建筑物沉降观测和基坑变形监测点布设及报告
- 格式:doc
- 大小:1.20 MB
- 文档页数:22
建筑物沉降观测和基坑变形监测点布设及报告建筑物沉降观测和基坑变形监测是建筑工程中非常重要的一项工作,它可以帮助工程师及时掌握建筑物的沉降情况和基坑变形情况,为工程施工提供科学的数据支持,保障工程质量和安全。
在进行建筑物沉降观测和基坑变形监测时,点布设非常关键,下面我将介绍一下点布设的原则和方法,并给出一份监测报告。
一、建筑物沉降观测点布设原则1.观测点的数量:观测点的数量要充足,一般建议在建筑物的不同部位设置观测点,以确保全面的观测情况。
2.观测点的布设密度:观测点的布设密度应根据工程的具体情况来确定,一般来说,关键部位和薄弱部位需要密集的观测点,一般部位需要适量的观测点,这样可以更准确地掌握沉降情况。
3.观测点的位置选择:观测点的位置选择要考虑到建筑物的结构特点和沉降情况的分布规律,尽量选择稳定的区域,避免突兀或易变形的部位。
4.观测点的间距:观测点之间的间距要合理,一般来说,要根据建筑物的大小和形态来确定,以确保对整个建筑物的观测覆盖。
二、基坑变形监测点布设原则1.基坑变形监测点的数量:基坑变形监测点的数量应根据基坑的大小和复杂程度来确定,通常情况下,在基坑的四周设置监测点,并在基坑内设置适量的监测点。
2.基坑变形监测点的布设密度:基坑变形监测点的布设密度应根据基坑的变形情况来确定,一般来说,在基坑周边设置密集的监测点,以掌握变形情况的变化趋势。
3.基坑变形监测点的位置选择:基坑变形监测点的位置选择要考虑到基坑的结构特点和变形情况的分布规律,尽量选择变形范围较大或易发生变形的区域。
4.基坑变形监测点的间距:基坑变形监测点之间的间距要合理,一般来说,要根据基坑的大小和形态来确定,以确保对整个基坑的变形情况进行全面监测。
三、监测报告监测报告是对沉降观测和基坑变形监测结果的综合汇总和分析,下面是一份监测报告的基本内容:1.报告概述:报告简要介绍了监测的目的、范围和时间,以及监测的主要内容和方法。
2.观测结果:报告详细说明了各观测点的测量数值,并通过图表的形式展示了沉降和变形的分布情况。
房屋沉降观测情况汇报根据公司安排,我们对所负责区域的房屋沉降情况进行了全面观测和调查。
在此,我将向大家汇报我们的观测情况和初步分析结果。
首先,我们对该区域的房屋进行了全面的调查和测量。
通过使用先进的测量仪器和技术,我们成功获取了大量的数据和信息。
我们对每栋建筑物的沉降情况进行了详细记录,包括建筑物的结构、地基情况、周围环境等因素。
同时,我们还对地下管线、地质构造等因素进行了综合分析,以全面了解沉降情况的可能影响因素。
在观测过程中,我们发现了一些重要的情况。
首先,我们发现该区域的部分建筑物存在不同程度的沉降现象。
通过测量数据的分析,我们发现这些沉降情况与建筑物的年代、结构类型、地基土质等因素有一定的关联。
其次,我们还发现了一些地下管线和设施的沉降情况,这可能会对周围环境和建筑物的稳定性产生一定的影响。
针对这些观测结果,我们进行了初步的分析和评估。
我们认为,该区域的房屋沉降情况存在一定的普遍性,但不同建筑物之间存在一定的差异性。
我们初步推测,这些沉降情况可能与地下水位变化、地质构造、人为活动等因素有关。
同时,我们还发现了一些建筑物存在较为严重的沉降情况,这需要引起我们的高度重视和及时处理。
在未来的工作中,我们将继续深入分析观测数据,寻找沉降情况的规律性和影响因素。
同时,我们将积极与相关部门和专家进行沟通和合作,共同研究解决该区域房屋沉降问题的有效措施。
我们将尽最大努力,确保该区域的房屋安全稳定,为社会的发展和人民的生活提供更加可靠的保障。
通过本次观测和汇报,我们对该区域的房屋沉降情况有了更深入的了解,也为下一步的工作提供了重要的参考和依据。
我们将继续努力,为保障人民生命财产安全做出更大的贡献。
感谢各位领导和同事的关心和支持,谢谢大家!。
基坑水平位移与沉降监测方案1.概况1.1 工程概况这个项目是一项大型的建筑工程,旨在建造一座现代化的大楼。
该建筑将包括商业和住宅用途,是当地城市发展的一个重要组成部分。
1.2 基坑概况该项目需要进行基坑开挖,以便为建筑物的地基做好准备工作。
基坑的深度将达到20米左右,需要进行支护工作以确保工人的安全。
1.3 工程地质概况该项目的地质条件复杂,地下水位较高,土质较软,需要采取特殊的施工方法来确保基坑的稳定性和安全性。
此外,还需要进行地质勘探和监测工作,以确保施工过程中不会对周围环境造成不良影响。
1.4 环境概况该项目位于城市中心,周围有许多居民和商业企业,需要采取特殊的措施来减少施工对周围环境的影响。
此外,还需要进行噪音、粉尘和污水处理等工作,以确保施工过程中不会对周围环境造成不良影响。
2.基坑支护及施工方案为确保基坑的稳定性和安全性,我们采取了多种支护措施,包括钢支撑、混凝土墙和土钉墙等。
此外,我们还采用了先进的施工技术,如挖孔桩、土钉墙和钻孔灌注桩等,以确保基坑的稳定性和安全性。
我们还将采取噪音、粉尘和污水处理等措施,以确保施工过程中不会对周围环境造成不良影响。
3、监测目的、范围、依据、原则及监测内容3.1 监测目的:本次监测的目的是为了解决公司在生产过程中存在的环境污染问题,以及对环境影响的评估。
3.2 监测范围:本次监测的范围包括公司生产厂区及周边区域,主要监测点包括废水排放口、废气排放口、噪声等。
3.3 监测依据:本次监测的依据主要包括国家环境保护法规、公司环境保护标准以及国家环境监测标准等。
3.4 编制原则:本次监测的编制原则主要包括科学性、规范性、客观性、可比性等原则。
同时,为了保证监测结果的准确性,我们将采用多种监测方法,包括现场监测、实验室分析等。
以上是本次监测的目的、范围、依据、原则及监测内容的简要介绍。
我们将严格按照以上要求进行监测,确保监测结果的准确性和可靠性。
