当前位置:文档之家› 海洋激光遥感技术综述

海洋激光遥感技术综述

海洋激光遥感技术综述
海洋激光遥感技术综述

海洋激光遥感技术综述

随着国内确立了由海洋经济大国向海洋经济强国转变的发展战略,海洋参数遥感、海洋资源测绘、水下目标探测等领域的新原理及关键技术研究日益受到关注。利用上述研究成果获得海洋水体特征参数(如声速、温度、盐度、折射率、体粘滞系数等),可为研究全球气候和生态环境体系,改善海洋环境、海洋灾害预警与海洋气象预报准确度,研究全球气候变暖对策等基础科学领域提供可靠的数据支持;也为我国在民生经济领域对海洋信息的探索与研究,以及对海洋资源的全方位、高效益和可持续地开发与利用具有重要的研究价值和显著的社会效益;特别对我国海军新的战略需求、海上利益保障和积极探索全球全域作战的战略战术提供技术保障。目前,声学探测手段在海洋探测领域一直占据着统治地位。然而,声波在海水中的传播速度不仅受海水的盐度、温度和水压等环境因素的影响较大,而且还受到海洋的边界条件和时空变化等的制约。声纳水下成像技术虽然探测距离较远,但图像分辨率较低,不易辨识小目标。此外,传统的接触式光学与电学海洋探测手段存在覆盖面小、测量速度慢、同步测量困难等缺点;而非接触式的星载微波辐射和红外辐

射遥感探测技术虽然可实现快速、大范围探测,但由于水体对微波和红外极高的吸收性,只能获得海水表层信息。因此,急需发展激光遥感新原理及关键技术来弥补海洋探测中的不足,实现高速、高精度、低成本和大面积的海洋探测。

近年来,随着光谱探测、干涉测量、微弱信号检测等技术和水体布里渊散射、拉曼散射理论的迅猛发展,以及相关高性能器件的相继出现,使海洋激光遥感的实时、多参量、高精度探测成为可能。目前,国内研究包括基于光散射理论的频率探测和基于成像的幅度探测的海洋激光遥感新原理及关键技术。众多科研院所在布里渊散射基础理论、布里渊散射谱信息获取技术、布里渊激光雷达探测水温、海洋水体特征参量获取、水体气泡、海洋地形地貌等领域开展了大量的基础理论与工程技术方面的研究工作,取得了多项原创性的研究成果。

一、海洋激光遥感理论

在海洋激光遥感领域国内发展了基于光散射和光反射的两类遥感理论。在利用光散射信号实现海洋遥感中,研究主要集中在水体的布里渊散射领域。而在利用光反射信号实现海洋遥感中,研究主要集中在如何抑制后向散射噪声领域。

(一)水体布里渊散射

海水中存在着随机的密度涨落并以声速在海水中传播,相当于位相光栅,从而引起入射光的Bragg衍射,衍射光的频率产生Doppler位移△±ωB,位于入射光频率(分子散射)的两侧±1.0cm-1范围内。其关系如图1所示。

(二)海洋成像

在海洋成像中,激光光源往返于激光雷达系统(反射与接收系统)、大气、气液界面和海水之间,激光雷达发出的信号光在水中传输时,在目标处产生反射信号,以及传输链路上水体后向散射信号,两者之间存在时间差,利用时间分辨获得距离分辨,实现水体中目标的深度。由于使用的光学技术在海洋中传输的最大问题就是当激光通过水体介质时存在极大的后向散射,主要原因是海水中存在各种杂质和浮游物质,即所谓的黄色物质。这些物质所产生的散射和吸收在很大程度上降低了目标对比度,使探测灵敏度得到限制。绝大部分散射光在没有抵达目标的情况下返回到光电探测器,产生了很强的散射噪声电平,而抵达目标并返回光电探测器的这些光又由于海水的前向散射,当这些光返回到光电探测器时也会产生噪声电平,降低目标信号的对比度和清晰度。同时,还有其他光源(如太阳光、恒星光等)与暗电流也会产生探测器的噪声电平,即回波信号中的杂波。除此之外,在一些特殊的海域,强烈的湍流和气泡等复杂海洋环境也产生强烈的背景噪声。因此如何抑制后向散射噪声电平成为了考察系统探测性能很重要的技术手段。

二、水体参数的激光遥感

海水温度是表征海洋状态的最重要参数,几乎海洋中发

生的所有现象和过程都与海水温度相关,并对地球气候变化具有十分显著的影响。因此,目前水体参数的激光遥感聚焦在海水温度探测领域。由于蓝绿激光在海水中的衰减系数较小、可以穿透一定深度的水体,因此水体参数的遥感雷达主要采用蓝绿激光作为激励源。国内发展的遥感雷达主要是基于水体光散射的布里渊激光雷达系统,并开展了初步的海试试验。由于布里渊散射是一种非弹性散射,散射光与激励激光中心频率存在频移,该频移与水体的声波特性以及散射角有关,而声速又与水体的温度、盐度、密度、折射率等特征参量密切相关。因此,可以利用布里渊激光雷达系统探测布里渊频移,反演水体温度。此外,海水盐度可通过不同海域盐度均值、海洋盐度探测卫星或拉曼激光雷达获得,再利用海水折射率与海水温度、盐度和波长的定量函数关系,即可精确获取海水温度。在海水温度探测中,同时可以获得如声速、盐度、折射率、体粘滞系数等。目前发展的布里渊频移探测方法主要包括扫描法布里-珀罗(F-P)干涉仪法、F-P 标准具与增强型电荷耦合器件(ICCD)结合测量布里渊散射光谱法、双边缘探测法等,国内北京师范大学、中国海洋大学、南昌航空大学、华中科技大学、西安理工大学等利用上述探测方法开展了水体参数的激光遥感研究。扫描法布里-珀罗干涉仪是一种高精度光谱测量仪器,可以精确测量布里渊散射光谱,图2所示为扫描法布里-珀罗干涉仪测量布里渊散射谱

的装置及其测量的布里渊频谱。但是由于需要使用的高峰值功率脉冲激光器一般重复频率较低,完成如此宽谱段(约20GHz)的扫描需要很长的扫描周期(如若采用重复频率为10Hz的脉冲激光器,实现约20MHz的测量精度,至少需要100s左右才能扫描完成1幅完整的布里渊散射频谱图)。

图2 扫描法F-P干涉仪测量布里渊散射谱法及测量结果

图3 基于ICCD和F-P标准具的布里渊散射谱测量法

图3为应用ICCD和F-P标准具测量布里渊散射谱的装置。该技术对散射光的平行度和激光器的稳频特性没有严格的要求,将布里渊散射激光雷达的实用化推进了一大步。然而,目前ICCD的像素尺寸较大,且帧频较低,对布里渊散射谱的测量误差和测量速度还有一定限制。

图4 基于多通道F-P标准具的双边缘探测法图4为西安理工大学发展的一种基于多通道F-P标准具的双边缘探测法。发射系统采用种子注入Nd:YAG脉冲激光器的二次谐波(532nm),结合动态锁频技术和频移补偿方法,作为激励光源。利用时间延时器将激励光源从第1脉冲至第i脉冲形成间隔时间(τi),脉冲光束的间隔时间逐渐增大,依次与水体相互作用。由卡塞格林望远镜(Cassegraintelescope) 接收不同深度Dn(n=1、2、3、…)处,激励光束产生的瑞利-米散射、拉曼散射和受激布里渊散射回波信号。其在分光系统中首先利用FPE1剔除瑞利-米散射和受激布里渊散射,利用干涉光谱技术测量拉曼的反斯托克斯支的谱形获得水体盐度;再利用溴分子吸收池抑制瑞利-米散射后分为两路:第一路,采用基于双通道FPE 的双边缘探测技术,获得受激布

