CA为半径的圆交AB于点D,交BC于点E,求、的度数.23.(8分)市政府将新建市民广场,广场内欲建造一个圆形大花坛,并在大花坛内M点处建一个亭子,再经过亭子修一条小路.(1)如何设计小路才能使亭子M位于小路的中点处,并在图中画出表示小路的线段.(2)若大花坛的直径为30米,花坛中心O到亭子M的距离为10米,则小路有多长?(结果保留根号)24.(8分)商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价5元,日销售量就减少50件.据此规律,请回答:(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?25.(10分)已知,如图,△ABC的三个顶点A,B,C在以AD直径的圆上,且AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)若∠BCD=∠BAD,请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.2016-2017学年江苏省徐州市丰县九年级(上)第一次质检数学试卷参考答案与试题解析一.选择题1.已知一元二次方程x2﹣4x+3=0两根为x1、x2,则x1•x2=()A.4 B.3 C.﹣4 D.﹣3【考点】根与系数的关系.【分析】利用根与系数的关系求出x1•x2=的值即可.【解答】解:∵一元二次方程x2﹣4x+3=0两根为x1、x2,∴x1x2==3,故选:B.【点评】此题主要考查了一元二次方程根与系数的关系,正确记忆根与系数的关系是解决问题的关键.2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.4.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=900 【考点】由实际问题抽象出一元二次方程.【分析】首先用x表示出矩形的长,然后根据矩形面积=长×宽列出方程即可.【解答】解:设绿地的宽为x,则长为10+x;根据长方形的面积公式可得:x(x+10)=900.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,记住长方形面积=长×宽是解决本题的关键,此题难度不大.5.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定【考点】点与圆的位置关系.【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【解答】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故选:C.【点评】此题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.6.下列语句正确的有()①直径是弦;②半圆是弧;③长度相等的弧是等弧;④经过圆内一定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A.3 个 B.2个C.1 个 D.4个【考点】圆的认识.【分析】根据等弧、半圆、同心圆、弦、直径的定义和性质,分别对每一项判断即可.【解答】解:解:①直径是弦;正确,②半圆是弧;正确,③长度相等的弧是等弧;错误,④经过圆内一定点可以作无数条弦;正确,⑤经过圆内一定点可以作无数条直径;错误.其中真命题共有3个.故选:A.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)是解题的关键.7.如图所示,在⊙O中,,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°【考点】圆心角、弧、弦的关系.【分析】先根据等弧所对的弦相等求得AB=AC,从而判定△ABC是等腰三角形;然后根据等腰三角形的两个底角相等得出∠B=∠C;最后由三角形的内角和定理求角B的度数即可.【解答】解:∵在⊙O中,,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形内角和定理).故选B.【点评】本题综合考查了圆心角、弧、弦的关系,以及等腰三角形的性质.解题的关键是根据等弧对等弦推知△ABC是等腰三角形.8.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A.10 B.8 C.5 D.3【考点】垂径定理;勾股定理.【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【解答】解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,∵PC=4,OP=3,∴OC===5.故选C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题(共10小题,每小题3分,满分30分)9.方程x(4x+3)=3x+1化为一般形式为4x2﹣1=0.【考点】一元二次方程的一般形式.【分析】方程去括号,移项合并,整理为一般形式即可.【解答】解:方程整理得:4x2﹣1=0,故答案为:4x2﹣1=0【点评】此题考查了一元二次方程的一般形式,其一般形式为:ax2+bx+c=0(a≠0).10.若关于x的方程x a﹣1﹣3x+2=0是一元二次方程,则a的值为3.【考点】一元二次方程的定义.【分析】根据一元二次方程的定义得到a﹣1=2,由此求得a的值.【解答】解:依题意得:a﹣1=2.解得a=3.故答案是:3.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).11.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为1.【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.12.一元二次方程x2﹣2x=0的解是1=0,x2=2.【考点】解一元二次方程-因式分解法.【分析】本题应对方程左边进行变形,提取公因式x,可得x(x﹣2)=0,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0.”,即可求得方程的解.【解答】解:原方程变形为:x(x﹣2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.13.已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【考点】根与系数的关系.【分析】利用一元二次方程的根与系数的关系,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.14.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为﹣3.【考点】根的判别式.【分析】因为方程有两个相等的实数根,则△=(﹣2)2+4k=0,解关于k的方程即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,∴△=0,即(﹣2)2﹣4×(﹣k)=12+4k=0,解得k=﹣3.故答案为:﹣3.【点评】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.已知⊙O的半径为5cm,点A为线段OP的中点,当OP=11cm时,点A和⊙O的位置关系是点A在⊙O外..【考点】点与圆的位置关系.【分析】根据圆心到点A的距离与半径比较,即可判断.【解答】解:∵OP=11,OA=AP,∴OA=5.5>5,∵⊙O的半径为5,∴点A在⊙O外.故答案为点A在⊙O外.【点评】本题考查点与圆的位置关系,记住点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;①点P在圆内⇔d<r.16.在同一平面上,⊙O外一点P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为2cm.【考点】点与圆的位置关系.【分析】画出图形,根据图形和题意得出PA的长是P到⊙O的最长距离,PB的长是P到⊙O的最短距离,求出圆的直径,即可求出圆的半径.【解答】解:如图,PA的长是P到⊙O的最长距离,PB的长是P到⊙O的最短距离,∵圆外一点P到⊙O的最长距离为6cm,最短距离为2cm,∴圆的直径是6﹣2=4(cm),∴圆的半径是2cm.故答案为:2.【点评】本题考查了点和圆的位置关系,注意:作直线PO(O为圆心),交⊙O于A、B 两点,则得出P到⊙O的最长距离是PA长,最短距离是PB的长.17.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是.【考点】垂径定理;勾股定理.【分析】过O作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理求出OC 即可.【解答】解:过O作OC⊥AB于C,连接OA,则由垂径定理得:AC=BC=AB=×4=2,在Rt△AOC中,由勾股定理得:OC===,即d=,故答案为:.【点评】本题考查了垂径定理和勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.18.如图,AB为⊙O的直径,半径OC⊥AB,点D在上,DE⊥OC,DF⊥AB,垂足分别为E、F.若EF=5,则AB=10.【考点】圆周角定理;勾股定理;垂径定理.【分析】判断出四边形OFDE是矩形,然后根据矩形的对角线相等求出圆的半径,再解答即可.【解答】解:连接OD.∵OC⊥AB,DE⊥OC,DF⊥AB,∴四边形OFDE是矩形,∴OD=EF=5,∴AB=10.故答案是:10.【点评】本题考查了矩形的判定与性质,圆的认识,考虑利用矩形的对角线相等把EF转化为OD是解题的关键.三、解答题(共7小题,满分66分)19.(20分)(2016秋•丰县月考)解方程:(1)x2﹣3=0(2)x2+4x﹣12=0(3)x2﹣6x+8=0 (配方法)(4)4x(2x﹣1)=3(2x﹣1)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法.【分析】(1)移项,开方,即可得出答案;(2)分解因式,即可得出两个一元一次方程,求出方程的解即可;(3)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可;(4)移项,分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣3=0,x2=3,x=±,x1=,x2=﹣;(2)x2+4x﹣12=0,(x+6)(x﹣2)=0,x+6=0,x﹣2=0,x1=﹣6,x2=2;(3)x2﹣6x+8=0,x2﹣6x=﹣8,x2﹣6x+9=﹣8+9,(x﹣3)21,x﹣3=±1,x1=4,x2=2;(4)4x(2x﹣1)=3(2x﹣1),4x(2x﹣1)﹣3(2x﹣1)=0,(2x﹣1)(4x﹣3)=0,2x﹣1=0,4x﹣3=0,x1=,x2=.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.20.已知:当x=2时,二次三项式x2﹣2mx+4的值等于﹣4.当x为何值时,这个二次三项式的值是﹣1?【考点】解一元二次方程-因式分解法;一元二次方程的解.【分析】根据一元二次方程的解的定义将x=2x2﹣2mx+4=﹣4,列出关于m的方程,通过解方程求得m的值;然后将m的值代入关于x的方程x2﹣6x+4=﹣1,再通过解该方程求得x 的值即可.【解答】解:由题意得4﹣4m+4=﹣4,即3﹣m=0,解得m=3;(2分)∴x2﹣6x+4=﹣1,∴(x﹣1)(x﹣5)=0,得x1=1,x2=5.(4分)【点评】本题考查了一元二次方程的解的定义、解一元二次方程﹣﹣因式分解法.把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法.21.