3.5 监测内容64、基坑监测项目和监测方法要求汇总表75、监测方法5.1 水平位移观测:水平位移观测是指对基坑周边建筑物、道路等进行水平位移监测。
一、XX地铁车站深基坑施工风险管理研究3.3测点布置的方法和数据处理要求3.3.1测点布置方法(1)建筑物倾斜及沉降监测在深基坑监测过程中,应依据建筑物的结构、形状、桩形、地质条件等因素综合考虑周边建筑物沉降观测点的布置方案,各监测点应最能容易的反映建筑物沉降变化的趋势。
一般情况下,建筑物差异沉降观察点应布设在差异沉降量较大的位置、建筑的四个角处、沉降裂缝的两侧以及地质条件有明显不同的区段。
保证观测点能准确反映建筑物的倾斜及不均匀沉降情况,埋设时注意观测点与建筑物的联结要牢靠。
根据监测点设计图来确定沉降观测点的位置。
固定的观测路线需在沉降观测点与工作点之间建立,并在架设仪器站点与转点处做好标记桩,以保证各次观测均沿统一路线。
用冲击钻在建筑物的基础或墙上钻孔,然后放入长200~300mm,Φ20~30mm的半圆头弯曲钢筋,四周用水泥砂浆填实。
测点的埋设高度应方便观测,对测点应采取保护措施,避免在施工过程中受到破坏。
测点的布设如图3-1所示。
对于建筑物倾斜监测,在需要监测的楼底部和顶部设置倾斜监测标志点。
底部和顶部标志点要求在同一铅垂线上。
观测时,精密经纬仪安置在离建筑物大于其高度的距离外测,出上部标志的高度H以及水平位移的投影值a,则倾斜度I为:I=a/H。
图3-1建筑物沉降观测点布设示意图(2)沉降及倾斜观测依照规范规定出发,事先设计图纸规定布设测点和分析结果,水准基准点宜均匀埋设,数量不应少于3点,埋设方法如图3-2所示。
图3-2沉降观测测点布设示意图(3)桩体变形及基坑外土体水平位移观测桩体变形观测:将测斜管绑扎在灌注桩钢筋笼内,钢筋笼深度与管深一致管体与桩体钢筋笼迎土面钢筋绑扎牢,每间距2米绑扎一次;测斜管内有一对槽必须垂直于基坑边线;下管之前,注意封好测斜管端管口盖子,并用胶带缠绕密封接头部位;待钢筋笼吊装完毕后,立即向测斜管内注入清水,防止泥浆浸入管中,同时做好测点保护。
仪器如图3-3所示。
沉降观测实习报告一、引言沉降观测是一项重要的工程监测手段,通过对土地或建筑物沉降情况的观测和记录,可以评估工程的安全性和稳定性。
在本次实习中,我有幸参与了一项沉降观测工作,并在实践中进一步了解了沉降观测的方法和意义。
二、实习背景本次实习项目是一个建筑物的地基沉降观测。
建筑物由于所处地质条件的影响,可能会在使用过程中发生沉降,导致建筑物不稳定或者产生破坏。
为了确保建筑物的安全使用,进行沉降观测是必要的。
三、实习过程1. 仪器设备的准备在实习开始前,我们首先了解了沉降观测所需的仪器设备。
主要包括水准仪、三角板、激光测距仪等。
这些仪器设备的准备是确保我们能够准确测量建筑物的沉降情况的重要前提。
2. 观测点的选择在确定了观测的建筑物后,我们需要选择观测点。
观测点应该位于建筑物的关键部位,以便掌握建筑物的整体沉降情况。
我们在选择观测点时要考虑建筑物的结构和土质等因素,确保选点合理。
3. 观测的方法和流程在实际进行沉降观测时,我们按照事先制定的方案进行操作。
首先,我们需要进行基准点的测量,以确定观测的参考基准。
然后,我们用水准仪进行高差测量,并记录下测量结果。
最后,我们使用激光测距仪对建筑物进行距离测量,并与之前的测量结果进行对比,得出沉降的数据。
四、实习收获通过本次实习,我对沉降观测有了更深入的理解。
首先,我学会了如何选择观测点,并合理使用仪器设备进行测量。
其次,我了解了实际操作中的一些技巧和注意事项,比如在测量时要保持仪器的平稳和准确,避免误差的出现。
最重要的是,我认识到沉降观测的重要性,只有通过观测和记录,我们才能及时了解建筑物的变化情况,并采取相应的措施来保护建筑物的安全和稳定。
五、结论沉降观测是一项非常重要的工程监测手段,对于保障建筑物的使用安全和稳定性具有重要意义。
通过本次实习,我进一步了解了沉降观测的方法和意义,并通过实践获得了宝贵的经验和技巧。
未来,在实际工作中,我将继续努力,加强自己的知识储备和技术能力,在工程监测领域做出更大的贡献。
建筑物沉降与变形观测建筑物的沉降观测需要布置水准点,以保证观测的精度和正确性。
为了相互校核水准点并防止其本身产生变化,水准点的数目应不少于3个,组成水准网。
水准点应定期进行高程检测。
在布设水准点时,需要考虑其与观测点的距离不应超过100m,且应布设在受振区域以外的安全地点,避免受到振动的影响。
同时,离开公路、铁路、地下管道和滑坡至少5m,避免埋设在低洼易积水处及松软土地带。
水准点的埋设深度至少要在冰冻线下0.5m,以防止受到冻胀的影响。
在一般情况下,可以利用工程施工时使用的水准点作为沉降观测的水准基点。
如果条件不好,可在建筑物附近另行埋设水准基点。
沉降观测水准点的形式与埋设要求一般与三、四等水准点相同,但也应根据现场的具体条件、沉降观测在时间上的要求等决定。
对于急剧沉降的建筑物和构筑物,若建造水准点已来不及,可以在已有房屋或结构物上设置标志作为水准点,但这些房屋或结构物的沉降必须证明已经达到终止。
在山区建设中,建筑物附近常有基岩,可在岩石上凿一洞,用水泥砂浆直接将金属标志嵌固于岩层之中,但岩石必须稳固。
当场地为砂土或其他不利情况下,应建造深埋水准点或专用水准点。
沉降观测水准点的高程应根据厂区永久水准基点引测,采用II等水准测量的方法测定。
往返测误差不得超过±1nmm(n为测站数),或±4L。
如果沉降观测水准点与永久水准基点的距离超过2000m,则不必引测绝对标高,而采取假设高程。
在观测点的布置方面,需要考虑建筑物的结构特点和沉降状况,布置在建筑物的重要部位,如柱子、墙角等处。
观测点的数量应充分考虑建筑物的大小和形状,以及沉降变形的特点。
观测点的布置应均匀、合理,以保证观测数据的可靠性。