里渊散射斯托克斯支的频移;第二路,利用光子相关光谱技术获得受激布里渊散射光强的自相关函数G(2)(τ),结合动态光散射与水体受激布里渊散射谱宽的自相关特性获得受激布里渊散射谱宽。

三、水下目标的激光遥感

(一)频率探测

在频率探测中,利用激光雷达获得水体后向光散射频率信息,探测水下目标。其中,主要是利用水体的受激布里渊散射,该散射是当入射光场强度超过某一阈值并通过介质时,会在介质内部产生电致伸缩效应,引起介质的密度涨落,从而激发出相干声波场以及斯托克斯支散射光,声波和散射光会沿着特定的方向传播,这种类似于受激辐射特性的布里渊散射过程称之为受激布里渊散射,其具有高信噪比、相位共轭特性、单频特性等优点。国内北京师范大学、南昌航空大学、华中科技大学等利用当激光作用目标界面由纯液相变为固液相时,受激布里渊散射干涉条纹的消失来判断水下目标的存在。受激布里渊散射是激光与单一水相介质作用产生的非弹性散射,存在水下目标的位置水介质被排空,因此不产生受激布里渊散射。该方法是通过探测水下目标周围环境场的散射光谱有无来探测水下目标,如图5所示。

(二)幅度探测

在幅度探测中,利用激光雷达获得水下目标反射光信息,来探测水下目标形貌。从20世纪80年代末,国内开始开展幅度探测激光雷达系统的研究,以华中科技大学为代表,研制成功了机载激光雷达海洋探测(CALYT) 系统,并于1996年在国内南海海域进行了机载激光雷达探测实验,具有激光扫描、高速数据处理功能。由于国内在该领域的起步较晚,对激光雷达系统水下探测的研究较少,跟发达国家研究水平的距离还比较大。目前,国内众多科研院所:清华大学、电子科技大学、苏州大学、长春理工大学、重庆光电技术研究所、天津津航技术物理研究所等也开展了蓝绿激光雷达的理论

和应用研究,发展了扫描同步空间滤波技术、偏振光水下成像技术、距离选通技术、载波调制技术等来解决强烈的背景噪声问题,获得高分辨率的水下目标图像,如图6和图7所示。

图7 基于载波调制的水下目标激光探测

四、海洋地形地貌的激光遥感

激光海洋测深与海底地形地貌是我国紧随世界潮流发

展的一个研究领域,利用激光雷达进行水下探测的技术大致可分为四个发展阶段,第一个阶段是以1960~1970年代澳大利亚研制成功的WRELADS-I系统为代表,这一代系统都没有激光扫描和高速数据记录功能,主要进行激光测深机理性研究,并用于海水深度的测量;第二个发展阶段是1980~1990年,此时,激光测深系统普遍增加了激光扫描、飞机定位和高速数据记录等功能,使机载激光测量海水深度系统向机载激光测绘海底地貌系统转化,主要代表作有:澳大利亚WRELADS-II、加拿大的LARSEN500 型、美国的SHOALS 等;第三阶段是以20世纪90年代瑞典研制成功的HAWK EYE系统为代表,普遍采用了半导体泵浦的Nd:YAG激光器,增加了GPS卫星全球定位系统,使机载激光测绘近海海底地貌进入实用化。第四阶段是进入21世纪以来,以美国的SHOALS 的升级系统SHOALS-1000T为代表,SHOALS-1000T与SHOALS 相比最大的不同在于它包含一个综合型全功能的数字照相机,可以同时检测水下和地面。该系统的数据搜集量是原系统的2.5倍,但是整体耗费功率只有原来的三分之一。目前中国科学院上海光学精密机械研究所研制了机载海洋测深与地形地貌探测系统,并实现了现实应用,如图8所示。

五、结论

目前,国防科工委遥感技术专项,海军装备预研创新项

目、国家高科技计划及国家自然科学基金等先后启动了对水下目标激光探测新原理及关键技术研究的资助。2017年,海洋发展战略论坛在京召开,提出了“打造海洋高端智库,助力海洋强国建设”的口号;2018年,在西安召开了第二届全国海洋光学高峰论坛,论坛展示了海洋光学领域的最新研究成果、学科前沿发展及研究热点等,为海洋激光遥感展示技术创新、推动技术应用、探讨携手合作的开放学术平台。因此,发展和应用海洋激光遥感技术,对我国辽阔海洋安全具有深远的现实意义,而且由于西方发达国家对我国的技术封锁,使得研究成果更具战略意义。

海洋平台介绍

国际浮式生产储油卸油船(FPSO)发展态势: FPSO(Floating Production Storage and Offloading)浮式生产储油卸油船,它兼有生产、储油和卸油功能,油气生产装置系统复杂程度和价格远远高出同吨位油船,FPSO装置作为海洋油气开发系统的组成部分,一般与水下采油装置和穿梭油船组成一套完整的生产系统,是目前海洋工程船舶中的高技术产品。 韩国船企对FPSO建造具有较强规模效应。如现代重工专门建有FPSO海洋项目生产厂,已交付了6艘大型FPSO;三星重工手中持有5艘大型FPSO订单;大宇造船海洋工程公司则是全球造船企业中建造海上油气勘探船最多的企业,2005年承接海洋项目设备订单计划指标是17亿美元。据海事研究机构(DW)预计,未来5年内FPSO新增需求将会达到84座,投资额约为210亿美元。 FPSO主要技术结构表: FPSO主要技术结构 FPSO主要结构功能 系泊系统:主要将FPSO系泊于作业油田。FPSO在海域作业时系泊系统多采用一个或多个锚点、一 根或多根立管、一个浮式或固定式浮筒、一座转塔或骨架。FPSO系泊方式有永久系泊和 可解脱式系泊两种; 船体部分:既可以按特定要求新建,也可以用油轮或驳船改装; 生产设备:主要是采油和储油设备,以及油、气、水分离设备等; 卸载系统:包括卷缆绞车、软管卷车等,用于连接和固定穿梭油轮,并将FPSO储存的原油卸入穿梭 油轮。其作业原理是通过海底输油管线把从海底开采出的原油传输到FPSO的船上进行处 理,然后将处理后的原油储存在货油舱内,最后通过卸载系统输往穿梭油轮。 配套系统:在FPSO系统配置上,外输系统是其关键的配套系统。 FPSO主要优点随着海洋油气开发、生产向深海不断进入,FPSO与其它海洋钻井平台相比,优势明显,主要表现在以下四个方面: (1)生产系统投产快,投资低,若采用油船改装成FPSO,优势更为显著。而且目前很容易找到船龄不高,工况适宜的大型油船。 (2)甲板面积宽阔,承重能力与抗风浪环境能力强,便于生产设备布置;