已知关于x的方程x2+10x+24﹣a=0.(1)若此方程有两个不相等的实数根,求a的范围;(2)在(1)的条件下,当a取满足条件的最小整数,求此时方程的解.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)先根据方程有两个不相等的实数根可知△>0,求出a的取值范围即可;(2)根据(1)中a的取值范围得出a的最小整数解,代入原方程求出x的值即可.【解答】解:(1)∵关于x的方程x2+10x+24﹣a=0有两个不相等的实数根,∴△=b2﹣4ac=100﹣4(24﹣a)>0,解得a>﹣1;(2)∵a>﹣1,∴a的最小整数解为a=0,∴此时方程为x2+10x+24=0解得:x1=﹣4,x2=﹣6.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)中,当△>0时,方程有两个不相等的两个实数根是解答此题的关键.22.如图,在△ABC中,∠C=90°,∠B=28°,以C为圆心,CA为半径的圆交AB于点D,交BC于点E,求、的度数.【考点】圆心角、弧、弦的关系.【分析】连接CD,如图,利用互余计算出∠A=62°,则∠A=∠ADC=62°,再根据三角形内角和定理计算出∠ACD=56°,接着利用互余计算出∠DCE=34°,然后根据圆心角的度数等于它所对弧的度数求解.【解答】解:连接CD,如图,∵∠C=90°,∠B=28°,∴∠A=90°﹣28°=62°,∵CA=CD,∴∠A=∠ADC=62°,∴∠ACD=180°﹣2×62°=56°∴的度数为56°;∵∠DCE=90°﹣∠ACD=34°,∴的度数为34°.【点评】本题考查了圆心角、弧、弦的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.23.市政府将新建市民广场,广场内欲建造一个圆形大花坛,并在大花坛内M点处建一个亭子,再经过亭子修一条小路.(1)如何设计小路才能使亭子M位于小路的中点处,并在图中画出表示小路的线段.(2)若大花坛的直径为30米,花坛中心O到亭子M的距离为10米,则小路有多长?(结果保留根号)【考点】垂径定理的应用.【分析】(1)根据过M点作AB⊥OM,两点之间垂线段最短,线段AB为要修的小路;(2)利用勾股定理求出即可.【解答】解:(1)连OM,过M点作AB⊥OM,∴线段AB为要修的小路.(5分)(2)连OB,在直角三角形BOM中,BM==∴AB=2BM=米(5分).【点评】此题主要考查了垂径定理的应用,根据题意作出图形再利用勾股定理求出是解决问题的关键.24.商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价5元,日销售量就减少50件.据此规律,请回答:(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?【考点】一元二次方程的应用.【分析】(1)直接利用每涨价5元,日销售量就减少50件,进而表示出每天的销量,进而表示出利润;(2)首先表示出销量与每件商品利润的乘积进而得出总利润为8000元,得出等式求出答案.【解答】解:(1)当每件商品售价定为55元时,每天可销售:500﹣5×10=450(件),商场获得的日盈利是:450×15=6750(元),答:每天可销售450件商品,商场获得的日盈利是6750元;(2)设涨价x元,则根据题意列方程得:(500﹣10x)(50+x﹣40)=8000,整理得出:x2﹣40x+300=0,(x﹣10)(x﹣30)=0,解得:x1=10 x2=30,故每件商品的销售定价为:50+10=60(元),30+50=80(元),答:每件商品的销售定价为60元或80元时,商场日盈利可达到8000元.【点评】此题主要考查了一元二次方程的应用,正确得出等量关系是解题关键.25.(10分)(2016秋•丰县月考)已知,如图,△ABC的三个顶点A,B,C在以AD直径的圆上,且AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)若∠BCD=∠BAD,请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.【考点】圆周角定理.【分析】(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.【解答】证明:(1)∵AB是直径,AD⊥BC,∴弧BD=弧CD,∴BD=CD(2)B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:弧BD=弧CD,∴∠BAD=∠CBD,又∵BE平分∠ABC,∴∠CBE=∠ABE,∵∠DBE=∠CBD+∠CBE,∠DEB=∠BAD+∠ABE,∠CBE=∠ABE,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.【点评】本题主要考查等弧对等弦,及确定一个圆的条件,此类题是中考的常考题,需要同学们牢固掌握.。
2016-2017学年江苏省徐州市八年级(上)期末数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)的算术平方根是()A.± B.﹣ C.D.2.(3分)下列各组数中不能作为直角三角形的三边长的是()A.6,8,10 B.7,24,25 C.1.5,2,3 D.9,12,153.(3分)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS4.(3分)下列图形,对称轴最多的是()A.正方形B.等边三角形C.角D.线段5.(3分)平面直角坐标系中,点P(3026,﹣2017)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定7.(3分)如图,在平面直角坐标系中,AD平分∠OAB,DB⊥AB,BC∥OA,若点B的横坐标为1,点D的坐标为(0,),则点C的坐标是()A.(0,2) B.(0,5) C.(0,)D.(0,+)8.(3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.二、填空题(本题有8小题,每小题3分)9.(3分)1.0247精确到百分位的近似数是.10.(3分)请写出一个介于6和7之间的无理数.11.(3分)点P(1,﹣2)关于y轴对称的点的坐标为.12.(3分)等腰三角形两边长分别是3和6,则该三角形的周长为.13.(3分)将一次函数y=﹣x+3的图象沿y轴向下平移2个单位长度,所得图象对应的函数表达式为.14.(3分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=°.15.(3分)如图,在△ABC中,AB=AC,∠A=20°,边AC的垂直平分线交AC于点D,交AB 于点E,则∠BCE等于°.16.(3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.三、解答题(本题有8小题,共72分)17.(10分)(1)计算:20160+﹣(﹣)﹣2;(2)求x的值:4x2=9.18.(6分)如图,在2×2的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,如图中的△ABC为格点三角形,请你在下面四张图中分别画出一个与△ABC 成轴对称的格点三角形(要求所画图形不重复).19.(8分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:BC=DE.20.(8分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.21.(6分)已知正比例函数y1=﹣2x的图象如图.(1)在平面直角坐标系中,画出一次函数y2=2x﹣4的图象;(2)若y2<y1,则x的取值范围是.22.(8分)如图,在Rt△ABC中,∠BAC=90°,AD是中线,AE是高,AC=6,AD=5,求AE 的长.23.(8分)如图,AD为△ABC的中线,AB=AC,∠BAC=45°,过点C作CE⊥AB,垂足为E,CE与AD交于点F.(1)求证:△AEF≌△CEB;(2)试探索AF与CD的数量关系,并说明理由.24.(8分)如图,在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB 上的点,把△ABC沿着直线DE折叠,使顶点B的对应点B′落在直角边AC的中点上,求CE 的长.25.(10分)某企业生产并销售某种产品,假设销售量与产量相等,图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段CD所表示的y2与x之间的函数表达式;(3)当该产品产量为90kg时,获得的利润是多少?2016-2017学年江苏省徐州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)(2016秋•徐州期末)的算术平方根是()A.± B.﹣ C.D.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵()2=,∴的算术平方根为,故选(C)【点评】本题考查算术平方根的概念,属于基础题型.2.(3分)(2016秋•徐州期末)下列各组数中不能作为直角三角形的三边长的是()A.6,8,10 B.7,24,25 C.1.5,2,3 D.9,12,15【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、62+82=102,故是直角三角形,故此选项不合题意;B、242+72=252,故是直角三角形,故此选项不合题意;C、22+1.52≠32,故不是直角三角形,故此选项符合题意;D、92+122=152,故是直角三角形,故此选项不合题意.故选C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.(3分)(2016秋•徐州期末)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【解答】解:如图,∠A、AB、∠B都可以测量,即他的依据是ASA.故选B.【点评】本题考查了全等三角形的应用,准确识图,并熟记全等三角形的判定方法是解题的关键.4.(3分)(2016秋•徐州期末)下列图形,对称轴最多的是()A.正方形B.等边三角形C.角D.线段【分析】根据轴对称图形的对称轴的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做轴对称图形的对称轴.【解答】解:A、有4条对称轴,即两条对角线所在的直线和两组对边的垂直平分线;B、有3条对称轴,即各边的垂直平分线;C、有1条对称轴,即底边的垂直平分线;D、有2条对称轴.故选:A.【点评】此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线是它的对称轴.5.(3分)(2016秋•徐州期末)平面直角坐标系中,点P(3026,﹣2017)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(3026,﹣2017)在第四象限,故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(3分)(2016秋•徐州期末)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定【分析】先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣2的大小,根据函数的增减性进行解答即可.【解答】解:∵直线y=﹣2x+3中,k=﹣2<0,∴此函数中y随x的增大而减小,∵3>﹣2,∴y1<y2.故选B.【点评】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,根据题意判断出函数的增减性是解答此题的关键.7.