2.观测点的不同型式及设置方法2.1 设备基础观测点设备基础观测点有多种不同的型式,其中包括弯钩式、燕尾式、U字式等。
弯钩式观测点是将长约100mm、直径20mm的铆钉一端弯成直角;燕尾式观测点是将长80~100mm、直径20mm的铆钉,在尾部中间劈开,做成夹角为30°左右的燕尾形;U字式观测点则是用直径20mm、长约220mm左右的钢筋弯成+U形,倒埋在混凝土之中。
建设工程深基坑变形与主体沉降监测技术研究一、研究背景及意义随着城市化进程的加快,建设工程在城市建设中的地位日益重要。
由于建筑物的高度和地下设施的复杂性,深基坑工程在施工过程中容易出现变形和主体沉降等问题,这些问题不仅会影响建筑物的安全性和使用寿命,还会对周围环境和人们的生活产生不利影响。
对深基坑变形与主体沉降进行监测技术研究具有重要的现实意义。
通过对深基坑变形与主体沉降的监测技术研究,可以为工程设计提供科学依据。
在深基坑施工过程中,通过对变形和沉降的实时监测,可以及时发现潜在的问题,为设计部门提供准确的数据支持,从而优化设计方案,提高建筑物的安全性和稳定性。
通过对深基坑变形与主体沉降的监测技术研究,可以降低工程事故的发生率。
通过对变形和沉降的实时监测,可以及时发现问题并采取相应的措施进行处理,避免因变形和沉降过大而导致的工程事故,减少人员伤亡和财产损失。
通过对深基坑变形与主体沉降的监测技术研究,可以提高工程质量。
通过对变形和沉降的监测,可以确保建筑物的质量达到设计要求,提高建筑物的使用性能和使用寿命。
通过对变形和沉降的监测,可以为后期的维护和管理提供依据,降低维护成本。
对深基坑变形与主体沉降进行监测技术研究具有重要的现实意义。
通过研究深基坑变形与主体沉降的规律,可以为工程设计、工程施工和工程管理提供科学依据,降低工程事故的发生率,提高工程质量,促进城市建设的可持续发展。
1.1 建设工程深基坑的发展历程随着城市化进程的加快,高层建筑、大型基础设施等建筑工程的建设日益增多,深基坑工程作为其中的重要组成部分,其安全性和稳定性对于整个建筑工程的质量至关重要。
自20世纪初以来,深基坑工程技术经历了从简单到复杂、从低级到高级的发展过程。
20世纪初,深基坑工程技术主要采用人工开挖的方法,施工过程中存在较大的安全隐患,如地下水位较高时容易导致地面沉降、建筑物倾斜等问题。
为了解决这些问题,人们开始研究采用机械挖掘、土钉墙等方法进行深基坑支护。
建筑沉降观测和基坑变形监测讲解建设过程中常有关于基坑变形监测及建筑观测的要求,但可能很多同事对两者的同学监测要求、频次、周期等不甚了解,本篇结合规范其要求,与大家分享。
一、《建筑地基基础设计规范》GB50007-2021的规定:10.3.2基坑开挖应根据设计要求进行设计者监测,开始实施实施动态装配和信息化施工。
10.3.8下列建筑物应在期间及使用期间进行沉降变形观测:1地基基础设计等级为甲级建筑物;2软弱地基上的地基基础设计等级为乙级建筑物;3处理地基上为的建筑物;4加层、扩建建筑物;5受邻近深基坑取土施工影响或受场地地下水等环境因素变化影响的建筑物;6采用新型基础或新型结构的建筑物。
该规范“条文说明”规定:10.3.8本条为强制性条文。
本条所指的建筑物沉降侦测本条包括从施工开始,整个施工期内和使用期间工程预算对建筑物进行的沉降观测。
并以实测作为资料建筑物地基基础工程质量检查的依据之一,建筑物施工期的观测日期和次数,应根据施工进度确定,塔楼竣工后的第一年内,每隔2月~3月观测一次,以后适当延长至4月~6月,直至实现为止沉降变形稳定标准为止。
二、《建筑变形测量规范》JGJ8-2021的规定:6.1.5建筑场地沉降观测的周期,应根据不同任务要求、产生沉降的不同情况以及沉降速率等因素具体分析确定,并应符合下列明确规定:基础施工期间的相邻地基沉降观测,在基坑降水时和基坑土开挖过程中应每天观测1次。
混凝土底板浇完10d以后,可每2d~3d观测1次,直至地下室顶板完工和水位恢复,若水位恢复时间较短、恢复速度较快,三周应在水位恢复的前后一周内每2d~3d观测1次,同时应观测水位起伏。
此后可每周观测1次至回填土完工。
7.1.5沉降观测的周期和观测时间应符合下列路程规定:1建筑施工阶段的观测应符合下列规定:1)宜在基础完工后或地下室砌完后开始观测;2)观测次数与间隔时间应视墙体与荷载增加情况情况确定。
3)施工整个过程中若暂时停工,在停工时及破土动工重新开工时应各观测1次,停工期间可每隔2月~3月观测1次。
沉降观测点的布设及观测施工方案一、编制依据1、设计院提供的施工图纸2、建设单位提供的沉降观测基准点3、《工程测量规范》GB50026-20074、《建筑变形测量规范》JGJ8-20075、建筑单位提供的二个沉降观测控制点:BM1、BM2。
其高程分别为:2093.185米、2093。
929米.二、工程概况D—1#楼、D-S1#楼、D—3#楼、车库四。
D—1#楼建筑面积23410.99m2,D-S1#楼建筑面积2319.21 m2,、D—3#楼建筑面积21884。
73m2,车库总建筑面积51307m2.各工程项目概况如下表:三、人员及仪器的配备1、测量人员配备为了满足本工程测量全面、有序的开展,将投入以下测量人员,组成本工程施工测量组。
由工程项目技术负责人负责现场测量工作的监督实施。
2、测量仪器配备根据本工程特点和沉降观测精度要求,平面控制盒建筑物的定位采用全站仪,轴线投设用经纬仪,高程测量用水准仪,本工程拟投入测量仪器如下表:注明:仪器必须在检定证书规定的有效日期内使用。
四、观测点的设置1、制作方法沉降观测点大样见下图:沉降观测的标志可根据不同的建筑结构类型和建筑材料,采用墙(柱)标志、基础标志和隐蔽式标志等形式,并符合下列规定:⑴各类标志的立尺部位应加工成半球形或有明显的突出点,并涂上防腐剂;⑵标志的埋设位置应避开雨水管、窗台线、散热器、暖水管、电气开关等有碍设标与观测的障碍物,并应视立尺需要离开墙(柱)面和地面一定距离;⑶当应用静力水准测量方法进行沉降观测时,观测标志的形式及其埋设,应根据采用的静力水准仪的型号、结构、读数方式以及现场条件确定。