海洋平台结构课程设计

中国海洋大学本科生课程大纲 一、课程介绍 1.课程描述: 海洋平台结构课程设计是针对船舶与海洋工程专业本科生开设的工作技术教育层面必修课。本课程通过实践环节,完成具体典型导管架平台的总体设计思路训练,包括海洋环境计算及工程简化、桩基础承载能力计算、导管架结构整体强度及刚度分析,设计计算书撰写和工程图纸表达。通过本课程的实践,使学生能够综合运用海洋平台结构及相关专业课程学习的基础理论和方法,系统完成结构分析计算,提高设计分析和工程表达能力。 2.设计思路: 本课程以海洋平台结构设计的基本过程为主线,结合先修课程中学到的环境荷载计算、桩基承载力验算、结构整体强度分析、CAD制图等基础知识,使学生将掌握的海洋平台结构设计理论知识应用到实际设计和验算中,通过实际设计检验学生对于基础知识的把握,加深学生对理论知识的理解。课程内容包括三个模块:目标平台调研、相关数据计算与分析、计算书编写及工程表达。 - 1 -

(1)目标平台调研: 该模块需要学生熟悉海洋平台设计的一般步骤,对目标平台进行参数和各项性能指标的调研,确定课程设计的各项数据标准。 (2)相关数据计算与分析: 根据已确定的主尺度,对结构在选定工况下的其他参数进行计算,主要分为:海洋环境荷载计算、基础承载力计算、结构整体强度分析。其中,海洋环境荷载计算为在选定海域环境条件下,对风、波浪、海流、冰荷载的计算,并且针对选定工况进行分析;基础承载力计算要求学生掌握桩基轴向承载力验算方法;结构整体强度分析主要包括设计目标平台在外荷载作用下的应力校核及位移校核方法。 (3)计算书编写及工程表达: 本模块中,学生需要学习并完成计算书的编写,掌握目标平台设计资料编写,并且通过专业分析软件完成平台的响应输出分析。最终上交课程设计纸质报告。 3. 课程与其他课程的关系 先修课程:海洋平台结构、钢结构设计基本原理。本门设计课程与先修课程密切相关,只有掌握了先修课程中的理论知识和设计方法,才能够在海洋平台结构设计中加以综合应用,设计出符合规范标准的结构。 二、课程目标 本课程的目标是培养学生从事海洋工程结构设计的基本技能,使学生对海洋工程设计中的标准和规范加以熟悉,对海洋平台结构以及其他先修课程中的理论知识进行综合运用。到课程结束时,学生应能: (1)熟练应用海洋平台结构设计中的相关规范和标准; (2)完成具体目标海洋平台的总体设计以及输出响应特点分析及校核; - 1 -

自升式海洋平台海水提升系统综合设计【文献综述】

文献综述 建筑环境与设备工程 自升式海洋平台海水提升系统综合设计 1 引言 众所周知,海洋中生存着千百万种的海洋生物,包括各种各样的微生物、海洋植物和海生生物。这些生物中有上千种会给海洋设施带来危害,特别是在海下3~40米处的海水层,更是海洋附着生物生存繁殖的天堂,对于海洋平台,它们就会随着海水的取用,附着于平台各个用水管系中,并分泌出酸性物质,造成管路堵塞与腐蚀,直接影响着平台的生产、生活正常运行。 在海洋平台海水提升系统综合设计过程中,为达到节能降耗目的,将以往的大型风冷机组全部改设为海水冷却,这些设备包括四台主发电柴油机组、一台中央空调机组和一台冷冻机组,要求海水管系所供应的海水清洁无污,任何一条管系若发生堵塞,都可能严重影响到冷却机组正常生产工作,甚至造成平台停产,因此,本平台的防海生物系统设置显得尤为关键。 2 常用防海生物的方式 通常防海生物的方法有三种,包括机械法、物理法及化学法: (1)机械法,即为定期对海洋设施进行机械清洗的方式。 (2)物理法包括:①电解法,②超声波法,③辐射法。 (3)化学法包括:①通氯气,即用氯气来毒杀海生物的方式;②低表面能材料,在需保护层面覆盖一层低表面能材料,使海生物不宜附着于表面上;③保护涂层,即用保护涂层防污(涂料中添加有杀生剂、防霉剂等海生物毒素)[1]。 上述三种方法中,机械法在海上操作不易进行,且耗资较多;化学法对水资源污染严重,且水源不能充分利用,而物理法能有效弥补以上两种方法的缺陷,因此,在实际操作过程中,采用较多的是物理法中的电解法,该方式又主要分为电解海水法和电解铜、铝法。

3电解法原理及特点 3.1 电解海水防海生物法 电解海水法,即通过电解海水来达到防海生物目的。海水中含量最多的是以氯化钠为主的盐类物质,其中氯离子在海水中含量最高,其浓度占19%左右,氯化钠与氯化镁占总盐度88.7%左右。电解海水防海生物装置采用镀铂钛电极或特制的电极将海水电解,产生次氯化钠、次氯酸及氯气,这些强氧化剂可杀死海生物的幼虫及孢子,达到防污染目的[2]。 电解海水防海生物装置不仅具有安全可靠,防污彻底,而且具有对环境无污染特点。但在电解过程中,会产生大量的氢气、氢氧化镁、碳酸钙等电解副产物。其中氢气是易燃气体,而氢氧化镁、碳酸钙等电解副产物经过长时间的积累会附着或聚集在电解槽内部,阻塞电解槽,甚至造成电源烧毁。根据《2005海上移动平台入级与建造规范》第三章第八节中3.8.2.4条规定:“具有阴极保护的舱柜,应在其前、后端设置空气管”,在使用过程中,需要对氢气进行安全排放,并定期清洁电解槽内部,以此来保证使用的安全性。因而,对石油海洋平台,尤其应该注意其安全使用,以防因氢气排放不当而引起着火、爆炸等危险。 3.2 电解铜、铝防海生物法 电解铜、铝防海生物法,即采用电解铜、铝方式来进行海水防污处理。其工作原理是利用电解铜铝所产生的有毒物质Cu2O和絮状载体Al(OH)3,随着海水流动分布并附着于海底门和海水管路的内壁上,有效抑制海生物的栖息和生长。在海水进入平台入口处安装防海生物阳极和防腐蚀阳极,通电进行电解,产生防海生物离子和防腐蚀Ⅱ型离子,形成电解液,再由海水泵抽出,分布到整个海水冷却管系中,达到既防止海生物附着又防止管系腐蚀的目的。 电解铜、铝防海生物装置又可分为直接式电解铜、铝防海生物装置与间接式电解铜、铝防海生物装置。 (1)直接式电解铜、铝防海生物装置将电解阳极直接安装在海水过滤器或海水管路,电解产生铜离子和氢氧化铝直接混合在海水中。该装置具有结构简单、安装方便、成本低等特点,不需要专门的摆放空间。 (2)间接式电解铜、铝防海生物装置是将电解槽内的铜铝阳极进行电解,电解所产生的铜离子和氢氧化铝被抽送进入海水管路。该装置具有处理量大,耗电量小,可随时更换阳极

定位技术

无线传感网络定位技术综述 潘国民 120802016 摘要:首先介绍无线传感网络定位技术额相关术语、评价标准等基本概念及定位算法的分类算法;重点基于测距和非测距两个方面介绍无线传感网络定位方法,并研究若干新型无线传感网络定位方法,主要包括移动锚节点算法、三维定位算法和智能定位算法。从实用性、应用环境、硬件条件、供能安全隐私等方面 出发总结当前无线传感网络定位技术存在的问题并给出可行的 解决方案后,展望未来的研究应用发展趋势。 1、引言 在很多无线传感器网络应用中,没有节点位置信息的监测信息往往毫无意义。当监测到事件发生时,关心的一个重要问题就是该事件发生的位置,如森林火灾监测,天然气管道泄漏监测等。这些事件的发生,首先需要知道的就是自身的地理位置信息。定位信息除了用来报告事件发生的地点外,还可用于目标跟踪、目标轨迹预测、协助路由以及网络拓扑管理等。 常见的定位技术如全球定位系统(globe position system,GPS)是目前应用最广的、最成熟的定位系统,通过卫星的授时和测距来对用户节点进行定位,具有较高的定位精度,实时性较好,抗干扰能量强。但是,使用GPS技术定位只适合于视距通信的场合,即室外无遮挡的环境,用户节点通常能耗高、体积大且成本也较高,还需要固定基础设施等,这不太适合低成本自组织