(3分)(2016秋•徐州期末)如图,在平面直角坐标系中,AD平分∠OAB,DB⊥AB,BC ∥OA,若点B的横坐标为1,点D的坐标为(0,),则点C的坐标是()A.(0,2) B.(0,5) C.(0,)D.(0,+)【分析】根据角平分线的性质得出DB=OD,再解答即可.【解答】解:∵AD平分∠OAB,DB⊥AB,∴DB=OD=,∵点B的横坐标为1,∴BC=1,∴CD=,∴OC=OD+DC=,∴点C的坐标是(0,),故选D【点评】此题考查角平分线的性质,关键是根据角平分线的性质得出DB=OD.8.(3分)(2016•荆门)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C 时,面积不变,从而得出函数关系的图象.【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是A;故选:A.【点评】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.二、填空题(本题有8小题,每小题3分)9.(3分)(2016秋•徐州期末)1.0247精确到百分位的近似数是 1.02.【分析】把千分位上的数字4进行四舍五入即可.【解答】解:1.0247精确到百分位的近似数是1.02.故答案为1.02.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.10.(3分)(2016秋•徐州期末)请写出一个介于6和7之间的无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:写出一个介于6和7之间的无理数,故答案为:.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.11.(3分)(2014•咸宁)点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【解答】解:点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.(3分)(2017•双柏县一模)等腰三角形两边长分别是3和6,则该三角形的周长为15.【分析】由三角形的三边关系可知,其两边之和大于第三边,两边之差小于第三边.【解答】解:由三角形的三边关系可知,由于等腰三角形两边长分别是3和6,所以其另一边只能是6,故其周长为6+6+3=15.故答案为15.【点评】本题主要考查了三角形的三边关系问题,能够利用三角形的三边关系求解一些简单的计算、证明问题.13.(3分)(2016秋•徐州期末)将一次函数y=﹣x+3的图象沿y轴向下平移2个单位长度,所得图象对应的函数表达式为y=﹣x+1.【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【解答】解:∵将一次函数y=﹣x+3的图象沿y轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣x+3﹣2,即y=﹣x+1.故答案为y=﹣x+1.【点评】此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.14.(3分)(2016秋•徐州期末)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=80°.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△ABC≌△DCB,∠DBC=40°,∴∠ACB=∠DBC=40°,∴∠AOB=∠ACB+∠DBC=40°+40°=80°.故答案为:80.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.15.(3分)(2016秋•徐州期末)如图,在△ABC中,AB=AC,∠A=20°,边AC的垂直平分线交AC于点D,交AB于点E,则∠BCE等于60°.【分析】根据等角对等边可得∠ACB=(180°﹣20°)÷2=80°,再根据线段垂直平分线的性质可得AE=CE,进而可得∠ACE=∠A=20°,然后可得∠BCE的度数.【解答】解:∵AB=AC,∠A=20°,∴∠ACB=(180°﹣20°)÷2=80°,∵DE是AC的垂直平分线,∴AE=CE,∴∠ACE=∠A=20°,∴∠ECB=80°﹣20°=60°,故答案为:60.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握等边对等角.16.(3分)(2015•威海模拟)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.三、解答题(本题有8小题,共72分)17.(10分)(2016秋•徐州期末)(1)计算:20160+﹣(﹣)﹣2;(2)求x的值:4x2=9.【分析】(1)先计算20160、、(﹣)﹣2的值,再计算最后的结果;(2)方程的两边都除以4后,利用平方的意义,求出x的值.【解答】解:(1)因为20160=1,=﹣2,(﹣)﹣2=4,所以20160+﹣(﹣)﹣2=1﹣2﹣4=﹣5;(2)4x2=9,所以x2=所以x=±【点评】本题考查了0指数、负整数指数、实数的运算及平方的意义.0指数的意义:a0=1(a≠0);负整数指数幂的意义:a﹣p=(a≠0).18.(6分)(2016秋•徐州期末)如图,在2×2的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,如图中的△ABC为格点三角形,请你在下面四张图中分别画出一个与△ABC成轴对称的格点三角形(要求所画图形不重复).【分析】根据轴对称图形的概念,画出图形即可.【解答】解:与△ABC成轴对称的格点三角形如图所示,.【点评】本题考查作图﹣轴对称变换,考查学生的动手能力,解题的关键是理解轴对称图形的概念,本题主要属于基础题.19.(8分)(2008•常州)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:BC=DE.【分析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS).∴BC=DE.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.(8分)(2011•沈阳)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【分析】(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.【点评】本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.21.(6分)(2016秋•徐州期末)已知正比例函数y1=﹣2x的图象如图.(1)在平面直角坐标系中,画出一次函数y2=2x﹣4的图象;(2)若y2<y1,则x的取值范围是x<1.【分析】(1)利用两点法画图象;(2)由图象得出取值.【解答】解:(1)当x=0时,y=﹣4;当y=0时,x=2,∴与x轴交点为(2,0),与y轴交点为(0,﹣4),图象如下:(2)由图象得:交点为(1,﹣2),若y2<y1,则x的取值范围是x<1.故答案为:x<1.【点评】本题考查了一次函数和正比例函数的图象和性质,熟练掌握利用两点法画一次函数的图象:①与x轴交点为,②与y轴交点;并利用数形结合的方法解决问题.22.(8分)(2016秋•徐州期末)如图,在Rt△ABC中,∠BAC=90°,AD是中线,AE是高,AC=6,AD=5,求AE的长.【分析】由直角三角形斜边上的中线性质求出BC,由勾股定理求出AB,再由三角形的面积关系即可求出AE.【解答】解:如图所示:∵∠BAC=90°,AD是中线,∴BC=2AD=10,在Rt△ABC中,由勾股定理得:AB===8,∵AE是高,∴AB•AC=BC•AE,∴AE===4.8.【点评】此题主要考查了勾股定理、直角三角形的性质以及三角形面积的计算,熟练掌握勾股定理是解决问题的关键.23.(8分)(2016秋•徐州期末)如图,AD为△ABC的中线,AB=AC,∠BAC=45°,过点C 作CE⊥AB,垂足为E,CE与AD交于点F.(1)求证:△AEF≌△CEB;(2)试探索AF与CD的数量关系,并说明理由.【分析】(1)利用同角的余角相等,证明∠BAD=∠BCE,利用ASA证明即可解答;(2)由全等三角形的性质得出AF=BC,即可得出结论.【解答】(1)证明:∵CE⊥AB,∴∠AEC=90°,∵∠BAC=45°,∴∠ACE=90°﹣45°=45°,∴∠EAC=∠ACE,∴AE=CE.∵AB=AC,点D是BC的中点,∴AD⊥BC,BC=2CD,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠B+∠BCE=90°,∴∠BAD=∠BCE,在△AEF和△CEB中,,∴△AEF≌△CEB(ASA);(2)解:AF=2CD;理由如下:∵△AEF≌△CEB,∴AF=BC,∵BC=2CD,∴AF=2CD.【点评】本题考查了全等三角形的性质与判定、等腰直角三角形的判定与性质,解决本题的关键是熟记全等三角形的判定方法.24.(8分)(2016秋•徐州期末)如图,在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,使顶点B的对应点B′落在直角边AC的中点上,求CE的长.【分析】设CE=x,则BE=8﹣x;在Rt△B'CE中,根据勾股定理列出关于x的方程,解方程即可解决问题.【解答】解:∵点B′落在AC的中点,∴CB′=AC=3,设CE=x,则BE=8﹣x,由折叠得:B'E=BE=8﹣x,在Rt△B'CE中,由勾股定理得x2+32=(8﹣x)2解得:x=,即CE的长为:.【点评】该题主要考查了翻折变换的性质及其应用,解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系,借助勾股定理列方程进行解答.25.(10分)(2016秋•徐州期末)某企业生产并销售某种产品,假设销售量与产量相等,图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段CD所表示的y2与x之间的函数表达式;(3)当该产品产量为90kg时,获得的利润是多少?【分析】(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段线段CD经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)先将x=90代入(2)中所求的解析式,求出y2的值,再根据利润=每千克利润×产量列式即可求解.【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设y2与x之间的函数关系式为y2=kx+b,∵经过点(0,120)与(130,42),∴,解得:,∴线段CD所表示的一次函数的表达式为y2=﹣0.6x+120(0≤x≤130);(3)将x=90代入y2=﹣0.6x+120,得y2=﹣0.6×90+120=66,所以利润为(66﹣42)×90=2160(元).答:当该产品产量为90kg时,获得的利润是2160元.【点评】本题主要考查一次函数的应用,待定系数法求一次函数的表达式,解题的关键是从实际问题中抽象出一次函数模型,难度不大.。
2016〜2017学年度第-学期期末抽测•高一年级数学试题一、填空题:本大题共14小题,每小题5分,共计70分.i?l把答案填写在等狀堆舉図型辻・1 •己知集合八{-1,0,1}, 2? = {0,1,2},则JCIB= A ・,2.函数y = 3tan(2x + —)的扱小正周期为_4_・« '63・己知点3(1,3),则向量乔的坐标为.▲.・4. 若指数函数f(x) = a x SO,且XI)的图象经过点(3,8),则"-1)的值为▲.5. cos240°的值等于▲ 一.6. 函数/(x) = J-l + lnx的定义域是_4_・!7. 已知向叶,b满足|fl| = 2, |b|M,"与b的夹角为寸’则0 + 6卜▲・8. 若偶函数/(x)满足/(x + n) = /(x),且/(-|)=-,则/(-于)的值为丄_・9. 设函数/⑴屮严2(4-加<0,则/(也14) + /(_4)的他为」・2 二x^09b10. 已知。