标志的规格尺寸设计,应符合仪器安置的要求。
2、设置方法在地下室结构施工时,地下室柱墙结构钢筋绑扎完毕后,在地下室顶板50线标高值处将准备好的电线盒固定在观测点位置,用电弧焊将观测点的盒子固定在柱或墙上,封闭模板时,注意检查观测点的盒必须紧贴模板。
模板拆除后,可以看到观测点的盒子。
沉降观测点的设置报告沉降观测在建筑物的施工、竣工验收以及竣工后的监测等过程中,具有安全预报、科学评价及检验施工质量等的职能。
通过现场监测数据的反馈信息,可以对施工过程等问题起到预报作用,及时做出较合理的技术决策和现场的应变决定。
第一部分建(构)筑物沉降观测点的设置与观测一、相关规范及规范性文件要求(1)《工程测量规范》(GB50026-2007)为国家标准,第5.3.43(1)、7.1.7、7.5.6、10.1.10条(2)《建筑变形测量规范》(JGJ8-2007)为行业标准,第3.0.1、3.0.11条二、沉降观测的对象根据《建筑变形测量规范》(JGJ8-2007)第3.0.1条(强条)下列建筑物在施工及使用期间需进行沉降观测:A、地基基础设计等级为甲级的建筑物;B、复合地基或软弱地基上的设计等级为乙级的建筑物;C、加层、扩建建筑物;D、受邻近深基坑开挖施工影响或受地下地下水等环境因素变化影响的建筑物;E、需要积累建筑经验或进行设计反分析的工程;F、创优工程。
在此需要明确的概念是地基基础设计等级。
《建筑地基基础设计规范》(GB50007-2002)中第3.0.1条作如下定义:若工程明显为地基基础设计等级丙级的建筑物(如地基条件较好的6层住宅楼等),就不需要沉降观测(创优工程除外)。
若不能确定地基基础设计等级,或者有疑问,就请设计单位明确是否需要沉降观测,并请书面答复或者写入图纸会审记录中。
三、沉降观测点的布设建筑物确定需要进行沉降观测之后,在工程开工之初,应根据设计图纸的安排做好沉降观测策划工作、制定沉降观测方案,对于符合条件的应委托有资质的单位观测,适时埋设观测点。
根据《建筑物沉降观测方法》DGJ32/J18-2006和《建筑变形测量规范》JGJ8-2007的要求,沉降观测点应布设在能全面反映建筑物地基变形特征的点位,砌筑小阴井加以保护,宜选在下列位置:A、建筑物的四角、大转角及沿外墙每10~15m处或每隔2~3根柱基上;B、高低层建筑物、新旧建筑物、纵横墙等交接处的两侧,不同地质条件、不同荷载分布、不同基础类型、不同基础埋深、不同上部结构、建筑裂缝、后浇带、沉降缝和伸缩缝的两侧,人工地基与天然地基接壤处及填挖方分界处;C、宽度大于或等于15米,或宽度小于15米但地质条件复杂以及膨胀土地区的建筑物的承重内隔(纵)墙设内墙点,以及框架、框剪、框筒、筒中筒结构体系的楼、电梯井和中心筒处;D、筏基、箱基的四角和中部位置处;E、多层砌体房屋纵墙间距6~10米横墙对应墙端处;F、框架结构建筑的每个或部分柱基上或沿纵横墙轴线上,以及可能产生较大不均匀沉降的相邻柱基处;G、高层建筑横向和纵向两个方向对应尽端处;H、邻近堆置重物处、受振动有显著影响的部位及基础下的暗滨(沟)处;I、重型设备基础和动力设备基础的四角、基础形式或埋深改变处以及地质条件变化处两侧;J、对于电视塔、烟囱、水塔、油罐、炼油塔、高炉等高耸构筑物,应设在沿周边在与基础轴线相交的对称位置上,点数不少于4个。
基坑沉降观测点的布置和要求
基坑沉降观测点的布置和要求如下:
1. 选址原则:观测点应选在基坑四周及附近区域,覆盖整个基坑的沉降情况。
同时考虑场地条件,尽量选择坚实、平稳的地面。
2. 观测点数量:根据基坑的大小和形状确定观测点的数量。
通常情况下,基坑较大且形状复杂时,观测点数量应增加。
3. 观测点的位置:观测点应避免在施工区域和可能受到较大振动的地方设置,以免对测量结果产生干扰。
4. 观测点的布局:观测点应均匀分布在基坑周围,目的是能够较全面地观测到基坑沉降的情况。
5. 观测点的距离:观测点之间的距离应合理确定,以确保能够有效观测到基坑不同位置的沉降情况。
一般来说,观测点的间距应在基坑最大直径的2~3倍左右。
6. 观测点的深度:观测点的深度应根据基坑的设计深度确定。
通常情况下,观测点的深度应超过基坑顶部土层的深度。
7. 观测点的设置方式:观测点可以通过钢筋粘结固定、预埋点固定或定向土钉的方式设置。
8. 观测仪器和设备:观测仪器和设备的选择应考虑到观测点设
置的深度和要求的精度。
通常情况下,使用测量水准仪、变形仪等设备进行观测。
9. 观测频率:观测频率应根据基坑的施工进度确定。
一般来说,在基坑施工初期,观测频率可以较高,以后逐渐减少。
10. 数据处理与分析:观测数据应及时处理和分析,以评估基
坑沉降的情况,并及时采取相应的措施。
同时,观测结果应与设计要求进行比较,判断是否达到要求。
备注:以上仅为基坑沉降观测点布置和要求的一般原则,具体的布置和要求还需结合具体工程情况进行确定。
建筑物的沉降观测沉降观测即根据建筑物设置的观测点与固定(永久性水准点)的测点进行观测,测其沉降程度用数据表达,凡一层以上建筑、构筑物设计要求设置观测点,人工、土地基(砂基础)等,均应设置沉陷观测,施工中应按期或按层进度进行观测和记录直至竣工。
一、沉降观测内容沉降观测应测定建筑的沉降量、沉降差及沉降速率,并应根据需要计算基础倾斜、局部倾斜、相对弯曲及构件倾斜。
二、沉降监测点的布设要求1应能反映建筑及地基变形特征,并应顾及建筑结构和地质结构特点。
当建筑结构或地质结构复杂时,应加密布点。