无线传感器网络。另外,机器人领域采用的定位技术也与无线传感器网络的定位技术不同,尽管二者非常相似,节点都具有自组织和移动特性,但是机器人节点数量少,节点能量充足且携带精确的测距设各,这在一般的能量受限的无线传感器网络中很难满足类似的条件。由于资源和能量受限的无线传感器网络对定位的算法和定位技术都提出了较高的要求。因此,无线传感器网络的定位技术或定位算法通常需要具各以下重要特征:自组织特性,节点可能随机分布或人工部署;能量高效特性,尽量采用低复杂度的定位算法,减少通信开销,延迟网络寿命;分布式计算特性,各个节点都计算自己的位置信息;鲁棒性,可能监测数据有误差,要求定位算法具有良好的容错性;节点位置计算的常用方法。2、定位技术分类: 2.1.GPS定位技术 当GPS接收机在室内工作时,由于信号受建筑物的影响而大大衰减到十分微弱的地步,要想达到室外一样直接从卫星广播中提取导航数据和时间信息是不可能的,为了得到较高的信号灵敏度,就需要延长在每个码延迟上的停留时间,A-GPS技术为这个问题的解决提供了可能性。室内GPS技术采用大量的相关器并行地搜索可能的延迟码,同时,也有助于实现快速定位。这种室内GPS 定位技术由于需要在手机内集成GPS接收器,决定了它的应用受限性,为此,把具有该功能的手机价格降到人们可以承受的范围内成了室内GPS技术追求的目标之一。

全球海洋平台及中国自升式平台概述0842813409曹剑锋今年10月

全球海洋平台及中国自升式平台概述 0842813409 曹剑锋 今年1-10月,航运业持续低迷,BDI指数仍在低处徘徊,许多中小型船厂面临破产风险,大型船厂纷纷转向海工市场,今天就来说说海工装备的重头戏——钻井平台。 一、全球海洋钻井平台市场发展迅速 过去几十年,石油工业从浅海到深海再到超深海不断扩张。海洋油气总产量占全球油气总产量的比例已从1997年的20%上升到目前的40%以上,其中深海油气产量约占海洋油气产量的30%以上。在世界已发现的油气可采储量中,海洋油气约占41%。一些海域尤其是深海和北极地区的勘探程度还很低,因此海洋油气资源的潜力仍然很大。 海洋油气的产量和储量一直保持较快增长,也带动了海洋钻井平台市场的发展。上世纪四十年代驳船首次用于近海勘探钻井,1956年出现了钻井船,1961年半潜式钻井平台问世。目前海洋钻井平台大致可以分为8类,即钻井驳船、钻井船、内陆驳、自升式钻井平台、平台钻机、半潜式钻井平台、座底式平台和钻井模块。根据RIGZONE网站统计,截至2009年9月,全球海洋钻井平台总数(包括商用平台和非商用平台)达到1249部。 海洋钻井平台的作业能力也发展迅速,目前深水钻井平台的最大作业水深已经达到3600米(12000英尺),最大钻井深度达到11800米(39000英尺)。例如,Noble公司新建的半潜式平台Danny Adkins和Frontier Drilling公司的Bully Ⅰ和Bully Ⅱ钻井船等都达到了这种能力。随着作业水深能力的不断进步,深水的定义也在不断扩大。1998年以前,水深大于200米就认为是深海,1998年以后深水定义扩大到300米,而现在国际上认为水深大于1350米(4500英尺)才为深水。 目前,全球共有约143家公司从事海上钻井,其中海上钻井承包商大约90家,其余为综合性石油公司。钻井承包商中拥有5部钻井平台以上的约50家,拥有作业水深能力超过600米的钻井平台承包商43家;另外一些综合性公司以及巴西、印度、俄罗斯等国家石油公司也拥有相当数量的海洋钻井平台,但几乎不参与市场竞争。目前,我国只有中海油田服务股份有限公司(COSL)一家真正参与国际钻井平台市场竞争,但仍以浅海和中深海钻井平台为主,虽然目前已开始深海钻井平台的建造,但我国海洋钻井装备的发展已落后于美国、挪威、巴西等国家。 二新建钻井平台市场情况 在金融危机爆发前几年的高油价时期,钻井平台公司在利益的驱动下,带动了新一轮的建造钻井平台的高峰,从2007年开始新建平台的订单数量不断增长。此外,一些造船厂根据以往的经验和自身对经济形势的乐观估计,除了建造承包商委托的钻井平台之外,自己也建造了一部分投机性的钻井平台。 2009年3月,ODS-Petrodata根据当时的新建平台订单和在建情况统计,预计到2012年底之前,将有71部新建的自升式平台和91部浮式平台交付使用。金融危机对平台市场的一个积极影响是,这些新建平台的上市可能会加速平台市场的更新换代,一些老旧的平台将退役。据ODS-Petrodata预测,到2012底自升式平台和半潜式平台的平均年龄都将明显下降。 这些新建的自升式平台的作业水深范围在300430英尺之间,而新建的浮式平台主要针对7500英尺以上的超深水。其中80%以上的新建半潜式钻井平台的作业水深能力在7500英尺以上,而新建钻井船的作业水深能力几乎全部在10000英尺以上。 平台的建造成本近几年也大幅攀升,同样标准的自升式平台在2008年底的造价(名义价格)是2003年的3倍左右;深水浮式平台在1998-2003年的建造周期内,名义价格在2

深海平台技术的研究现状与发展趋势

深海平台技术的研究现状与发展趋势 (一)背景知识 随着地球陆地上化石燃料煤、石油和天然气的日益浅少,人们把目光转向了海洋。如大阳、月球引力作用形成的潮汐能、深海中的锰结核都有很好的发展前景。近些年探明海底“可燃冰”储量极其丰富,且其开发技术亦日趋成熟。 目前已探明的世界海洋石油储量的 80%以上在水深 500m 以内 , 而全部海洋面积的 90%以上水深在 200~6000m 之间 , 因而大量的海域面积有待探明。此外 , 世界上除了少数海域以外 , 大部分地区的近海油气资源已日趋减少 , 向深海发展已成必然趋势 , 深海平台技术已成为国际海洋工程界的一个热点 , 进行了大量的研究 , 新的深海平台结构不断涌现。世界上主要海洋国家 ,诸如美国、英国、法国、日本、韩国、加拿大、澳大利亚等 ,相继制定了“国家海洋发展战略” ,提出了“海洋是能源之源、立国之本”、“保证海洋的可持续发展” 等政策。 我国拥有 300 万 km2 的海疆 , 深海油气资源以及其他海洋资源储 量十分丰富。然而 , 目前我们国家海洋油气资源的开发主要是在200m 水深以下的海域 , 深海平台技术的开发研究尚处于起步阶段。在 面临世界各国对人类共同拥有的深海资源激烈竞争的形势下,我们必须高度重视对深海平台技术的研究与发展,密切关注国际上深海平台设计与建造技术的发展,开展相应的研究工作,并力争参与到国际深海平的设计建造中去,已逐步掌握国外先进的技术水平,这对我国未来深海资源的开发和我国海洋工程事业的发展都具有重要意义。

