数字电子技术基础简明教程第四章
- 格式:ppt
- 大小:1.87 MB
- 文档页数:49
数字电子技术基础第四章习题及参考答案第四章习题1.分析图4-1中所示的同步时序逻辑电路,要求:(1)写出驱动方程、输出方程、状态方程;(2)画出状态转换图,并说出电路功能。
CPY图4-12.由D触发器组成的时序逻辑电路如图4-2所示,在图中所示的CP脉冲及D作用下,画出Q0、Q1的波形。
设触发器的初始状态为Q0=0,Q1=0。
D图4-23.试分析图4-3所示同步时序逻辑电路,要求:写出驱动方程、状态方程,列出状态真值表,画出状态图。
CP图4-34.一同步时序逻辑电路如图4-4所示,设各触发器的起始状态均为0态。
(1)作出电路的状态转换表;(2)画出电路的状态图;(3)画出CP作用下Q0、Q1、Q2的波形图;(4)说明电路的逻辑功能。
图4-45.试画出如图4-5所示电路在CP波形作用下的输出波形Q1及Q0,并说明它的功能(假设初态Q0Q1=00)。
CPQ1Q0CP图4-56.分析如图4-6所示同步时序逻辑电路的功能,写出分析过程。
Y图4-67.分析图4-7所示电路的逻辑功能。
(1)写出驱动方程、状态方程;(2)作出状态转移表、状态转移图;(3)指出电路的逻辑功能,并说明能否自启动;(4)画出在时钟作用下的各触发器输出波形。
CP图4-78.时序逻辑电路分析。
电路如图4-8所示:(1)列出方程式、状态表;(2)画出状态图、时序图。
并说明电路的功能。
1C图4-89.试分析图4-9下面时序逻辑电路:(1)写出该电路的驱动方程,状态方程和输出方程;(2)画出Q1Q0的状态转换图;(3)根据状态图分析其功能;1B图4-910.分析如图4-10所示同步时序逻辑电路,具体要求:写出它的激励方程组、状态方程组和输出方程,画出状态图并描述功能。
1Z图4-1011.已知某同步时序逻辑电路如图4-11所示,试:(1)分析电路的状态转移图,并要求给出详细分析过程。
(2)电路逻辑功能是什么,能否自启动?(3)若计数脉冲f CP频率等于700Hz,从Q2端输出时的脉冲频率是多少?CP图4-1112.分析图4-12所示同步时序逻辑电路,写出它的激励方程组、状态方程组,并画出状态转换图。
习题44-1 分析图P4-1所示得各组合电路,写出输出函数表达式,列出真值表,说明电路得逻辑功能。
解:图(a):;;真值表如下表所示:其功能为一位比较器。
A>B时,;A=B时,;A<B时,图(b):真值表如下表所示:功能:一位半加器,为本位与,为进位。
图(c):真值表如下表所示:功能:一位全加器,为本位与,为本位向高位得进位。
图(d):;;功能:为一位比较器,A<B时,=1;A=B时,=1;A>B时,=14-2 分析图P4-2所示得组合电路,写出输出函数表达式,列出真值表,指出该电路完成得逻辑功能。
解:该电路得输出逻辑函数表达式为:因此该电路就是一个四选一数据选择器,其真值表如下表所示:,当M=1时,完成4为二进制码至格雷码得转换;当M=0时,完成4为格雷码至二进制得转换。
试分别写出,,,得逻辑函数得表达式,并列出真值表,说明该电路得工作原理。
解:该电路得输入为,输出为。
真值表如下:由此可得:完成二进制至格雷码得转换。
完成格雷码至二进制得转换。
4-4 图P4-4就是一个多功能逻辑运算电路,图中,,,为控制输入端。
试列表说明电路在,,,得各种取值组合下F与A,B得逻辑关系。
解:,功能如下表所示,两个变量有四个最小项,最多可构造种不同得组合,因此该电路就是一个能产生十六种函数得多功能逻辑运算器电路。
4-5 已知某组合电路得输出波形如图P4-5所示,试用最少得或非门实现之。
解:电路图如下:4-6 用逻辑门设计一个受光,声与触摸控制得电灯开关逻辑电路,分别用A,B,C表示光,声与触摸信号,用F表示电灯。
灯亮得条件就是:无论有无光,声信号,只要有人触摸开关,灯就亮;当无人触摸开关时,只有当无关,有声音时灯才亮。
试列出真值表,写出输出函数表达式,并画出最简逻辑电路图。
解:根据题意,列出真值表如下:由真值表可以作出卡诺图,如下图:C AB 00 10 11 100 1由卡诺图得到它得逻辑表达式为: 由此得到逻辑电路为:4-7 用逻辑门设计一个多输出逻辑电路,输入为8421BCD 码,输出为3个检测信号。
习题44-1 分析图P4-1所示的各组合电路,写出输出函数表达式,列出真值表,说明电路的逻辑功能。
解:图(a ):1F AB =;2F A B =e ;3F AB = 真值表如下表所示: A B 1F2F3F0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 111其功能为一位比较器。
A>B 时,11F =;A=B 时,21F =;A<B 时,31F = 图(b ):12F AB AB F AB =+=; 真值表如下表所示: A B 1F2F功能:一位半加器,1F 为本位和,2F 为进位。