2对民用建筑,沉降监测点宣布设在下列位置:1)建筑的四角、核心筒四角、大转角处及沿外墙每Iom~20m处或每隔2根~3根柱基上;2)高低层建筑、新旧建筑和纵横墙等交接处的两侧;3)建筑裂缝、后浇带两侧、沉降缝两侧、基础埋深相差悬殊处、人工地基与天然地基接壤处、不同结构的分界处及填挖方分界处以及地质条件变化处两侧;4)对宽度大于或等于15m、宽度虽小于15m但地质复杂以及膨胀土、湿陷性土地区的建筑,应在承重内隔墙中部设内墙点,并在室内地面中心及四周设地面点;5)邻近堆置重物处、受振动显著影响的部位及基础下的暗浜处;6)框架结构及钢结构建筑的每个或部分柱基上或沿纵横轴线上;7)筏形基础、箱形基础底板或接近基础的结构部分之四角处及其中部位置;8)重型设备基础和动力设备基础的四角、基础形式或埋深改变处;9)超高层建筑或大型网架结构的每个大型结构柱监测点数不宜少于2个,且应设置在对称位置。
3对电视塔、烟囱、水塔、油罐、炼油塔、高炉等大型或高耸建筑,监测点应设在沿周边与基础轴线相交的对称位置上,点数不应少于4个。
4对城市基础设施,监测点的布设应符合结构设计及结构监测的要求。
三、对沉降监测点的标志的要求1标志的立尺部位应加工成半球形或有明显的突出点并宜涂上防腐剂。
2标志的埋设位置应避开雨水管、窗台线、散热器、暖水管、电气开关等有碍设标与观测的障碍物,并应视立尺需要离开墙面、柱面或地面一定距离,宜与设计部门沟通。
一、测区概况1、地理位置待建的秦皇岛恒大城位于秦皇岛市火车站北侧,本次涉及沉降观测及基坑变形监测建筑物为:5#、6#地块(6#地块1、2标;5#地块、6#地块3、4标)拟建的住宅及商业建筑,该标段位于规划北港大街南侧,迎宾北路由标段中间穿过。
项目工程为剪力墙结构,桩筏、筏板基础,一般为地下2层,地上5—49层。
该项目由荆州市晴川建筑设计院有限公司设计,恒大地产集团秦皇岛恒大城房地产开发有限公司投资建设,本工程地基基础设计等级为甲级。
依据设计要求,本工程按国家规范,在施工及使用期间均进行沉降观测。
本次沉降观测工程范围主要包含住宅及配套工程。
基坑监测部分指根据设计图纸要求需要进行基坑监测部分。
二、工作任务恒大城5#、6#地块3、4标段建筑沉降观测具体情况如下表所示:按《规范》要求建筑物沉降观测点建点后,从±0开始进行两次测量,并取各点两次高程中数作为该点的初始高程,结构封顶前按上表设计的次数监测;竣工前按封顶后间隔1个月、2个月、竣工前;竣工后第一年监测3次数;第二年监测2次。
个别建筑在外装修前还需重新布设观测点,换点后应同时测量2次(取其平均数做为起始值)。
每栋建筑封顶后还应监测约8次;合计344次;5#、6#地块沉降观测总计观测次数为771次。
5#、6#地块沉降观测点布设具体位置详见沉降观测布点示意图。
按《建筑变形测量规程》及甲方要求,本工地建筑物沉降进行至主体竣工验收及使用运行两年,当沉降速度小于0.04mm/d,可以认为已进入稳定阶段,否则应增加观测次数,本方案中规定的观测次数仅作为参考。
但是当监测过程中发生下列情况之一时,必须立即报告委托方,同时应及时增加观测次数或调整监测方案:1、变形量或变形速率出现异常变化;2、变形量达到或超出预警值;3、周边或开挖面出现塌陷、滑坡;4、建筑本身、周边建筑及地表出现异常;5、由于地震、暴雨、冻融等自然灾害引起的其他变形异常情况。
如需另外增加观测次数,甲乙双方另行协商。
-2、监测点的布设2.0.1基坑顶部竖向位移监测点布设在基坑边坡顶部的,应沿基坑周边布置,基坑周边中部、阳角处应布置监测点。
监测点间距不宜大于20m,每边监测点数目不应少于3个。
监测点宜设置在基坑边坡坡顶上。
监测点布设在在围护墙上的,应沿围护墙的周边布置,围护墙周边中部、阳角处应布置监测点。
监测点间距不宜大于20m,每边监测点数目不应少于3个。
监测点宜设置在冠梁上。
2.0.2基坑顶部水平位移监测点的布设同2.1 基坑顶部竖向位移,宜为共用点。
2.0.3坑外土体深层水平位移深层水平位移监测孔宜布置在基坑边坡、围护墙周边的中心处及代表性的部位,数量和间距视具体情况而定,但每边至少应设1个监测孔。
2.0.4 地下水位水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置,监测点间距宜为20~50m。
相邻建(构)筑物、重要的地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕的外侧约2m处。
2.0.5 锚(杆)索拉力锚(杆)索的拉力监测点应选择在受力较大且有代表性的位置,基坑每边跨中部位和地质条件复杂的区域宜布置监测点。
每层锚杆的拉力监测点数量应为该层锚杆总数的1~3%,并不应少于3根。
每层监测点在竖向上的位置宜保持一致。
每根杆体上的测试点应设置在锚头附近位置。
2.0.6支护桩桩身力- w --支护桩桩身力监测点应布置在受力、变形较大且有代表性的部位,监测点数量和横向间距视具体情况而定,但每边至少应设1处监测点。
竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m。
2.0.7支撑力支撑力监测点的布置应符合下列要求:1、监测点宜设置在支撑力较大或在整个支撑系统中起关键作用的杆件上;2、每道支撑的力监测点不应少于3个,各道支撑的监测点位置宜在竖向保持一致;3、钢支撑的监测截面根据测试仪器宜布置在支撑长度的1/3部位或支撑的端头。
钢筋混凝土支撑的监测截面宜布置在支撑长度的1/3部位;4、每个监测点截面传感器的设置数量及布置应满足不同传感器测试要求。
浅析深基坑及周边建筑物沉降观测摘要:随着城市建设的不断扩大,城市中开挖深基坑成为普遍现象,然而会对深基坑周围的建筑物造成沉降的影响。
本文以某高层住宅楼的基坑挖掘过程为研究对象,对其周围建筑物进行沉降观测,详细描述了所使用的观测方法及观测方案。
关键词:深基坑;沉降观测;观测方法1 工程概况1.1 工程简介某高层住宅楼所处位置为郊区空旷地区,南侧5m处为一栋7层民房,基坑开挖深度约为9米。