( 二) 国外深海平台技术的研究现状 1、张力腿平台 1984 年世界上第一座张力腿平台由 CONOCO公司建造 , 并正式安装在欧洲北海的 Hutton 油田。此后,张力腿平台获得了迅速发展。最近投入使用的 URSA 张力腿 平台的工作水深已达 1250m。目前海洋工程界正不断对张力腿平台的新型式进行探索 , 以适应不同海上作业条件要求。例如浮力塔平台技术的研究。 这种平台具有以下特点 : (1)将平台的浮体置于水面以下超过150 英尺 , 使 得平台在升沉方向的大部分流体动力和95% 的纵荡的流体动力被消除; (2) 通过调整压载使整个平台的重心位于浮心之下, 以保证平台有足够的稳性; (3)采用 垂直的拉索和斜拉索组合的系泊系统, 以提高平台在台风和循环海流作用下的系 泊有效性和系泊系统安全性; (4) 平台在六个自由度上的固有周期均大于30s, 从 而可避开波浪能量集中的频率范围; (5)浮体的底部面积很大,有利于平台浅水 拖航或用重大件潜水起重船进行干运; (6) 平台 ( 包括大型浮体、垂直桁架和甲板 ) 可整体建造、运输和安装。 浮力塔平台虽然只是处于概念研究阶段, 但它综合了自升式平台和张力腿平台的优点 , 不失为一种很好的概念。这种平台的浮力舱置于水下, 浮力舱上竖立的 空间刚架支撑着平台甲板及其上的设备, 浮力舱下端用四组钢管张力腿将平台固 定于海底 , 张力腿与海底的连接用筒型基础( 吸力锚 ) 。通过理论与试验研究表明,这种平台具有良好的运动性能, 完全能满足海上油气开发对平台运动的要求,将 是中深水边际油田开发的一种很好的平台形式。 2、单柱式 (Spar)生产平台 作为运输中转装置,单柱式生产平台技术在存储和卸载上的应用已有30多年的历史。 1987 年 , Edward E. Horton在柱形浮标(Spar)和张力腿平台概 念的基础上提出一种用于深水的生产平台,即单柱平台。1996年, Oryx能源公 司委托 J. Ray McDermott公司在墨西哥建造安装了世界上第一座单柱生产平台, 当地水深为 588m。近几年以来 , Chevron 公司和 Exxon公司又在该地区的 Genesis 和 Diana 油田分别安装投产了两座单柱平台 , 当地水深分别为 789m 和 1311m。最 近 BP公司又委托 McDrmott、Alker 等公司共同设计建造五座桁架式单柱平台 (Truss Spar), 用于水深为 1220~ 1830m 的墨西哥湾海域。

海洋平台

海洋平台的现状和发展趋势 作者:荆永良 引言 海洋平台对海洋资源的开发和空间利用的发展,以及工程设施的大量兴建,对人类文明的演化将产生不可估量的影响。 正文 1、海洋平台技术概述 海洋工程项目是一个庞大的科技系统工程,而主要针对海洋石油开采而言的海洋工程装备包括油气钻采平台、油气存储设施、海上工程船舶等。这其中的海洋平台是集油田勘测、油气处理、发电、供热、原油产品储存和运输、人员居住于一体的综合性海洋工程装备,是实施海底油气勘探和开采的工作基地。 海洋平台结构复杂、体积庞大、造价昂贵,特别是与陆地采油设备相比,它所处的海洋环境十分复杂和恶劣,台风、海浪、海流、海冰和潮汐还有海底地震对平台的安全构成严重威胁。与此同时,由于环境腐蚀、海生物附着、地基土冲刷和基础动力软化、构件材料老化、缺陷损伤扩大以及疲劳损伤累积等因素都将导致平台结构构件和整体抗力逐渐衰减,影响平台结构的服役安全性和耐久性。因此,海洋平台的设计与制造只有在一个国家的综合工业水平整体提高与进步的基础上才能完成。 2、海洋平台的类型分类 (1)、按运动方式可分为固定式与移动式两大类(如图) (2)、按使用功能的不同可分为钻井平台、生产平台、生活平台、储油平台、近海平台等。 3、海洋平台的发展及现状 3.1国内海洋平台的发展及现状 我国海洋工业开始于60 年代末期,最早的海洋石油开发起步于渤海湾地区,该地区典型水深约为20 m。到了80 年代末期,在南中国海的联合勘探和生产开始在100 m 左右水深的范围内进行,直到现在,我国的油气勘探和开发工作还没能突破400 m 水深。近年来,石油、石油化工装备工业以我国石油和石油化工工业为依托,取得了长足的发展。尤其是近年来世界各国对石油能源开发的重视和原油价格的飚升,更是极大拉动了国内海上平台设备制

海洋油气工程专业last

海洋油气工程专业 培养目标: 培养德、智、体、美全面发展,具有工科基础理论和海洋工程、石油与天然气工程专业知识,能在海洋油气资源开发领域从事海洋油气专用结构物工程设计、海洋油气开发方案设计、海洋钻井工程设计、海洋采油采气工程设计、海洋平台生产与管理、海洋油气集输等方面工作,获得工程师基本训练的高级应用型人才。 专业方向: 海洋油气田开发工程、海洋油气井工程 业务培养要求: 本专业学生主要学习数学、物理、化学、力学、地质学、海洋学的基础理论及与海洋工程、石油与天然气工程有关的基本知识,受到海洋油气专用结构物工程设计、海洋油气开发方案设计、海洋钻井工程设计、海洋采油采气工程设计的基本训练;熟悉海洋平台生产与管理过程;了解海洋油气开发的理论前沿,新型海洋油气专用结构物的应用前景和发展动态;具有一定的科学研究和实际工作能力。 毕业生应获得的知识和能力: 1.具有数学、物理、力学、化学、海洋环境、海洋工程、石油与天然气工程、储运工程的基本理论和知识,初步掌握海洋油气专用结构物的工程设计方法; 2.具有海洋油气工程所必须的工程科学理论和专业知识,具有分析和解决海洋油气工程实际问题、进行技术改造、科技开发和应用研究的能力; 3.具有较强的外语应用能力,掌握文献检索和其它获取科技信息的方法; 4.具有较强的自学能力、工作适应能力、计算机应用能力和创新意识; 5.具有应用系统工程思想和现代经济知识进行生产管理的意识。 主干学科: 海洋工程、石油与天然气工程 主干课程: 1.毛泽东思想和中国特色社会主义理论体系概论2.高等数学3.大学外语 4.机械设计基础5.计算机程序语言6.工程力学7.工程流体力学8.结构力学9.石油地质学10.海洋学11.海洋平台工程12.海洋采气工程13.海洋油气开发工程14.海洋钻井工程15.海洋采油工程基本修业年限:四年 授予学位:工学学士 专业外语或采用外文教材的课程:海洋油气工程专业外语 制订人:殷代印院系负责人:殷代印教务处处长:马瑞民