函数/(x) = 4 + log u(x + 4)的IYI釧fl过定点/>,若的终边经过点P,则cosa的值力▲・11. 将函数/(x) = sin^>0)的图線向右平移扌个爪位示得到函数曲)的图彖,若对于满足|/(齐)-曲2)|=2的召內,Yf|x,-x2|min=-j>则/(》的ffi为_Jk .高一数学试题笫I页(共4页)12. 设四边形ABCD为平行四边形,\AB\=6t \AD\=4,若点E , F满足BE = EC tDF = 2FC t则乔•丽的值为▲•13. 设函数/⑴』才一必,Y<2,若函数/(x)恰冇2个零点,则实数a的取值范[X2 -3ax + 2a\x^-2.■围是▲.14. 已知不尊式(〃ir + 5Xx2-〃)W0对任意x G(0, +00)恒成立,其中加,n是整数,则m + n 的取值的集合为▲.二、解答题:本大题共6小題,共计90分.请在等題级爭雀够g填内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知集合J = [0,3), B = [a,a + 2).(1) 若a = -1,求(2) 若= 求实数a的取值范围.16. (本小题满分14分)己知向fl: a = (cosa, sin a), A = (-2,2).(1) 若a •力=耳,求(sin a + cos a)2的值;5(2) 若a//〃,求sin(7t-a) sin(-| + a)的值.17・(本小题满分14分)某同学用“五点法”画函数/(x) = As\n(a)x +(p\a)> 0,| cp |< 在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) 请将上表数据补充完整,填写在答题卡相应位置上,并直接写出函数/(x)的解析式;(2) 若将函数/(X)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象.求当xe[~y]W,函数g(x)的值域;(3) 若将y = /(x)图象上所有点向左平移0(&>0)个单位长度,得到y^Kx)的图彖.若y = A(x)图彖的一个对称中心为(―,0),求&的最小值.18-(本小题满分16分)已知向量a = (m,-l) , 6 = (—,—)・(1)若m = ->/3,求a与力的夹角0;(2)设alb.①求实数加的值;②若存在非零实数上,t,使得8 + (厂-3)切丄(-如+忙),求土J•的最小值.19・(本小题满分16分)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元.某月甲、乙两户共交水费y元,己知甲、乙两户该月用水鈕分别为5x, 3x吨.(1) 求y关于x的函数;(2) 若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费.20.(本小题满分16分)已知函数/(x) = x2+4x + a-5, g(x) = m-4x_,-2m + 7 ・(1)若函数/(x)在区间卜1,1]上存在零点,求实数°的取值范围;(2)当"0时,若对任意的^6[1,2],总存在X26[1,2],使/(x,)=:g(七)成立,求实数加的取值范围;(3)若y = /(x) (XG[/,2J)的值域为区间D,是否存在常数r,使区间Q的长度为6-4/?若存在,求出f的值;若不存在,请说明理由.(注:区间[p,g]的长度为q_p).2016—2017学年度第一学期期末抽测高一数学试题参考答案、填空题(2,1)1 _6 . [e,…)7. . 1026 1011.1 120 13 . [1,2)U[4,二)14 . \ -4,24;二、解答题15.(1) --1 时, 由于 A- 0,3 ,所以 AUB - 1_1,3 . (2),得 B A ,a > 0, a + 2 < 3,所以, a 的取值范围是0,1].14分16.(1) 因为ab - -14,所以-2cos t -2sin •,二14 , 5 5(2)即si27 2 49疋(sin 用 cos : )1 -2sin : cos :=(—)5 25 从而 2sin _:i cos :;=25224 1因此,(sin :亠COS H ) =1 2sin t cos : =1 -25 25因为 a // b ,所以 2cos .:: -(一2) sin : = 0 ,即 cos _:i 】si n : - 0 , 于是 tan : - -1 ,10分 因此, sin( n-- ) sin(n,二i ) =sin : cos : 2 12分17. (1)根据表中已知数据可得:sin 二 cos 一:匚 tan 一:匚 1 sincos 2: tan1214分数据补全如下表:(2)将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,的图象,所以 g(x) =3sin(x - n ) . ......................................................... 7分 6n n_ n _ n n_ "F ]时,x +n 【u ,n ,所以 sin(x $ • [-1 ,1].6 2于是函数g(x)的值域为[―三3] . .................................................................. 9分2'「冗(3)由(〔)可得,h(x) = 3sin(2 x+ 2q +),6由h(x)图象的一个对称中心为(n ,0)可得,h( n )= 0 ,12 12所以 3sin(2? — 2q + n )= 0 ,即 sin(2q+ —) = 0 , .......................................... 12 分12 63从而 2q+ n = k n ,k? Z ,解得 q= ®- n ,k? Z ,326由q>0可得,当k = 1时,q 取得最小值 n ......................................................... 14分3(1) m = - 3 时,a= - 3, -1,于是 ab=_3 , .......................................................... 3 分又 a =2 , \b= 1 ,所以cos^= 粘=——,因为日丘b,兀】,所以0=— . ......................................... 6分a||b 26(2)①因为a _b ,所以a b =0 ,即卩丄m + -13二。
高一年级数学试题一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{}101A =-,,,{}012B =,,,则A B = .2.函数53tan 26y x π⎛⎫=+⎪⎝⎭的最小正周期为 . 3.已知点()12A -,,()13B ,,则向量AB的坐标为 .4.若指数函数()x f x a =(0a >,且1a ≠)的图象经过点()38,,则()1f -的值为 .5.cos 240︒的值等于 .6.函数()f x =的定义域是 .7.已知向量a b ,满足2a =,b = a 与b 的夹角为4π,则a +8.若偶函数()f x 满足()()f x f x π+=,且132f π⎛⎫-= ⎪⎝⎭,则20173f π⎛⎫⎪⎝⎭的值为 .9.设函数()()212log 4020x x x f x x -⎧--<⎪=⎨≥⎪⎩,,,则()()2log 144f f +-的值为 .10.已知0a >且1a ≠,函数()()4log 4a f x x =++的图象恒过定点P ,若角α的终边经过点P ,则cos α的值为 .11.将函数()()sin 0f x x ωω=>的图象向右平移4π个单位后得到函数()g x 的图象,若对于满足()()122f x g x -=的12x x ,,有12min4x x π-=,则4f π⎛⎫⎪⎝⎭的值为 . 12.设四边形ABCD 为平行四边形,6AB = ,4AD =,若点E ,F 满足BE EC = ,2DF FC =,则AF EF ⋅ 的值为 .13.设函数()2222322x a x f x x ax a x ⎧-<⎪=⎨-+≥⎪⎩,,,若函数()f x 恰有2个零点,则实数a 的取值范围是 .14.已知不等式()()250mx x n +-≤对任意()0x ∈+∞,恒成立,其中m n ,是整数,则m n+的取值的集合为 .二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15. (本小题满分14分)已知集合[)03A =,,[)2B a a =+,. (1)若1a =-,求A B ;(2)若A B B = ,求实数a 的取值范围. 16. (本小题满分14分)已知向量()cos sin a αα= ,,()22b =-,.(1)若145a b ⋅= ,求()2sin cos αα+的值;(2)若a b ∥,求()sin sin 2ππαα⎛⎫-⋅+ ⎪⎝⎭的值.17. (本小题满分14分)某同学用“五点法”画函数()()sin 02f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,填写在答题卡相应位置上,并直接写出函数()f x 的解析式; (2)若将函数()f x 的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图象,求当33x ππ⎡⎤∈-⎢⎥⎣⎦,时,函数()g x 的值域;(3)若将()y f x =图象上所有点向左平移()0θθ>个单位长度,得到()y h x =的图象,若()y h x =图象的一个对称中心为012π⎛⎫⎪⎝⎭,,求θ的最小值.18. (本小题满分16分)已知向量()1a m =- ,,12b ⎛= ⎝ .(1)若m =,求a 与b的夹角θ; (2)设a b ⊥.①求实数m 的值;②若存在非零实数k ,t ,使得()()23a t b ka tb ⎡⎤+-⊥-+⎣⎦ ,求2k t t+的最小值.19. (本小题满分16分)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元.某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x ,3x 吨.(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费. 20. (本小题满分16分)已知函数()245f x x x a =++-,()1427x g x m m -=⋅-+.(1)若函数()f x 在区间[]11-,上存在零点,求实数a 的取值范围; (2)当0a =时,若对任意的[]112x ∈,,总存在[]212x ∈,,使()()12f x g x =成立,求实数m 的取值范围;(3)若()[]()2y f x x t =∈,的值域为区间D ,是否存在常数t ,使区间D 的长度为64t -?若存在,求出t 的值;若不存在,请说明理由. (注:区间[]p q ,的长度为q p -).2016-2017学年度第一学期期末抽测高一数学试题参考答案一、填空题1.{}0,1 2.π2 3.(2,1) 4.12 5.12- 6.[e,)+∞ 7. 8.12 9.6 10.35- 11.1 12.0 13.[1,2)[4,)+∞ 14.{}4,24- 二、解答题15.(1)当1a =-时,[)1,1B =-,由于[)0,3A =, 所以[)1,3A B =- .