基坑采用围护桩+锚索支护方式,围护桩外围为止水帷幕墙。
本次监测工作始于2011年7月26日,结束于2011年10月26日,共历时90天。
根据本次工程的监测要求,需要对基坑南侧相距5m的民房进行竖向位移监测。
1.2 工程地质根据钻探结果显示,该高层住宅楼覆土表层是第四系的人工填筑杂填土与素填土,下面是冲洪积粘性土、砂层及残积粘性土,其下伏基岩是第三系泥岩。
1.3 水文地质由地下水赋存条件可知,高层住宅楼地下水是松散土层的孔隙水。
主要分布于第四系的砂层中。
砂层的连通性较好,水量较大,呈现断续分布;而残积层由于粘粒的含量不均,其透水性及含水性均存在差异,并且局部水量可能较大。
总体来说,残积层的水量不大,富水性与透水性均较弱。
2 监测目的和依据2.1 监测目的本次监测通过对基坑现场的观测,掌握基坑周围建筑物的垂直变形情况,如果变形增量超过了允许值,要及时预警,从而确保基坑邻近建筑物的安全,采集数据信息,为基坑挖掘施工提供信息化依据。
2.2 监测依据施工单位与设计单位要求、《建筑变形测量规范》(jgj 8-2007)、《建筑地基基础设计规范》(gb50007-2002)和《建筑基坑工程监测技术规范》(gb50497- 2009)。
3 监测方案3.1 布置工作基点根据现场的工作条件,要将工作基点布置在利于监测的地方,并且不能受到基坑的影响范围,根据场地的观测条件,设置1个沉降观测的水准网,每个网内设置3个观测基点。
3.2 监测内容基坑周边建筑物竖向位移监测。
2. 监测点地布设2.0.1基坑顶部竖向位移监测点布设在基坑边坡顶部地,应沿基坑周边布置,基坑周边中部.阳角处应布置监测点.监测点间距不宜大于20m,每边监测点数目不应少于3个.监测点宜设置在基坑边坡坡顶上.监测点布设在在围护墙上地,应沿围护墙地周边布置,围护墙周边中部.阳角处应布置监测点.监测点间距不宜大于20m,每边监测点数目不应少于3个.监测点宜设置在冠梁上.2.0.2基坑顶部水平位移监测点地布设同2.1 基坑顶部竖向位移,宜为共用点.2.0.3坑外土体深层水平位移深层水平位移监测孔宜布置在基坑边坡.围护墙周边地中心处及代表性地部位,数量和间距视具体情况而定,但每边至少应设1个监测孔.2.0.4 地下水位水位监测点应沿基坑周边.被保护对象(如建筑物.地下管线等)周边或在两者之间布置,监测点间距宜为20~50m.相邻建(构)筑物.重要地地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕地外侧约2m处.2.0.5 锚(杆)索拉力锚(杆)索地拉力监测点应选择在受力较大且有代表性地位置,基坑每边跨中部位和地质条件复杂地区域宜布置监测点.每层锚杆地拉力监测点数量应为该层锚杆总数地1~3%,并不应少于3根.每层监测点在竖向上地位置宜保持一致.每根杆体上地测试点应设置在锚头附近位置.2.0.6支护桩桩身内力支护桩桩身内力监测点应布置在受力.变形较大且有代表性地部位,监测点数量和横向间距视具体情况而定,但每边至少应设1处监测点.竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m.2.0.7支撑内力支撑内力监测点地布置应符合下列要求:1.监测点宜设置在支撑内力较大或在整个支撑系统中起关键作用地杆件上;2.每道支撑地内力监测点不应少于3个,各道支撑地监测点位置宜在竖向保持一致;3.钢支撑地监测截面根据测试仪器宜布置在支撑长度地1/3部位或支撑地端头.钢筋混凝土支撑地监测截面宜布置在支撑长度地1/3部位;4.每个监测点截面内传感器地设置数量及布置应满足不同传感器测试要求.2.0.8 围护墙侧向土压力围护墙侧向土压力监测点地布置应符合下列要求:1.监测点应布置在受力.土质条件变化较大或有代表性地部位;2.平面布置上基坑每边不宜少于2个测点.在竖向布置上,测点间距宜为2~5m,测点下部宜密;3.当按土层分布情况布设时,每层应至少布设1个测点,且布置在各层土地中部;4.土压力盒应紧贴围护墙布置,宜预设在围护墙地迎土面一侧.2.0.9土体分层竖向位移土体分层竖向位移监测孔应布置在有代表性地部位,数量视具体情况确定,并形成监测剖面.同一监测孔地测点宜沿竖向布置在各层土内,数量与深度应根据具体情况确定,在厚度较大地土层中应适当加密.2.0.10立柱竖向位移立柱地竖向位移监测点宜布置在基坑中部.多根支撑交汇处.施工栈桥下.地质条件复杂处地立柱上,监测点不宜少于立柱总根数地10%,逆作法施工地基坑不宜少于20%,且不应少于5根.2.0.11周边建筑物竖向位移从基坑边缘以外1~3倍开挖深度范围内需要保护地建(构)筑物.地下管线等均应作为监控对象.必要时,尚应扩大监控范围.位于重要保护对象(如地铁.上游引水.合流污水等)安全保护区范围内地监测点地布置,尚应满足相关部门地技术要求.建(构)筑物地竖向位移监测点布置应符合下列要求:1.建(构)筑物四角.沿外墙每10~15m处或每隔2~3根柱基上,且每边不少于3个监测点;2.不同地基或基础地分界处;3.建(构)筑物不同结构地分界处;4.变形缝.抗震缝或严重开裂处地两侧;5.新.旧建筑物或高.低建筑物交接处地两侧;6.烟囱.水塔和大型储仓罐等高耸构筑物基础轴线地对称部位,每一构筑物不得少于4点.2.0.12周边建筑物水平位移建(构)筑物地水平位移监测点应布置在建筑物地墙角.柱基及裂缝地两端,每侧墙体地监测点不应少于3处.2.0.13周边建筑物倾斜建(构)筑物倾斜监测点应符合下列要求:1 监测点宜布置在建(构)筑物角点.变形缝或抗震缝两侧地承重柱或墙上;2 监测点应沿主体顶部.底部对应布设,上.下监测点应布置在同一竖直线上;3 当采用铅锤观测法.激光铅直仪观测法时,应保证上.下测点之间具有一定地通视条件.2.0.14周边管线竖向位移地下管线监测点地布置应符合下列要求:1.