海洋工程各种平台分类与介绍

海洋工程各种平台分类与介绍 下面图文并茂简单介绍下海洋平台分类、钻井船、FPSO SEVAN平台,纯属胡扯,各位看官不要喷我,海洋平台简单可以分为以下2大类 (1)固定式平台:导管架式平台重力式平台 (2)移动式平台: 坐底式平台自升式平台半潜式平台张力腿式平台牵索塔式平 台 SPAR平台 第一个 导管架平台(Jacket),适用于浅近海。导管架平台可以看作最原始,最直接的将钻井设备与海底连接起来的措施。钢桩穿过导管打入海底,并由若干根导管组合成导管架。导管架先在陆地预制好后,拖运到海上安装就位,然后顺着导管打桩,桩是打一节接一节的,最后在桩与导管之间的环形空隙里灌入水泥浆,使桩与导管连成一体固定于海底。

重力式(混凝土)钻井平台: 混凝土重力式平台的底部通常是一个巨大的混凝土基础(沉箱),用三个或四个空心的混凝土立柱支撑着甲板结构,在平台底部的巨大基础中被分隔为许多圆筒型的贮油舱和压载舱,这种平台的重量可达数十万吨,正是依靠自身的巨大重量,平台直接置于海底。

坐底式钻井平台是早期在浅水区域作业的一种移动式钻井平台。平台分本体与下体(即浮箱),由若干立柱连接平台本体与下体,平台上设置钻井设备、工作场所、储藏与生活舱室等。钻井前在下体中灌入压载水使之沉底,下体在坐底时支承平台的全部重量,而此时平台本体仍需高出水面,不受波浪冲击。

自升式钻井平台(Jack-up)又称甲板升降式或桩腿式平台。这种石油钻井装置在浮在水面的平台上装载钻井机械、动力、器材、居住设备以及若干可升降的桩腿,钻井时桩腿着底,平台则沿桩腿升离海面一定高度;移位时平台降至水面,桩腿升起,平台就像驳船,可由拖轮把它拖移到新的井位。

半潜式平台的水动力及系泊系统性能研究

半潜式平台的水动力及系泊系统性能研究 海洋能源、矿产等资源的大力勘探和开采促使了海洋工程领域的蓬勃发展,而半潜式平台以其抗风浪能力强、适应水深范围广、装载量大等优点,成为了海洋资源勘探开发的主流工具之一。因此,对半潜式海洋平台进行水动力性能分析,计算平台在风浪流联合作用时的运动响应和系泊系统的张力响应,是尤为重要的。 本文以南海300米水深的某半潜式平台为对象进行水动力分析和系泊系统 性能研究,在此基础上探讨了半潜式平台运动响应的影响因素。论文的主要内容包括以下几个方面:1.在三维势流理论的基础上,利用ANSYS-AQWA软件,建立半 潜式平台的水动力模型,计算分析平台的水动力性能,获得了附加质量、阻尼系数、运动响应幅值算子和波浪力等水动力参数。 2.根据作业水深和半潜式平台的特点,将平台的系泊系统初步设计为8根对称布置的悬链线式系泊系统。再利用前章节计算的频域水动力结果,对半潜式平台和系泊系统在生存载况、作业载况,以及风浪流联合作用下进行时域耦合动力分析,计算了平台的响应历时曲线和系泊线的张力变化曲线。 3.进行模型试验验证研究,在频域和时域计算分析中各选取了一种典型工况,结合模型试验结果进行验证分析。分析表明,在规则波中仿真计算和模型试验结果吻合度很高。 在复杂工况的时域分析中,虽然二者之间存在一定的误差,但依旧能较准确 的预报出平台的运动响应和系泊性能。因此,利用AQWA仿真计算平台的水动力性能具有可靠性和实用性。 4.在上述研究的基础上,通过数值计算分析的方法,探讨了半潜式平台运动 响应的影响因素。计算模型仍旧为原半潜式平台,分别计算了不同重心高度、吃

水深度和是否带有垂荡板对平台运动响应的变化规律,为今后半潜式平台的优化设计提供一定的参考。 本文的研究内容对于使用AQWA仿真和模型试验来研究半潜式平台的水动力问题有一定的借鉴作用;同时,本文探讨的半潜式平台运动响应的影响因素,所得到结果对于半潜式平台的设计和结构优化具有一定的意义。

海洋平台设计原理

1)海洋平台按运动方式分为哪几类?列举各类型平台的代表平台? 固定式平台:重力式平台、导管架平台(桩基式); 活动式平台:着底式平台(坐底式平台、自升式平台)、漂浮式平台(半潜式平台、钻井船、FPSO); 半固定式平台:牵索塔式平台(Spar):张力腿式平台(TLP) 2)海洋平台有哪几种类型?各有哪些优缺点? 固定式平台。优点:整体稳定性好,刚度较大,受季节和气候的影响较小,抗风 暴的能力强。缺点:机动性能差,较难移位重复使用 活动式平台。优点:机动性能好。缺点:整体稳定性较差,对地基及环境条件有要求 半固定式平台。优点:适应水深大,优势明显。缺点:较多技术问题有待解决 3)导管架的设计参数有哪些?(P47) 1、平台使用参数; 2、施工参数; 3、环境参数:a、工作环境参数:是指平台在施工和使用期间经常出现的环境参数,以保证平台能正常施工和生产作业为标准;b、极端环境参数:指平台在使用年限内,极少出现的恶劣环境参数,以保证平台能正常施工和生产作业为标准 4、海底地质参数 4)导管架平台的主要轮廓尺寸有哪些?(P54) 1、上部结构轮廓尺度确定:a、甲板面积;b、甲板高程 2、支承结构轮廓尺度确定:a、导管架的顶高程;b、导管架的底高程;c、导管架的层间高程;d、导管架腿柱的倾斜度(海上导管架四角腿柱采用的典型斜度1:8);e、水面附近的构件尺度;f、桩尖支承高程 5)桩基是如何分类的? 主桩式:所有的桩均由主腿内打出; 群桩式:在导管架底部四周均布桩柱或在其四角主腿下方设桩柱 6)受压桩的轴向承载力计算方法有哪些?(P93) 1、现场试桩法:数据可靠,费用高,深水实施困难; 2、静力公式法:半经验方法,试验资料+经验公式,考虑桩和土塞 重及浮力,简单实用; 3、动力公式法:能量守恒原理和牛顿撞击定理,不能单独使用; 4、地区性的半经验公式法:地基状况差别,经验总结。 7)简述海洋平台管节点的设计要求?(P207) 1、管节点的设计应降低对延展性的约束,避免焊缝立体交叉和焊缝过度集中,焊缝的布置应尽可能对称于构件中心轴线; 2、设计中应尽量减少由于焊缝和邻近母材冷却收缩而产生的应力。在高约束的节点中,由于厚度方向的收缩变形可能引起的层状撕裂 3、一般尽量不采用加筋板来加强管节点,若用内部加强环,则应避免应力集中 4、一般受拉和受压构件的端部连接应达到设计荷载所要求的强度。