…………6分(2)由A B B = ,得B A ⊆,………………………………………………………9分于是0,23,a a ⎧⎨⎩+≥≤即01a ≤≤,所以,a 的取值范围是[]0,1.…………………………………………………14分 16.(1)因为145⋅=-a b ,所以142cos 2sin 5αα-+=, 即7sin cos 5αα-=,……………………………………………………………2分 于是22749(sin cos )12sin cos ()525αααα-=-==, 从而242sin cos 25αα=-.………………………………………………………4分 因此,2241(sin cos )12sin cos 12525αααα+=+=-=.……………………6分 (2)因为//a b ,所以2cos (2)sin 0αα--⋅=,即cos sin 0αα+=,……………8分 于是tan 1α=-,………………………………………………………………10分 因此,πsin(π)sin()sin cos 2αααα-⋅+=⋅ …………………………………12分222sin cos tan 1sin cos tan 12αααααα⋅===-++.………14分17.(1)根据表中已知数据可得:3A =,ππ62ωϕ+=,2π3π32ωϕ+=,解得2ω=,π6ϕ=.数据补全如下表:3分函数表达式为π()3sin(2)6f x x =+.……………………………………………5分(2)将函数()f x 的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图象,所以π()3sin()6g x x =+.………………………………………7分当ππ[,]33x ∈-时,πππ[,]662x +∈-,所以π1sin()[,1]62x +∈-.于是函数)(x g 的值域为3[,3]2-.………………………………………………9分 (3)由(1)可得,π()3sin(22)6h x x q =++, 由()h x 图象的一个对称中心为π(,0)12可得,π()012h =, 所以ππ3sin(22)0126q ?+=,即πsin(2)03q +=,………………………12分 从而π2π,3k k Z q +=?,解得ππ,26k k Z q =-?, 由0q >可得,当1k =时,q 取得最小值π3.…………………………………14分18.(1)m =()1=-a ,于是⋅=a b ,……………………………3分 又2=a ,1=b ,所以cos θ⋅==a b a b []0,θ∈π,所以6θ5π=.…………………6分(2)①因为⊥a b ,所以0⋅=a b ,即()1102m -=+,得m =.………8分②m =时,2=a ,1=b ,由()()23t k t ⎡⎤-⊥-⎣⎦++a b a b ,得()()230t k t ⎡⎤-⋅-=⎣⎦++a b a b ,因为0⋅=a b ,所以()22230k t t --=+a b,于是()234t t k -=,…………12分故()()23222341174324444k t t t t t t t t t -==-=+-+++,当2t =-时,2k t t+取最小值74-.…………………………………………16分19.(1)当甲的用水量不超过5吨时,即55x ≤,1x ≤时,乙的用水量也不超过5吨,()2.65320.8y x x x ==+;…………………………………………………2分当甲的用水量超过5吨,乙的用水量不超过5吨,即55,35,x x >⎧⎨⎩≤513x <≤时, ()5 2.64553 2.627.87y x x x =⨯⨯-⨯=-++;……………………………4分当乙的用水量超过5吨,即35x >,53x >时,()()25 2.6435553214y x x x =⨯⨯⨯⎡--⎤=-⎣⎦++.…………………………6分 所以20.8,01,527.87,1,353214,.3x x y x x x x ⎧⎪⎪⎪=-<⎨⎪⎪->⎪⎩≤≤≤ …………………………………………………7分(2)由于()y f x =在各段区间上均单调增,当[]0,1x ∈时,()134.7y f <≤;……………………………………………9分 当5(,)3x ∈∞+时,5()34.73y f >>;…………………………………………11分 当5(1,]3x ∈时,令27.8734.7x -=,解得 1.5x =.…………………………13分 所以甲户用水量为57.5x =(吨), 付费15 2.6 2.5423y =⨯⨯=+(元); 乙户用水量为3 4.5x =(吨),付费2 4.5 2.611.7y =⨯=(元).………………………………………………15分 答:甲户该月的用水量为7.5吨、水费为23元,乙户该月的用水量为4.5吨、水费为11.7元.………………………………16分 20.(1)由函数2()45f x x x a =++-的对称轴是2x =-,知()f x 在区间[]1,1-上是增函数, …………………………………2分 因为函数在区间[]1,1-上存在零点,则必有: ()()1010f f ⎧-⎪⎨⎪⎩≤≥即800a a -⎧⎨⎩≤≥,解得08a ≤≤, 故所求实数a 的取值范围为[]0,8. ………………………………4分 (2)若对任意的[]11,2x ∈,总存在[]21,2x ∈,使12()()f x g x =成立,只需函数()y f x =的值域是函数()y g x =的值域的子集. …………………6分 当0a =时,2()45f x x x =+-,[]1,2x ∈的值域为[]0,7, ………………… 7分 下面求1()427x g x m m -=⋅-+,[]1,2x ∈的值域. 令14x t -= ,则[1,4]t ∈,27y mt m =-+①当0m =时,()7g x =为常数,不符合题意,舍去;②当0m >时,()g x 的值域为[]7,27m m -+,要使[][]0,77,27m m ⊆-+, 需70277m m -⎧⎨+⎩≤≥,解得7m ≥;③当0m <时,()g x 的值域为[]27,7m m +-,要使[][]0,727,7m m ⊆+-, 需2707m m +⎧⎨-⎩≤≥7,解得72m -≤;所以2()(2)4464f t f t t t --=++=-,即2820t t +-=,解得4t =--4t =-+(舍去); ②当26t -<-≤时,在区间[],2t 上,(2)f 最大,(2)f -最小, 所以(2)(2)1664f f t --==-,解得52t =-; ③当322t -<<时,在区间[],2t 上,(2)f 最大,()f t 最小, 所以2(2)()41264f f t t t t -=--+=-,即26t =,解得t =或t =,所以此时不存在常数t 满足题意;综上所述,存在常数t 满足题意,4t =--52t =-.……………………16分。
2016-2017学年江苏省徐州市八年级(上)期末数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)的算术平方根是()A.± B.﹣ C.D.2.(3分)下列各组数中不能作为直角三角形的三边长的是()A.6,8,10 B.7,24,25 C.1.5,2,3 D.9,12,153.(3分)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS4.(3分)下列图形,对称轴最多的是()A.正方形B.等边三角形C.角D.线段5.(3分)平面直角坐标系中,点P(3026,﹣2017)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定7.(3分)如图,在平面直角坐标系中,AD平分∠OAB,DB⊥AB,BC∥OA,若点B的横坐标为1,点D的坐标为(0,),则点C的坐标是()A.(0,2) B.(0,5) C.(0,)D.(0,+)8.(3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.二、填空题(本题有8小题,每小题3分)9.(3分)1.0247精确到百分位的近似数是.10.(3分)请写出一个介于6和7之间的无理数.11.(3分)点P(1,﹣2)关于y轴对称的点的坐标为.12.(3分)等腰三角形两边长分别是3和6,则该三角形的周长为.13.(3分)将一次函数y=﹣x+3的图象沿y轴向下平移2个单位长度,所得图象对应的函数表达式为.14.(3分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=°.15.(3分)如图,在△ABC中,AB=AC,∠A=20°,边AC的垂直平分线交AC于点D,交AB于点E,则∠BCE等于°.16.(3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.三、解答题(本题有8小题,共72分)17.(10分)(1)计算:20160+﹣(﹣)﹣2;(2)求x的值:4x2=9.18.(6分)如图,在2×2的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,如图中的△ABC为格点三角形,请你在下面四张图中分别画出一个与△ABC成轴对称的格点三角形(要求所画图形不重复).19.(8分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:BC=DE.20.(8分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.21.(6分)已知正比例函数y1=﹣2x的图象如图.(1)在平面直角坐标系中,画出一次函数y2=2x﹣4的图象;(2)若y2<y1,则x的取值范围是.22.(8分)如图,在Rt△ABC中,∠BAC=90°,AD是中线,AE是高,AC=6,AD=5,求AE的长.23.(8分)如图,AD为△ABC的中线,AB=AC,∠BAC=45°,过点C作CE⊥AB,垂足为E,CE与AD交于点F.(1)求证:△AEF≌△CEB;(2)试探索AF与CD的数量关系,并说明理由.24.(8分)如图,在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,使顶点B的对应点B′落在直角边AC的中点上,求CE的长.25.(10分)某企业生产并销售某种产品,假设销售量与产量相等,图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段CD所表示的y2与x之间的函数表达式;(3)当该产品产量为90kg时,获得的利润是多少?2016-2017学年江苏省徐州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)(2016秋•徐州期末)的算术平方根是()A.± B.﹣ C.D.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵()2=,∴的算术平方根为,故选(C)【点评】本题考查算术平方根的概念,属于基础题型.2.(3分)(2016秋•徐州期末)下列各组数中不能作为直角三角形的三边长的是()A.6,8,10 B.7,24,25 C.1.5,2,3 D.9,12,15【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、62+82=102,故是直角三角形,故此选项不合题意;B、242+72=252,故是直角三角形,故此选项不合题意;C、22+1.52≠32,故不是直角三角形,故此选项符合题意;D、92+122=152,故是直角三角形,故此选项不合题意.故选C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.(3分)(2016秋•徐州期末)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【解答】解:如图,∠A、AB、∠B都可以测量,即他的依据是ASA.故选B.【点评】本题考查了全等三角形的应用,准确识图,并熟记全等三角形的判定方法是解题的关键.4.