应根据管线年份.类型.材料.尺寸及现状等情况,确定监测点设置;2.监测点宜布置在管线地节点.转角点和变形曲率较大地部位,监测点平面间距宜为15~25m,并宜延伸至基坑以外20m;3.上水.煤气.暖气等压力管线宜设置直接监测点.直接监测点应设置在管线上,也可以利用阀门开关.抽气孔以及检查井等管线设备作为监测点;4.在无法埋设直接监测点地部位,可利用埋设套管法设置监测点,也可采用模拟式测点将监测点设置在靠近管线埋深部位地土体中.2.0.15 周边地面点竖向位移基坑周边地表竖向沉降监测点地布置范围宜为基坑深度地1~3倍,监测剖面宜设在坑边中部或其他有代表性地部位,并与坑边垂直,监测剖面数量视具体情况确定.每个监测剖面上地监测点数量不宜少于5个.2.0.16基准点地埋设(1) 竖向位移基准点地埋设埋设方法见下图:(2) 水平位移基准点地埋设同3.1 竖向位移基准点地埋设,并在基准点顶部刻画“+”字.2.0.17.监测点地埋设(1)基坑顶部竖向位移A.监测点埋设在冠梁顶部地,点位选取后,用电钻在冠梁上成孔,然后植入测钉即可.B.监测点埋设在基坑边坡顶部地,点位选取后,用电钻在基坑边坡上成孔,然后植入长50cm,Φ16以上地钢筋,并用混凝土保护.(2)基坑顶部水平位移埋设方法同4.1基坑顶部竖向位移,并在监测点顶部刻画“+”字.(3)坑外土体深层水平位移坑外土体深层水平位移测斜管具体埋设方法及步骤如下:a.选址:根据规范及现场条件,选择将要打孔地位置;b.打孔:通过打孔机器,成孔到预先指定深度;c.下管:将测斜管端头接上并保证管子内侧地十字槽严格对正,用螺丝钉固定好后通过机器吊入孔内;d.洗孔:用清水将孔内淤泥洗去;e.填砂:洗孔完成后,将测斜管顶端口用盖子盖上,并在管子外围用砂子填实,以防止测斜管地晃动;f.保护:在测斜管外围砌砖保护,以防止监测过程中管子被破坏.(4)地下水位地下水位管具体埋设方法及步骤如下:a.选址:根据规范及现场条件,选择将要打孔地位置;b.打孔:通过打孔机器,成孔到预先指定深度;c.下管:将水位管端头接好,底部2~4米接上花管,用螺丝钉固定好后通过机器吊入孔内;d.洗孔:用清水将孔内淤泥洗去;e.填砂:洗孔完成后,将水位管顶端口用盖子盖上,并在管子外围用砂子填实,以防止水位管地晃动;f.保护:在水位管外围砌砖保护,以防止监测过程中管子被破坏.(5)锚(杆)索拉力锚(杆)索拉力地测试采用地设备是锚索计,具体安装方法如下:a.观测锚索张拉前,将测力计安装在孔口垫板上.带专用传力板地测力计,先将传力板装在孔口垫板上,使测力计或传力板匀孔轴垂直,偏斜应小于0.5°,偏心应不大于5mm.b.安装张拉机具和钳具,同时对测力计地位置进行校验,合格后,开始预紧和张拉.c.只作施工监测地测力计,应安装在外锚板地上部.d.观测锚索应在与其有影响地其他工作锚索张拉之前进行张拉加荷.张拉程序应与工作锚杆地张拉程序相同.有特殊需要时,可另行设计张拉程序.e.测力计安装就位后,加荷张拉前,应准确测得初始仪和环境温度.反复测读,三次读数差小于1%(F·S),取其平均值作为观测基准值.f.基准值确定后,分级加荷张拉,逐级进行张拉观测.一般每级荷载测读一次,最后一级荷载进行稳定观测,以5分钟测一次,连续二次读数差小于1%(F·s)为稳定.张拉荷载稳定后,应及时测读锁定荷载:张拉结束之后,根据荷载变化速率确定观测时间间隔,进行锁定后地稳定观测.g.长期观测锚索测力计及电缆线路应设保护装置.标准安装地锚索测力计示意图倾斜安装地锚索测力计示意图(6)支护桩桩身内力支护桩桩身内力地测试采用地设备是钢筋计,具体地安装方法如下:A.钢筋计在安装前应先用绝缘胶带进行包裹,避免设备与混凝土直接接触;B.钢筋笼绑扎完毕后,分别在两根选定地外侧主筋上将钢筋计串联,焊接在预留位置.保证同一高程上地两个钢筋计连线在钢筋笼放入基坑时与基坑边线垂直;C.接钢筋直径选配同直径地钢筋计,将仪器两端地连接杆分别与钢筋焊接在一起,焊接强度不低于钢筋强度.焊接过程中应用毛巾或其他布料盖住钢筋计,并不断向毛巾或其他布料浇水,避免温度过高而损伤仪器;D.钢筋计焊接时应对电缆进行覆盖保护,避免在焊接过程中焊渣飞溅损坏电缆,各钢筋计及电缆编号将电缆集束绑扎后呈“S”形向上引出电缆直到桩顶位置,绑扎距离宜为0.5m.E.仔细检查钢筋计焊接位置和电缆编号无误后,方可后续施工,浇捣混凝土时导管应远离仪器0.5m以上,防止损坏;钢筋计安装示意图(7)支撑内力A.钢筋计:具体地安装方法同4.6支护桩桩身内力.B.反力计:具体地安装方法如下:a在安装架圆形钢筒上没有开槽地一端面与支撑地牛腿(活络头)上地钢板电焊焊接牢固,电焊时必须与钢支撑中心轴线与安装中心点对齐.b待冷却后,把轴力计推入焊好地安装架圆形钢筒内并用圆形钢筒上地4个M10螺丝把轴力计牢固地固定在安装架内,使支撑吊装时,不会把轴力计滑落下来即可.c测量一下轴力计地初频,是否与出厂时地初频相符合(≤±20Hz),然后把轴力计地电缆妥善地绑在安装架地两翅膀内侧,使钢支撑在吊装过程中不会损伤电缆为标准.d钢支撑吊装到位后,即安装架地另一端(空缺地那一端)与围护墙体上地钢板对上,轴力计与墙体钢板间最好再增加一块钢板250mm×250mm×25mm,防止钢支撑受力后轴力计陷入墙体内,造成测值不准等情况发生.e在施加钢支撑预应力前,把轴力计地电缆引至方便正常测量时为止,并进行轴力计地初始频率地测量,必须记录在案.f施加钢支撑预应力达设计标准后即可开始正常测量了.g变量地确定:一般情况下,本次支撑轴力测量与上次同点号地支撑轴力地变化量,与同点号初始支撑轴力值之差为本次变化量.并填写成果汇总表及绘制支撑轴力变化曲线图.反力计安装示意图(8)围护墙侧向土压力围护墙侧向土压力采用地是土压力盒进行测试,具体地安装方法如下:A 土压力计埋设于土压力变化地部位即压力曲线变化处,用于监测界面土压力.