海洋平台基础知识

海洋平台基础知识系列 0. 海洋工程是什么?(名词解释) Ocean engineering 海洋工程,从地理的角度来说,可分为海岸工程、近岸工程(又称离岸工程)和深海工程三大类。一般来说,位于波浪破碎带一线的工程,为海岸工程;位于大陆架范围内的工程,为近岸工程;位于大陆架以外的工程,为深海工程,但是在通常情况下,这三者之间又有所重叠。从结构角度来说,海洋工程又可分为固定式建筑物和系留式设施两大类。固定式建筑物是用桩或者是靠自身重量固定在海底,或是直接坐落在海底;系留式设施是用锚和索链将浮式结构系留在海面上。它们有的露出水面,有的半露在水中,有的置于海底,还有一种水面移动式结构装置或是大型平台,可以随着作业的需要在海面上自由移动。 海洋工程是指以开发、利用、保护、恢复海洋资源为目的,并且工程主体位于海岸线向海一侧的新建、改建、扩建工程。具体包括:围填海、海上堤坝工程,人工岛、海上和海底物资储藏设施、跨海桥梁、海底隧道工程,海底管道、海底电(光)缆工程,海洋矿产资源勘探开发及其附属工程,海上潮汐电站、波浪电站、温差电站等海洋能源开发利用工程,大型海水养殖场、人工鱼礁工程,盐田、海水淡化等海水综合利用工程,海上娱乐及运动、景观开发工程,以及国家海洋主管部门会同国务院环境保护主管部门规定的其他海洋工程。 1: 海洋平台的类型: 海洋平台:(1)移动式平台: 坐底式平台 自升式平台 钻井船 半潜式平台 张力腿式平台 牵索塔式平台 (2)固定式平台:导管架式平台 重力式平台固定平台又可以分为桩式海上固定平台、重力式海上固定平台、自升式海上固定平台 导管架型平台:在软土地基上应用较多的一种桩基平台。由上部结构(即平台甲板)和基础结构组成。上部结构一般由上下层平台甲板和层间桁架或立柱构成。甲板上布置成套钻采装置及辅助工具、动力装置、泥浆循环净化设备、人员的工作、生活设施和直升飞机升降台等。平台甲板的尺寸由使用工艺确定。基础结构(即下部结构)包括导管架和桩。桩支承全部荷载并固定平台位置。桩数、长度和桩径由海底地质条件及荷载决定。导管架立柱的直径取决于桩径,其水平支撑的层数根据立柱长细比的要求而定。在冰块飘流的海区,应尽量在水线区域(潮差段)减少或不设支撑,以免冰块堆积。对深海平台,还需进行结构动力分析。结构应有足够的刚度以防止严重振动,保证安全操作。并应考虑防腐蚀及防海生物附着等问题。导管架焊接管结点的设计是一个重要问题,有些平台的失事,常由于管结点的破坏而引起。管结点是一个空间结点,应力分布复杂;近年应用谱分析技术分析管结点的应力,取得较好的结果。 混凝土重力式平台的底部通常是一个巨大的混凝土基础(沉箱),用三个或四个空心的混凝土立柱支撑着甲板结构,在平台底部的巨大基础中被分隔为许多圆筒型的贮油舱和压载舱,这种平台的重量可达数十万吨,正是依靠自身的巨大重量,平台直接置于海底。现在已有大约20座混凝土重力式平台用于北海 钻井船是浮船式钻井平台,它通常是在机动船或驳船上布置钻井设备。平台是靠锚泊或动力定位系统定位。按其推进能力,分为自航式、非自航式;按船型分,有端部钻井、舷侧钻井、船中钻井和双体船钻井;按定位分,有一般锚泊式、中央转盘锚泊式和动力定位式。浮船式钻井装置船身浮于海面,易受波浪影口向,但是它可以用现有的船只进行改装,因而能以最快的速度投入使用。适用于深海钻井的主要是两种浮式钻

海洋平台PAGA系统配置及功能概述

龙源期刊网 https://www.doczj.com/doc/0a3470665.html, 海洋平台PAGA系统配置及功能概述 作者:钱树慧 来源:《科学与信息化》2018年第22期 摘要海洋石油平台对生产安全有着严格的要求规范,其中PAGA系统是平台必不可少的内部通信系统,该系统主要通过核心主机进行控制,通过自动或手动等不同类型、方式触发主机对应的控制单元,通过扬声器、警示灯发出各类语音及声光信息,实现整个平台的全区域立体化的语音播放及全方位报警信号覆盖,保障了海上平台生产安全有序进行。本文通过对海洋平台PAGA系统前的历史背景进行分析,总结出该系统出现的原因以及历史必然性。同时对 该系统存在的问题进行分析探讨,进一步优化设计方案,不断提高该系统的整体性能,为相关工程技术人员提供一些有益的实质性参考,以供大家共同学习借鉴,共同学习进步。 关键词海洋平台PAGA;系统配置;历史背景 前言 PAGA(PublicAddressandGeneralAlarm广播及通用报警)系统是海洋石油平台建造必备的通信系统,为平台生产安全提供有效的内部通讯保障。随着相关行业的技术发展,以及应用问题及经验的积累,海洋石油平台的建造使用对该系统的应用有了更高的要求。 1 海洋平台PAGA产生的历史背景 随着海洋石油平台建设和使用经验的积累,传统设计中的单主机PAGA系统中的不足之 处也逐渐暴露出来。在整个石油开采行业对生产安全更加重视的背景下,整个行业深刻地认识到海上平台PAGA系统对于海上石油开采的重要意义,从而对该系统的应用研发工作稳步向 前推进[1]。 2 海洋石油平台PAGA的有关介绍 目前国际主流平台PAGA系统是一种数字控制型公共广播与报警系统。在发生各类型紧 急状况时,报警人员以手动或自动方式发布紧急通告通知各岗位人员安全撤离。同时也应用于一般性日常工作与生活广播、娱乐广播。为海上的石油开采提供了极其重要的技术安全保障,形成一种安全防护体系。 随着海洋石油平台建设及使用经验积累,石油平台PAGA系统有着自身典型的功能使用 特点。 2.1 系统主要组成 (1)广播主机

船舶五大系统组成相关专用名词中英对照

船舶五大系统组成相关专用名词中英对照 一、船舶推进系统与电力系统(marine propulsion & system electric system) 柴油机diesel engine operating speed运行速度piston speed 活塞速度 Maximum explosion pressure 最大爆炸压力 侧推进器thruster 01方位推进器azimuth thruster 01Contra-rotating Type Azimuth Thruster对转桨侧向推进器 02Azimuth Thruster with Nozzle nozzle 喷嘴02隧道推进器tunnel thruster CPP(controllable pitch propeller)可变螺距螺旋桨 FPP(fixed pitch propeller)固定螺距螺旋桨 03可收缩推进器retractable thruster Dia of propeller 桨径主推进器(螺旋桨)propeller 舵rudder Accessories for rudder Rudder carrier舵承,舵托 Rudder pintle托栓、舵销 Rudder stock舵杆 Rudder blade舵叶 Rudder Flap rudder 襟翼舵 Schilling rudder西林舵 Becker rudder 贝克舵 Flanking rudder倒车舵 导流管舵rudder nozzle 齿轮箱gear box Dredger gearbox Fire-fighting pump gearbox Controllable pitch propeller gearbox Fixed pitch propeller gearbox 轴系shafting Shaft sleeve & shaft sleeve seat Coupling Stern tube船尾轴管 Intermediate shaft Propeller shaft 密封件sealing water sealing水密 Generator set 发电机组 Emergency Type Generator set 应急发电机组 General Type Generator set 通用型发电机组 配电装置power Distribution Motor control center Charging and discharging panel Shore connection box

海洋平台技术的现状及发展方向

xx平台技术的现状及发展方向 xx,xx,xx 摘要: 随着我国工业化进程的日益加快,社会各领域对能源资源的利用越来越多。为了缓解我国能源资源利用紧张的局面,国家加快了对海底油气资源的开发。在对海底资源进行开采施工时,必然会用到海洋钻井平台。为了实现对海洋油气资源的科学、高效和可持续性开发,海洋钻井平台技术的发展和改进就更具备必要性和迫切性。本文就在概述海洋钻井平台技术的基础上,对其现状、发展趋势以及一些新型平台进行着重地分析。 关键词: 海洋平台;技术现状;新型Spar平台;发展趋势 基于当前我国对陆上和海上油气资源 开采量严重不平衡的现状,加紧对xx油气 资源的开发和利用,不仅能缓解我国能源资 源利用紧张的现状,还能进一步完善我国的 能源开采结构。xx钻井平台技术的发展, 是xx能源开采的重要环节。完善钻井平台 技术,不仅能为实现采油的安全施工,还能 展现我国在xx技术应用方面的能力和技 术水平。所以,加强对钻井平台技术的现状 和发展趋势研究具有很大的现实意义。 当前,我国xx油气发展存在的三大