(3分)(2016秋•徐州期末)下列图形,对称轴最多的是()A.正方形B.等边三角形C.角D.线段【分析】根据轴对称图形的对称轴的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做轴对称图形的对称轴.【解答】解:A、有4条对称轴,即两条对角线所在的直线和两组对边的垂直平分线;B、有3条对称轴,即各边的垂直平分线;C、有1条对称轴,即底边的垂直平分线;D、有2条对称轴.故选:A.【点评】此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线是它的对称轴.5.(3分)(2016秋•徐州期末)平面直角坐标系中,点P(3026,﹣2017)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(3026,﹣2017)在第四象限,故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(3分)(2016秋•徐州期末)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定【分析】先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣2的大小,根据函数的增减性进行解答即可.【解答】解:∵直线y=﹣2x+3中,k=﹣2<0,∴此函数中y随x的增大而减小,∵3>﹣2,∴y1<y2.故选B.【点评】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,根据题意判断出函数的增减性是解答此题的关键.7.(3分)(2016秋•徐州期末)如图,在平面直角坐标系中,AD平分∠OAB,DB⊥AB,BC∥OA,若点B的横坐标为1,点D的坐标为(0,),则点C的坐标是()A.(0,2) B.(0,5) C.(0,)D.(0,+)【分析】根据角平分线的性质得出DB=OD,再解答即可.【解答】解:∵AD平分∠OAB,DB⊥AB,∴DB=OD=,∵点B的横坐标为1,∴BC=1,∴CD=,∴OC=OD+DC=,∴点C的坐标是(0,),故选D【点评】此题考查角平分线的性质,关键是根据角平分线的性质得出DB=OD.8.(3分)(2016•荆门)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是A;故选:A.【点评】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.二、填空题(本题有8小题,每小题3分)9.(3分)(2016秋•徐州期末)1.0247精确到百分位的近似数是 1.02.【分析】把千分位上的数字4进行四舍五入即可.【解答】解:1.0247精确到百分位的近似数是1.02.故答案为1.02.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.10.(3分)(2016秋•徐州期末)请写出一个介于6和7之间的无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:写出一个介于6和7之间的无理数,故答案为:.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.11.(3分)(2014•咸宁)点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【解答】解:点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.(3分)(2017•双柏县一模)等腰三角形两边长分别是3和6,则该三角形的周长为15.【分析】由三角形的三边关系可知,其两边之和大于第三边,两边之差小于第三边.【解答】解:由三角形的三边关系可知,由于等腰三角形两边长分别是3和6,所以其另一边只能是6,故其周长为6+6+3=15.故答案为15.【点评】本题主要考查了三角形的三边关系问题,能够利用三角形的三边关系求解一些简单的计算、证明问题.13.(3分)(2016秋•徐州期末)将一次函数y=﹣x+3的图象沿y轴向下平移2个单位长度,所得图象对应的函数表达式为y=﹣x+1.【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【解答】解:∵将一次函数y=﹣x+3的图象沿y轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣x+3﹣2,即y=﹣x+1.故答案为y=﹣x+1.【点评】此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.14.(3分)(2016秋•徐州期末)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB= 80°.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△ABC≌△DCB,∠DBC=40°,∴∠ACB=∠DBC=40°,∴∠AOB=∠ACB+∠DBC=40°+40°=80°.故答案为:80.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.15.(3分)(2016秋•徐州期末)如图,在△ABC中,AB=AC,∠A=20°,边AC 的垂直平分线交AC于点D,交AB于点E,则∠BCE等于60°.【分析】根据等角对等边可得∠ACB=(180°﹣20°)÷2=80°,再根据线段垂直平分线的性质可得AE=CE,进而可得∠ACE=∠A=20°,然后可得∠BCE的度数.【解答】解:∵AB=AC,∠A=20°,∴∠ACB=(180°﹣20°)÷2=80°,∵DE是AC的垂直平分线,∴AE=CE,∴∠ACE=∠A=20°,∴∠ECB=80°﹣20°=60°,故答案为:60.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握等边对等角.16.(3分)(2015•威海模拟)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.三、解答题(本题有8小题,共72分)17.(10分)(2016秋•徐州期末)(1)计算:20160+﹣(﹣)﹣2;(2)求x的值:4x2=9.【分析】(1)先计算20160、、(﹣)﹣2的值,再计算最后的结果;(2)方程的两边都除以4后,利用平方的意义,求出x的值.【解答】解:(1)因为20160=1,=﹣2,(﹣)﹣2=4,所以20160+﹣(﹣)﹣2=1﹣2﹣4=﹣5;(2)4x2=9,所以x2=所以x=±【点评】本题考查了0指数、负整数指数、实数的运算及平方的意义.0指数的意义:a0=1(a≠0);负整数指数幂的意义:a﹣p=(a≠0).18.(6分)(2016秋•徐州期末)如图,在2×2的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,如图中的△ABC为格点三角形,请你在下面四张图中分别画出一个与△ABC成轴对称的格点三角形(要求所画图形不重复).【分析】根据轴对称图形的概念,画出图形即可.【解答】解:与△ABC成轴对称的格点三角形如图所示,.【点评】本题考查作图﹣轴对称变换,考查学生的动手能力,解题的关键是理解轴对称图形的概念,本题主要属于基础题.19.(8分)(2008•常州)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:BC=DE.【分析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS).∴BC=DE.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.(8分)(2011•沈阳)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【分析】(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.【点评】本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.21.(6分)(2016秋•徐州期末)已知正比例函数y1=﹣2x的图象如图.(1)在平面直角坐标系中,画出一次函数y2=2x﹣4的图象;(2)若y2<y1,则x的取值范围是x<1.【分析】(1)利用两点法画图象;(2)由图象得出取值.【解答】解:(1)当x=0时,y=﹣4;当y=0时,x=2,∴与x轴交点为(2,0),与y轴交点为(0,﹣4),图象如下:(2)由图象得:交点为(1,﹣2),若y2<y1,则x的取值范围是x<1.故答案为:x<1.【点评】本题考查了一次函数和正比例函数的图象和性质,熟练掌握利用两点法画一次函数的图象:①与x轴交点为,②与y轴交点;并利用数形结合的方法解决问题.22.(8分)(2016秋•徐州期末)如图,在Rt△ABC中,∠BAC=90°,AD是中线,AE是高,AC=6,AD=5,求AE的长.【分析】由直角三角形斜边上的中线性质求出BC,由勾股定理求出AB,再由三角形的面积关系即可求出AE.【解答】解:如图所示:∵∠BAC=90°,AD是中线,∴BC=2AD=10,在Rt△ABC中,由勾股定理得:AB===8,∵AE是高,∴AB•AC=BC•AE,∴AE===4.8.【点评】此题主要考查了勾股定理、直角三角形的性质以及三角形面积的计算,熟练掌握勾股定理是解决问题的关键.23.(8分)(2016秋•徐州期末)如图,AD为△ABC的中线,AB=AC,∠BAC=45°,过点C作CE⊥AB,垂足为E,CE与AD交于点F.(1)求证:△AEF≌△CEB;(2)试探索AF与CD的数量关系,并说明理由.【分析】(1)利用同角的余角相等,证明∠BAD=∠BCE,利用ASA证明即可解答;(2)由全等三角形的性质得出AF=BC,即可得出结论.【解答】(1)证明:∵CE⊥AB,∴∠AEC=90°,∵∠BAC=45°,∴∠ACE=90°﹣45°=45°,∴∠EAC=∠ACE,∴AE=CE.∵AB=AC,点D是BC的中点,∴AD⊥BC,BC=2CD,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠B+∠BCE=90°,∴∠BAD=∠BCE,在△AEF和△CEB中,,∴△AEF≌△CEB(ASA);(2)解:AF=2CD;理由如下:∵△AEF≌△CEB,∴AF=BC,∵BC=2CD,∴AF=2CD.【点评】本题考查了全等三角形的性质与判定、等腰直角三角形的判定与性质,解决本题的关键是熟记全等三角形的判定方法.24.(8分)(2016秋•徐州期末)如图,在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,使顶点B的对应点B′落在直角边AC的中点上,求CE的长.【分析】设CE=x,则BE=8﹣x;在Rt△B'CE中,根据勾股定理列出关于x的方程,解方程即可解决问题.【解答】解:∵点B′落在AC的中点,∴CB′=AC=3,设CE=x,则BE=8﹣x,由折叠得:B'E=BE=8﹣x,在Rt△B'CE中,由勾股定理得x2+32=(8﹣x)2解得:x=,即CE的长为:.【点评】该题主要考查了翻折变换的性质及其应用,解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系,借助勾股定理列方程进行解答.25.(10分)(2016秋•徐州期末)某企业生产并销售某种产品,假设销售量与产量相等,图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段CD所表示的y2与x之间的函数表达式;(3)当该产品产量为90kg时,获得的利润是多少?【分析】(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段线段CD经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)先将x=90代入(2)中所求的解析式,求出y2的值,再根据利润=每千克利润×产量列式即可求解.【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设y2与x之间的函数关系式为y2=kx+b,∵经过点(0,120)与(130,42),∴,解得:,∴线段CD所表示的一次函数的表达式为y2=﹣0.6x+120(0≤x≤130);(3)将x=90代入y2=﹣0.6x+120,得y2=﹣0.6×90+120=66,所以利润为(66﹣42)×90=2160(元).答:当该产品产量为90kg时,获得的利润是2160元.【点评】本题主要考查一次函数的应用,待定系数法求一次函数的表达式,解题的关键是从实际问题中抽象出一次函数模型,难度不大.。