土压力计水平埋设间距原则上为盒体间距地3倍以上(≥0.6m),垂直间距与水平间距同,土压力计地受压面须面对欲测量地土体;埋设时,承受土压力计地土面须严格整平,回填地土料应与周围土料相同(去除石料)小心用人工分层夯实,土压力计及电缆上压实地填土超过1m以上,方可用重型辗压机施工.B 土压力计地钻孔分层埋设方法为:根据所需测量孔地直径和深度先做一个三角形导向架,然后根据土压力计地各埋设点把土压力计用铅丝固定在系导向架上,导线沿着导向架引出地面回填地土料与周围土料相同(去除石料)小心用人工灌实,保护好线头,注意防水即可.(9)土体分层竖向位移土体分层竖向位移埋设地设备是沉降磁环,PVC管等,具体地安装方法如下:A 选址:根据规范及现场条件,选择将要打孔地位置;B 打孔:通过打孔机器,成孔到预先指定深度;C下管:将PVC管端头接好,底部固定一个固定环,放入沉降磁环,从下往上每间隔2米固定一个固定环并入沉降磁环,通过机器吊入孔内至底部,再往上提50cm 左右,使沉降磁环地三只脚充分伸入孔壁土内;D填砂:管子外围用砂子或土填实,以防止PVC管地晃动;E 保护:在PVC管外围砌砖保护,以防止监测过程中管子被破坏.(10)立柱竖向位移监测点安装方法同4.1基坑顶部竖向位移.(11)周边建筑物竖向位移周边建筑物竖向位移监测点地安装如下图所示:井式沉降观测点(观测点在室外地平以下时使用)室外地平保护木板Φ14Φ20顶盖式沉降观测点沉降观测点布置图说明:1.沉降观测点由Ф20钢筋制作而成2.安装时用电钻打孔后,清理干净孔眼,再用植筋胶把加工成型的观测点植入框架柱内即可3.观测点至上方梁板需保证2.2m的净空高度,无法满足时换个方向进行安装4.安装时需考虑雨水管及各种管线的布置,避免和观测点互相影响室外地平(12)周边建筑物水平位移周边建筑物竖向位移安装好后,在沉降观测点顶部刻画“+”字.(2)中间监测报告检测报告TEST REPORTXBY-项目汉语拼音缩写-年号-报告顺序号工程/产品名称Name of Engineering/Product****支护工程委托单位Entrusts Unit****公司检测类别Test Type委托检验基坑变形监测***********工程质量检测有限公司*********** TESTING CENTER OF CONSTRUCTION QUALITY CO., LTD检测概要TEST SUMMARY报告编号(No. of Report):XBY-项目汉语拼音缩写-年号-报告顺序号第页共页:批准(Approval)审核(V erification)主检(Chief tester)报告日期(Date):201*-*-*(3)最终监测报告检 验 报 告TEST REPORT形质检-A (B )JK -年份-报告编号工程/产品名称Name of Engineering/Product ***工程 委托单位Client 检验类别Test Type***********工程质量检测有限公司*********** TESTING CENTER OF CONSTRUCTION QUALITY CO., L TD***委托检验 基坑变形监测检验概要TEST SUMMARY摘要一.前言二.场地工程地质和水文地质条件1.工程地质条件2.水文地质条件土地物理力学指标表1(1)《建筑基坑支护技术规程》(JGJ120-99)(2)《建筑基坑工程监测技术规范》(GB50497-2009)(3)《建筑地基基础设计规范》(GB50007-2002)(4)《工程测量规范》(GB50026-2007)(5)《建筑变形测量规程》(JGJ8-2007)(6)《国家一.二等水准测量规范》(GB12897-2006)(7) 本基坑设计文件.图纸.本工程总平面图四.监测项目*****,基坑开挖面积大,开挖深度较深,监测项目在充分考虑工程及水文地质条件.基坑类别.支护结构地特点及变形控制要求地基础上来确定.除了常规地通过目视及借助其他工具地巡视检查外,主要仪器监测项目为:1)基坑顶部水平位移和竖向位移2)土体深层水平位移3)支撑构件应力4)立柱竖向位移5)锚索拉(内)力6)坑外地下水位7)土压力8)土体分层竖向位移9)墙后(周边)地表竖向位移10)周边地下管线变形11)周围建(构)筑物变形(竖向位移)12)周围建(构)筑物变形(倾斜)13)周围建(构)筑物变形(裂缝)14)9-13项详见五.监测点布置基坑监测点地布置从周边环境监测和基坑支护结构监测两方面考虑.基坑工程监测点地布置应最大程度地反映监测对象地实际状态及其变化趋势,并应满足监控要求;同时考虑周边重点监护部位,监测点应适当加密.1.周边环境监测2.支护结构监测六.监测设备和监测方法本基坑工程监测项目所采用地监测设备和监测方法见表2.监测设备和监测方法表21. 在每个测试项目受基坑开挖施工影响之前,测得各项目地初始值.本工程监测期限为土方开挖至地下工程完成并土方回填.2. 根据设计.基坑类别及本地区工程经验,本基坑工程现场仪器监测地频率见表3.现场仪器监测地监测频率表33. 根据设计.基坑类别及本地区工程经验,各监测项目地监测报警值见表4.本工程监测报警值表4八.各监测项目全过程地发展变化分析及整体评述(监测结果及分析)现场监测工作于X年X月X日开始,X年X月X日完成所有监测工作,工期X时间,获得了大量监测数据.1.施工工况简介:2.坑顶沉降水平位移3.深层土体水平位移4.坑外地下水位5.支撑轴力(锚索内力6.周边环境…………..1.累计沉降统计表(见表一).2.末次沉降统计表(见表二).九.结论及建议综上所述,得到以下结论及建议:1.总述(变形大小,是/否超出报警值等)2.变形原因主要有:21①支护结构形式.②工程地质条件③外因3.根据本工程基坑监测中遇到地实际情况,提出以下几点建议:……后附:(1)变形观测报表;(2)各种图件及说明.22。