矛盾主要是: 加快发展速度与资源短缺的矛 盾;环境友好型社会与环境污染等问题的矛盾;提高国际竞争力与国内创新能力薄弱的矛盾。欲解决这三大矛盾,加快海上油气开发和发展xx石油装备工业已成为重要举措。国际油价的进一步攀高,使得油气资源供应不足阻碍经济发展的这一矛盾更加突出。提高油气资源的产量,xx油气的开发 已经成为我国实现能源可持续发展的战略重点。xx石油钻井装备产业是以资本密集和技术密集为主要特征,为xx油气资源开 发提供生产工具的企业集合,是xx油气 产业与装备制造业的有机结合体。 1xx平台技术概述 xx钻井平台是进行xx油气开采的 主要设备,在实际的应用中,主要是用来支撑和存放巨大的钻机、为钻井人员提供居住地点、对开采的原油进行存储等。相比较具体的油气存储设备以及诸多的海上工程船舶,xx钻井平台的存在更具基础性作用。

海洋基础知识

中国海洋 1、中国海域辽阔,海岛广布,大约有多少个面积大于500平方米的海岛?6500多个。 2、我国面积最大的三个海岛的名字就是什么? 台湾岛、海南岛与崇明岛。 3、我国以海岛组成的省级行政建制有几个? 我国以海岛组成的省级行政建制有2个,就是台湾省与海南省。 4、我国各海区海岛最多的、最少的分别就是哪个海区? 我国各海区海岛数最多的就是东海海区,海岛数最少的就是渤海海区。 5、我国已探明海洋石油天然气储备量最大的海区就是哪个海区?南海海区。 6、我国近海各海区按面积如何排序? 面积最大的就是南海,其次就是东海与黄海,面积最小的就是渤海。 7、我国近海各海区中平均水深最浅与最深的分别就是哪个海区? 平均水深最浅的就是渤海海区,最深的就是南海海区。 8、我国海岛最多的省份就是哪个省份?浙江省。 9、我国哪个海区潮汐能最为丰富?浙闽沿海。 10、我国最大的产盐省份就是?山东 11、我国鱼种最多的海区就是哪个?南海海区 12、我国面积最大的珊瑚岛就是哪个岛?最大的群岛就是哪个岛? 我国面积最大的珊瑚岛就是位于西沙群岛西部的永兴岛,面积为1、85平方千米。面积最大的群岛就是舟山群岛。 13、我国沿海有哪些重要的港口? 到2004年底,沿海港口共有中级以上泊位2500多个,其中万吨级泊位650多个;全年完成集装箱吞吐量6150万标准箱,跃居世界第一位。一些大港口年总吞吐量超过亿吨,上海港、深圳港、青岛港、天津港、广州港、厦门港、宁波港、大连港八个港口已进入集装箱港口世界50强。

14、我国年吞吐量最大的就是哪个港口?上海港。 15、郑与几次出使西洋? 郑与于1405-1433年的28年中七次出使西洋,经东南亚、印度洋到达红海与非洲,遍及亚洲、非洲30多个国家与地区。最远到达赤道以南的非洲东海岸与马达加斯加岛。 16、《南京条约》中,我国被迫开放的通商口岸有哪几个? 《南京条约》,旧称《江宁条约》于1842年8月29日在南京签订,我国被迫开放广州、福州、厦门、宁波、上海五个通商口岸。 17、我国的内海就是哪个海? 渤海就是我国的内海,面积为7、7万平方千米。 18、我国的黄河与长江最终分别流入哪个海区? 黄河最终流入我国的渤海海区;长江最终流入我国的东海海区。 19、我国大陆海岸线、岛屿岸线总长度分别约为多少千米? 我国大陆海岸线总长度约为18000千米;我国岛屿岸线总长度约千米。 20、我国目前已经建立了多少个国家级海洋自然保护区?30个。 21、我国目前已经命名了获得国际SC(A)R组织承认的南极地名大约有多少个?300个。 22、我国最北面的出海口在哪里?图门江。 23、《中华人民共与国专属经济区与大陆架法》对我国大陆架就是如何规定的? 《中华人民共与国专属经济区与大陆架法》规定我国的大陆架为领海以外依陆地领土的全部自然延伸,扩展到大陆外边缘的海底区域的海床与底土。 24、我国法律关于内水的权益就是如何阐述的? 《中华人民共与国领海及毗连区法》规定:我国的领海基线向内陆一侧的水域为我国的内水。内水属于国家领土的一部分,完全受国家的主权管辖;所有外国船舶非经许可不得在一国的内水航行;外国渔船不得进入内水从事捕鱼活动。 25、我国政府关于领海宽度就是如何主张的?

海洋平台PAGA系统配置及功能概述

海洋平台PAGA系统配置及功能概述 摘要海洋石油平台对生产安全有着严格的要求规范,其中PAGA系统是平台必不可少的内部通信系统,该系统主要通过核心主机进行控制,通过自动或手动等不同类型、方式触发主机对应的控制单元,通过扬声器、警示灯发出各类语音及声光信息,实现整个平台的全区域立体化的语音播放及全方位报警信号覆盖,保障了海上平台生产安全有序进行。本文通过对海洋平台PAGA系統前的历史背景进行分析,总结出该系统出现的原因以及历史必然性。同时对该系统存在的问题进行分析探讨,进一步优化设计方案,不断提高该系统的整体性能,为相关工程技术人员提供一些有益的实质性参考,以供大家共同学习借鉴,共同学习进步。 关键词海洋平台PAGA;系统配置;历史背景 前言 PAGA(PublicAddressandGeneralAlarm广播及通用报警)系统是海洋石油平台建造必备的通信系统,为平台生产安全提供有效的内部通讯保障。随着相关行业的技术发展,以及应用问题及经验的积累,海洋石油平台的建造使用对该系统的应用有了更高的要求。 1 海洋平台PAGA产生的历史背景 随着海洋石油平台建设和使用经验的积累,传统设计中的单主机PAGA系统中的不足之处也逐渐暴露出来。在整个石油开采行业对生产安全更加重视的背景下,整个行业深刻地认识到海上平台PAGA系统对于海上石油开采的重要意义,从而对该系统的应用研发工作稳步向前推进[1]。 2 海洋石油平台PAGA的有关介绍 目前国际主流平台PAGA系统是一种数字控制型公共广播与报警系统。在发生各类型紧急状况时,报警人员以手动或自动方式发布紧急通告通知各岗位人员安全撤离。同时也应用于一般性日常工作与生活广播、娱乐广播。为海上的石油开采提供了极其重要的技术安全保障,形成一种安全防护体系。 随着海洋石油平台建设及使用经验积累,石油平台PAGA系统有着自身典型的功能使用特点。 2.1 系统主要组成 (1)广播主机 机架、电源、用于与功率放大器连接的线路板,内置功率放大器、当常用的

相关主题
文本预览
相关文档 最新文档