2016-2017学年度第一学期期末抽检九年级数学试题(友情提醒:本卷共4页,满分为120分,考试时间为90分钟;答案全部涂、写在答题卡上,写在本卷上无效)一.选择题(本大题有8小题,每小题3分,共24分)1.一元二次方程x 2-4=0的解是( )A .x=2B .x 1=√2,x 2=−√2C .x=-2D .x 1=2,x 2=-2 2.下列图形中既是中心对称图形又是轴对称图形的是( )3.若甲乙两个样本的方差分别为0.4、0.6,则下列说法正确的是( )A .甲比乙稳定B .乙比甲稳定C .甲、乙一样稳定D .无法比较 4.关于x 的一元二次方程x 2-kx-1=0的根的情况是( )A .没有实数根B .有一个实数根C .有两个相等的实数根D .有两个不相等的实数根5.如图,圆O 的直径CD=10,AB 是圆O 的弦,CD ⊥AB ,垂足为P ,若OP :OD=3:5,则AB的长为( )A .8B .6C .4D .√916.如图,小正方形的边长为1,下列图中的三角形(阴影部分)与△ABC 相似的是( )7.正六边形的周长为6,则它的面积为( )A .9√3B .3√3C .32√3D .14√3 8.两个相似三角形的最短边分别是5cm 和3cm ,它们的周长之差为12cm ,那么小三角形的周长为( )A .14cmB .16cmC .18cmD .30cm二.填空题(本大题有8小题,每小题3分,共24分)9.在Rt △ABC 中,∠C=90°,sinA=12,则∠A 等于 . 10.将抛物线y=-3x 2向上平移1个单位长度,所得抛物线的函数表达式 .11.若圆O 的半径4cm ,圆心O 到直线l 的距离为5cm ,则直线l 与圆O 的位置关系是 .12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中任意摸出一个球,若摸到红球的概率是0.2,若摸到白球的概率是0.5,则摸到黑球的概率是 .11. 用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则该圆锥的底面圆的半径为 .14.如图,AB 、AC 是圆O 的两条弦,∠A=30°,过点C 的切线与OB 的延长线交于点D ,则∠D= .15. 如图,点B 、C 都在x 轴上,AB ⊥BC ,垂足为B ,M 是AC 中点,若点A 的坐标为(3,4),点M 的坐标为(1,2),则点C 的坐标为 .16. 如图,在平面直角坐标系中,点C 在抛物线y=x 2+2x+2上运动,过点C 作AC ⊥x 轴于点A ,以AC 边作等边三角形ABC ,高AD 的最小值为 .三.解答题(本大题有9小题,共72分)17.(本题8分)(1)计算(3√2+1)0-(12)−1+2cos60° (2)解方程:x 2-4x-5=018.(本题6分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外都相同。
2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
2016-2017学年江苏省徐州市七年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)的相反数是()A.﹣2 B.﹣ C.D.22.(3分)下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.(﹣3)33.(3分)下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.﹣a2b+2a2b=a2b D.3a2+2a2=5a44.(3分)如图,若图形A经过平移可以与图形B、C拼成一个长方形,则可能的平移方式是()A.向右平移4格,再向下平移5格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移2格D.向右平移6格,再向下平移2格5.(3分)将一个无盖正方体纸盒展开,展开图不可能是()A.B.C.D.6.(3分)如图,BC=AB,D为AC的中点,若DC=3,则AB的长是()A.3 B.4 C.5 D.67.(3分)已知射线OC在∠AOB的内部,下列关系式①∠AOC=∠BOC;②∠AOC+∠BOC=∠AOB;③∠AOB=2∠AOC;④∠BOC=∠AOB.其中,能说明OC为∠AOB的平分线的有()A.1个 B.2个 C.3个 D.4个8.(3分)观察下列图形,照此规律,第5个图形中白色三角形的个数是()A.81 B.121 C.161 D.201二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:﹣3﹣1=.10.(3分)多项式3a2+2b3的次数是.11.(3分)2017年春运期间,徐州铁路两站预计发送旅客2430000人次,该数据用科学记数法可表示为人次.12.(3分)若m+2n=1,则代数式3﹣m﹣2n的值是.13.(3分)数学课上,小丽把一副三角板按如图所示的位置摆放(其中一个三角板的直角顶点在另一个三角板的直角边上),如果∠α=28°,那么∠β=°.14.(3分)建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一条线,沿这条线就可以砌出直的墙了,其中的数学道理是.15.(3分)当x=﹣2时,代数式kx+5的值为﹣1,则k的值为.16.(3分)若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为.三、解答题(本题共9小题,共72分)17.(10分)计算(1)|﹣4|+23+3×(﹣5)(2)﹣12016﹣×[4﹣(﹣3)2].18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中a=2,b=﹣3.19.(8分)解下列方程(1)4﹣x=3(2﹣x)(2)=2﹣.20.(6分)如图是由6个棱长都为1cm的小正方体搭成的几何体.(1)该几何体的主视图如图所示,请在下面方格纸中高分别画出它的左视图和俯视图;(2)该几何体的表面积为cm2.21.(8分)为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?22.(8分)如图,在方格纸中,点A、B、C是三个格点(网格线的交点叫做格点)(1)过点C画AB的垂线,垂足为D;(2)将点D沿BC翻折,得到点E,作直线CE;(3)直线CE与直线AB的位置关系是;(4)判断:∠ACB∠ACE.(填“>”、“<”或“=”23.(8分)如图,直线AB与CD相交于O,OE是∠AOC的平分线,OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)求∠EOF与∠BOG是否相等?请说明理由.24.(8分)某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:.行驶里程收费标准不超出3km的部分起步价7元,燃油附加费1元超出3km不超出6km的部分 1.6元/km超出6km的部分 2.4元/km(1)若行驶路程为5km,则打车费用为元;(2)若行驶路程为x(km)(x>6),则打车费用为元;(用含x的代数式表示)(3)当打车费用为27.2元时,行驶路程为多少千米?25.(10分)点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则点A表示的数是;(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|=;(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点P、Q之间的距离;②设运动时间为t(单位:秒),则t为何值时,PQ=5?2016-2017学年江苏省徐州市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)的相反数是()A.﹣2 B.﹣ C.D.2【解答】解:的相反数是﹣.故选:B.2.(3分)下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.(﹣3)3【解答】解:由于﹣(﹣3)=3,故选项A不为负数;由于|﹣3|=3,故选项B不为负数;由于(﹣3)2=9,故选项C不为负数;由于(﹣3)3=﹣27,故选项D为负数;故选:D.3.(3分)下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.﹣a2b+2a2b=a2b D.3a2+2a2=5a4【解答】解:A.2a﹣a=a,所以此选项错误;B.2a+b不能合并,所以此选项错误;C.﹣a2b+2a2b=a2b,所以此选项正确;D.3a2+2a2=5a2,所以此选项错误,故选:C.4.(3分)如图,若图形A经过平移可以与图形B、C拼成一个长方形,则可能的平移方式是()A.向右平移4格,再向下平移5格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移2格D.向右平移6格,再向下平移2格【解答】解:图形A经过平移可以与图形B、C拼成一个长方形,需将A向右平移4格,再向下平移5格,故选:A.5.(3分)将一个无盖正方体纸盒展开,展开图不可能是()A.B.C.D.【解答】解:由正方体的展开图的特征可知,将一个无盖正方体纸盒展开,展开图不可能是.故选:D.6.(3分)如图,BC=AB,D为AC的中点,若DC=3,则AB的长是()A.3 B.4 C.5 D.6【解答】解:∵D为AC的中点,DC=3,∴AC=2DC=2×3=6,∵BC=AB,∴AB=AC=×6=4,故选:B.7.(3分)已知射线OC在∠AOB的内部,下列关系式①∠AOC=∠BOC;②∠AOC+∠BOC=∠AOB;③∠AOB=2∠AOC;④∠BOC=∠AOB.其中,能说明OC为∠AOB的平分线的有()A.1个 B.2个 C.3个 D.4个【解答】解:①∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确;②∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,错误;③∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确;④∵∠AOC=∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确.故选:C.8.(3分)观察下列图形,照此规律,第5个图形中白色三角形的个数是()A.81 B.121 C.161 D.201【解答】解:∵第一个图形中白色三角形的个数是1,第二个图形中白色三角形的个数是1+1×3=4,第三个图形中白色三角形的个数是1+4×3=13,∴第四个图形中白色三角形的个数是1+13×3=40,第五个图形中白色三角形的个数是1+40×3=121,故选:B.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:﹣3﹣1=﹣4.