图(c ):1(0,3,5,6)(1,2,4,7)F M m ==∑∏2(0,1,2,4)(3,5,6,7)F M m ==∑∏真值表如下表所示:功能:一位全加器,1F 为本位和,2F 为本位向高位的进位。
图(d ):1F AB =;2F A B =e ;3F AB =功能:为一位比较器,A<B 时,1F =1;A=B 时,2F =1;A>B 时,3F =14-2 分析图P4-2所示的组合电路,写出输出函数表达式,列出真值表,指出该电路完成的逻辑功能。
解:该电路的输出逻辑函数表达式为:100101102103F A A x A A x A A x A A x =+++因此该电路是一个四选一数据选择器,其真值表如下表所示:1A0AF0 0 0x 0 1 1x1 0 2x 1 13x4-3 图P4-3是一个受M 控制的代码转换电路,当M =1时,完成4为二进制码至格雷码的转换;当M =0时,完成4为格雷码至二进制的转换。
试分别写出0Y ,1Y ,2Y ,3Y 的逻辑函数的表达式,并列出真值表,说明该电路的工作原理。
解:该电路的输入为3x 2x 1x 0x ,输出为3Y 2Y 1Y 0Y 。
真值表如下:3x2x1x0x3Y2Y1Y0YM=10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 01 1 0 0 1 0 0 M=0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 11111 0 1 1 0 0 1 1 1 1 0 1 0 1 1 111111由此可得:1M =当时,33232121010Y x Y x x Y x x Y x x =⎧⎪=⊕⎪⎨=⊕⎪⎪=⊕⎩ 完成二进制至格雷码的转换。
习题44-1 分析图P4-1所示得各组合电路,写出输出函数表达式,列出真值表,说明电路得逻辑功能。
解:图(a):;;真值表如下表所示:A B0 0 0 1 00 1 0 0 11 0 1 0 01 1 0 1 0其功能为一位比较器。
A>B时,;A=B时,;A<B时,图(b):真值表如下表所示:A B0 0 0 00 1 1 0功能:一位半加器,为本位与,为进位。
图(c):真值表如下表所示:功能:一位全加器,为本位与,为本位向高位得进位。
图(d):;;功能:为一位比较器,A<B时,=1;A=B时,=1;A>B时,=14-2 分析图P4-2所示得组合电路,写出输出函数表达式,列出真值表,指出该电路完成得逻辑功能。
解:该电路得输出逻辑函数表达式为:因此该电路就是一个四选一数据选择器,其真值表如下表所示:0 00 11 01 14-3 图P4-3就是一个受M控制得代码转换电路,当M=1时,完成4为二进制码至格雷码得转换;当M=0时,完成4为格雷码至二进制得转换。
试分别写出,,,得逻辑函数得表达式,并列出真值表,说明该电路得工作原理。
解:该电路得输入为,输出为。
真值表如下:M=1 0 0 0 0 0 0 0 00 0 0 1 0 0 0 10 0 1 0 0 0 1 10 0 1 1 0 0 1 00 1 0 0 0 1 1 00 1 0 1 0 1 1 10 1 1 0 0 1 0 10 1 1 0 0 1 0 0 M=0 1 0 0 0 1 1 1 11 0 0 1 1 1 1 01 0 1 0 1 1 0 01 0 1 1 1 1 0 11 1 0 0 1 0 0 01 1 0 1 1 0 0 11 1 1 0 1 0 1 11 1 1 1 1 0 1 0由此可得:完成二进制至格雷码得转换。
完成格雷码至二进制得转换。
4-4 图P4-4就是一个多功能逻辑运算电路,图中,,,为控制输入端。
数字电子技术基础教材第四章答案习题44—1分析图P4—1所示的各组合电路,写出输出函数表达式,列出真值表,说明电路的逻辑功真值表如下表所示:其功能为一位比较器。
A>B时,F i i ;A=B时,F2 1 ;A<B 时,F3 1 图(b) : F, AB AB; F2 AB 真值表如下表所示:功能:一位半加器,F,为本位和,图(C): F, M (0,3,5,6)m(1,2,4,7)F2为进位。
F2M(0,1,2,4) m(3,5,6,7)真值表如下表所示:位的进位。
图(d) : F i AB ;F2 AeB ;F3 AB功能:为一位比较器,A<B时,F i = 1 ;A=B时,F2 = 1 ;A>B 时,F3 = 14—2分析图P4 —2所示的组合电路,写出输出函数表达式,列出真值表,指出该电路完成的逻辑功能。
^1 理0解:该电路的输出逻辑函数表达式为:A )A J X。
AA)X I AA Q X ?A 1A 0X 3如下表所示:AA 0F0 0 X O0 1 X 1 1 0 X 2 11X 30 12 3 X XX X因此该电路是一个四选一数据选择器, 其真值表4-3图P4—3是一个受M控制的代码转换电路,当M = 1时,完成4为二进制码至格雷码的转换;当M = 0时,完成4为格雷码至二进制的转换。