【解答】解:﹣3﹣1=﹣3+(﹣1)=﹣(3+1)=﹣4.故答案为:﹣4.10.(3分)多项式3a2+2b3的次数是3.【解答】解:多项式3a2+2b3的次数是3,故答案为3.11.(3分)2017年春运期间,徐州铁路两站预计发送旅客2430000人次,该数据用科学记数法可表示为 2.43×106人次.【解答】解:2430000=2.43×106.故答案为:2.43×106.12.(3分)若m+2n=1,则代数式3﹣m﹣2n的值是2.【解答】解:∵m+2n=1,∴3﹣m﹣2n=3﹣(m+2n)=3﹣1=2.故答案为:2.13.(3分)数学课上,小丽把一副三角板按如图所示的位置摆放(其中一个三角板的直角顶点在另一个三角板的直角边上),如果∠α=28°,那么∠β=62°.【解答】解:∵平角=180°,直角=90°,∴α+β=180°﹣90°=90°,∵∠a=28°,∴∠β=90°﹣28°=62°,故答案为:62.14.(3分)建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一条线,沿这条线就可以砌出直的墙了,其中的数学道理是两点确定一条直线.【解答】解:建筑工人在砌墙时,经常在两个墙角的位置分别立一根标志杆,在两根标志杆之间拉一根线,沿着这条线就可以砌出直的墙.则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.15.(3分)当x=﹣2时,代数式kx+5的值为﹣1,则k的值为3.【解答】解:当x=﹣2时,∴﹣2k+5=﹣1∴k=3故答案为:316.(3分)若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.三、解答题(本题共9小题,共72分)17.(10分)计算(1)|﹣4|+23+3×(﹣5)(2)﹣12016﹣×[4﹣(﹣3)2].【解答】解:(1)|﹣4|+23+3×(﹣5)=4+8﹣15=﹣3(2)﹣12016﹣×[4﹣(﹣3)2]=﹣1﹣×[4﹣9]=﹣1+1=018.(6分)先化简,再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中a=2,b=﹣3.【解答】解:原式=15a2b﹣5ab2﹣12a2b+4ab2=3a2b﹣ab2,当a=2,b=﹣3时,原式=﹣36﹣18=﹣54.19.(8分)解下列方程(1)4﹣x=3(2﹣x)(2)=2﹣.【解答】解:(1)去括号得:4﹣x=6﹣3x,移项合并得:2x=2,解得:x=1;(2)去分母得:5x﹣5=20﹣2x﹣4,移项合并得:7x=21,解得:x=3.20.(6分)如图是由6个棱长都为1cm的小正方体搭成的几何体.(1)该几何体的主视图如图所示,请在下面方格纸中高分别画出它的左视图和俯视图;(2)该几何体的表面积为26cm2.【解答】解:(1)如图所示:(2)4×2+4×2+5×2=26(cm2).故该几何体的表面积为26cm2.故答案为:26.21.(8分)为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?【解答】解:设该班共有x名学生,根据题意得:=,解得:x=44.答:该班共有44名学生.22.(8分)如图,在方格纸中,点A、B、C是三个格点(网格线的交点叫做格点)(1)过点C画AB的垂线,垂足为D;(2)将点D沿BC翻折,得到点E,作直线CE;(3)直线CE与直线AB的位置关系是平行;(4)判断:∠ACB>∠ACE.(填“>”、“<”或“=”【解答】解:(1)如图所示:点D即为所求;(2)如图所示:直线EC,即为所求;(3)直线CE与直线AB的位置关系是:平行;故答案为:平行;(4)如图所示:∵∠ECA=∠A,AB>BC,∴∠ACB>∠A,∴∠ACB>∠ACE.故答案为:>.23.(8分)如图,直线AB与CD相交于O,OE是∠AOC的平分线,OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)求∠EOF与∠BOG是否相等?请说明理由.【解答】解:(1)∵OF⊥CD,∴∠COF=90°,又∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∴∠AOF=∠COF﹣∠AOC=90°﹣52°=38°;(2)相等,理由:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=26°,又∵OG⊥OE,∴∠EOG=90°,∴∠BOG=180°﹣∠AOE﹣∠EOG=64°,而∠EOF=∠AOF+∠AOE=38°+26°=64°,∴∠EOF=∠BOG.24.(8分)某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:.行驶里程收费标准不超出3km的部分起步价7元,燃油附加费1元超出3km不超出6km的部分 1.6元/km超出6km的部分 2.4元/km(1)若行驶路程为5km,则打车费用为11.2元;(2)若行驶路程为x(km)(x>6),则打车费用为(2.4x﹣1.6)元;(用含x的代数式表示)(3)当打车费用为27.2元时,行驶路程为多少千米?【解答】解:(1)支付:车费:7+1+(5﹣3)×1.6=11.2(元);(2)7+1+1.6×3+2.4(x﹣6)=8+4.8+2.4x﹣14.4=2.4x﹣1.6(元).答:打车费用为(2.4x﹣1.6)元他应该支付62元;(3)由题意得2.4x﹣1.6=27.2,解得:x=12.答:行驶路程为12千米.故答案为:11.2;(2.4x﹣1.6).25.(10分)点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则点A表示的数是﹣5;(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|= 2;(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点P、Q之间的距离;②设运动时间为t(单位:秒),则t为何值时,PQ=5?【解答】解:(1)若点C为原点,则点B表示﹣2,点A表示﹣5,故答案为:﹣5;(2)由题意知a<c,d>b,a<d,则|a﹣c|+|d﹣b|﹣|a﹣d|=c﹣a+d﹣b﹣(d﹣a)=c﹣a+d﹣b﹣d+a=c﹣b,∵BC=2,即c﹣b=2,故答案为:2;(3)①由题意知点P回到起点需要6秒,点Q回到起点需要4秒,∴当t=4时,运动停止,此时BP=1,BC=2,CQ=4,∴PQ=7;②、分以下两种情况:1、当点Q未到达点C时,可得方程:t+2t+5=3+2+4,解得t=;2、当点P由点B折返时,可得方程(t﹣3)+2(t﹣2)+2=5,解得:t=;综上,当t=或t=时,PQ=5.附赠:数学考试技巧一、心理准备细心+认真=成功!1、知己知彼,百战百胜。
2016-2017 学年度第一学期期末抽测
七年级数学试题
(友情提醒: 本卷共4页,满分为120分,考试时间为90分钟)
一、选择题(本大题有8小题,每小题3分,共24分) 题目 1 2 3 4 5 6 7 8 答案
1.
2
1
的相反数是(▲) A.-2
B. 2
1-
C.
2
1 D.2
2.下列算式中,运算结果为负数的是(▲) A.-(-3) B.|-3| C.(-3)2 D.(-3)3
3.下列运算正确的是(▲) A.2a -a=2 B.2a+b=2ab C.-a 2b+2a 2b=a 2b D.3a 2+2a 2=5a 4
4.如图,若图形A 经过平移可以与图形B 、C 拼成一个长方形,则可能的平移方式是(▲) A.向右平移4格,再向下平移5格 B.向右平移6格,再向下平移5格 C.向右平移4格,再向下平移2格 D.向右平移6格,再向下平移2格
5.将一个无盖正方体纸盒展开,展开图不可能是(▲)
6.如图,AB BC 2
1
=
,D 为AC 的中点,若DC=3,则AB 的长是(▲) A. 3 B. 4 C. 5 D. 6
7. 己知射线OC 在∠AOB 的内部,下列关系式:
① ∠AOC=∠BOC ; ②∠AOC+∠BOC=∠AOB: ③∠AOB=2∠AOC ; ④
AOB BOC ∠=
∠2
1
其中,能说明OC 为∠AOB 的平分线的有(▲) A.1个 B.2个 C.3个
D.4个
8.观察下列图形,照此规律,第5个图形中白色角形的个数是(▲) A.81 B.121 C.161
D.201
二.填空题(本大题共有8小题,每小题3分。
共24分) 9. 计算: -3-1= .
10. 多项式 3a 2+2b 3 的次数是
11. 2017年春运期间,徐州铁路两站预计发送旅客2 430 000人次,该数据用科学记数法表示为 次.
12. 若m+2n=1,则代数式3-m -2n 的值是
13. 数学课上,小丽把一副三角板按如图所示的位置摆放(其中一个三角板的直角顶点在另一个角板的直角边上).如果∠α=28°,那么∠β=
14. 建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一条线,沿这条线就可以砌出直的墙了,其中的数学道理是
5. 当x=-2时,代数式kx+5的值为-1,则k 的值为 . 1
6.若输入整数..a ,按照下列程序,计算将无限进行下去且不会输出。
则a 所有可能....取到的值为 .
三、解答题: (本大题共有9小题,共72分) 17.(本题10分) 计算:
(1) )(||53243
-⨯++- (2)])([22016
345
1
1
--⨯--
8.(本题6 分) 先化简,再求值: 5(3a 2b -ab 2)-4(3a 2b -ab 2),其中a=2,b=- 3.
9.(木题8分) 解下列方程:
(1) 4+x=3(2 -x); (2)5
2
221+-=-x x
20.(本题6分) 下图是由6个棱长都为1cm的小正方体搭成的几何体。
(1) 该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;
(2) 该几何体的表面积为cm2.
21.(本题8 分) 为实施“学讲计划”,某班学生计划分成若干个学习小组.若每组5人,则多出4人;若每组6人,则有一组只有2人.该班共有多少名学生?
22.(本题8 分)如图,在方格纸中,点A,B、C是三个
格点(网格线的交点叫做格点).
(1) 过点C画AB的垂线,垂足为D;
(2) 将点D沿BC翻折,得到点E,作直线CE:
(3) 直线CE与直线AB的位置关系是;
(4) 判断: ∠ACB___ ∠ACE. (填“>”、“<”或“=”)
23.(本题8分) 如图,直线AB与CD相交于O,OE 是∠AOC的平分线,OF⊥CD,
OG⊥OE,∠BOD=52°
(1) 求∠AOF的度数;
(2) ∠EOF 与∠BOG 是否相等? 请说明理由.
24.(本题8分) 某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:
行驶路程收费标准
不超出3 km 的部分起步价7元+燃油附加费1元
超出3km不超出6km的部分 1.6 元/km
超出6km的部分 2.4 元/km
(1) 若行驶路程为5km,则打车费用为元;
(2) 若行驶路程为x (km) (x>6),则打车费用为元;( 用含x的代数式表示)
(3) 当打车费用为27.2元时,行驶路程为多少千米?
25.(本题10 分)点A、B、C、D在数轴上的位置如图1所示,已知AB = 3,BC = 2,CD = 4.
(1) 若点C 为原点,则点A表示的数是;
(2) 若点A、B、C 、D分别表有理数a、b、c、d.则|a-c|+|d-b|-|a-d|=
(3) 如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2 个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q 中的某点回到出发点时,两点同时停止运动.
①当两点停止运动时,求点P、Q之间的距离;
②设运动时间为t (单位: 秒),则t为何值时,PQ=5?。