试分别写出Y°,Y,Y2,Y3的逻辑函数的表达式,并列出真值表,说明该电路的工作原理。
表如下:0 1 0 0 0 1 1 00 1 0 1 0 1 1 10 1 1 0 0 1 0 10 1 1 0 0 1 0 0 M=0 1 0 0 0 1 1 1 11 0 0 1 1 1 1 01 0 1 0 1 1 0 01 0 1 1 1 1 0 11 1 0 0 1 0 0 01 1 0 1 1 0 0 11 1 1 0 1 0 1 11 1 1 1 1 0 1 0丫3 30时,X3X3X3X3X2X2X2X i 丫2X i X o £Y完成格雷码至二进制的转换4— 4图P4— 4是一个多功能逻辑运算电路,图 中S 3,S 2, S i, S o为控制输入端。
数字电子技术基础简明教程课件第4章_触发器第4章触发器概述4.1基本触发器4.1.1用与非门组成的基本触发器4.1.2用或非门组成的基本触发器4.1.3集成基本触发器4.2同步触发器1、时钟电平控制,无约束问题在CP=1期间,若D=1,则Qn+1=1;若D=0,则Qn+1=0,即根据输入信号D取值不同,触发器既可以置1,也可以置0。
由于电路是在同步RS触发器基础上经过改进得到的,所以约束问题不存在。
2、CP=1时跟随,下降沿到来时才锁存 CP=1期间,输出端随输入端的变化而变化;只有当CP脉冲下降沿到来时才锁存,锁存的内容是CP下降沿瞬间D的值。
集成同步D 触发器引脚图4.3.1边沿D触发器一、电路组成及工作原理二、集成边沿D触发器1、D的逻辑表达式二、集成边沿JK触发器三、边沿JK 触发器的主要特点1、CP边沿(上升沿或下降沿)触发在CP脉冲上升沿(或下降沿)时刻,触发器按照特性方程的规定转换状态,其他时间里,J、K不起作用。
2、抗干扰能力强因为只在触发沿甚短的时间内触发,其他时间输入信号对触发器不起作用,保证信号的可靠接收。
3、功能齐全,使用灵活方便具有置1、置0、保持、翻转四种功能。
二、主要特点三、集成同步D触发器 1.TTL:74LS375CPDQG1QG3R&&SG2G41>1>1G5RS+VCC74LS3751D0 1LE1D12D02LE2D11Q01Q01Q11Q12Q02Q02Q12Q1147912152 36510111413Q1Q1Q2Q2Q3Q3Q4Q4––––D1CP1、2D2D3CP3、4D48162.CMOS:CC4042CDG1QG3G2G41TGQTG111CG5G6CP11=1POL0CPCPCP CP1CPCPCP=1?保持CP=0?DCP=1?DCP=0?保持POL=1时,CP=1有效,锁存的内容是CP下降沿时刻D的值;POL=0时,CP=0有效,锁存的内容是CP上升沿时刻D的值。
《数字电子技术》教案第4章触发器(a)电路结构(b)逻辑符号图4-1 与非门组成的基本RS触发器(1)当1Q=,0Q=时,称为触发器的1状态。
(2)当0Q=,1Q=时,称为触发器的0状态。
4.2.2基本RS触发器的逻辑功能如表4-1所示为基本RS触发器的特性表(逻辑功能表),其中新的稳定状态1n Q+不仅与输入信号有关,而且与触发器接收输入信号前的原状态n Q有关。
表4-1 “与非门”组成的基本RS触发器特性表R S现态n Q次态1n Q+说明0 001××状态不定,不允许0 1010置01 00111置11 10101保持原状态在基本RS触发器中,输入信号直接加在输出门上,所以输入信号在全部作用时间里(即S或R为0的全部时间),都能直接改变输出门Q或Q的状态。
(1)当0R =,1S =时,输出0Q =,R 端称为直接复位端。
(2)当0S =,1R =时,输出1Q =,S 端称为直接置位端。
4.3同步触发器4.3.1同步 R S 触发器只有在CP 端上出现时钟脉冲时,触发器的状态才能变化,此时触发器状态的改变与时钟脉冲同步,所以又称这类触发器为同步触发器。
如图4-2所示为同步RS 触发器的电路结构及逻辑符号图。
(a )电路结构 (b )逻辑符号图4-2 同步RS 触发器 与基本RS 触发器相比,同步RS 触发器增加了时钟控制端口,以实现对触发器状态转换的时间控制。
由图4-2(a )可知,该电路由两个部分组成,一个是由与非门1G ,2G 组成的基本触发器;另一个是在基本触发器的基础上多加两个与非门3G ,4G 组成的输入控制电路。
其中,3G ,4G 是由时钟脉冲CP 控制的,具有时钟脉冲控制的触发器又称为时钟触发器。
图4-2(a )所示的时钟脉冲为高电平有效,即触发器在CP 1=期间接收输入信号,在CP 0=时状态保持不变。
1.同步RS 触发器的逻辑功能(1)当CP 0=时,3G 和4G 被封锁,不管R 端和S 端的信号如何变化,输出都为1,触发器保持原状态不变,即1n n Q Q +=。