新能源电力系统并网技术研究
- 格式:docx
- 大小:37.55 KB
- 文档页数:3
新能源发电系统中的并网与电能质量研究随着能源需求的增长和环境保护意识的增强,新能源发电系统在全球范围内得到了广泛的应用和发展。
其中,新能源发电系统中的并网与电能质量是一个重要的研究议题。
本文将对新能源发电系统中的并网与电能质量进行探讨,并分析其对电力系统运行的影响。
首先,我们先了解一下新能源发电系统中的并网。
并网是指将分散的、独立的新能源发电系统与电力系统进行连接,共同向电力系统提供电能。
在实际应用中,新能源发电系统主要包括风力发电系统、光伏发电系统和生物质发电系统。
这些系统通过逆变器等装置将直流电转换成交流电,然后与电力系统进行连接。
并网能够充分利用新能源发电系统的产能,减少对传统能源的依赖。
然而,并网也带来了一些问题,其中之一就是电能质量的问题。
电能质量是指电力系统中电能的稳定性和纯净性。
而新能源发电系统的并网会对电能质量产生一定的影响。
具体来说,新能源发电系统中的不稳定性和随机性会导致并网电能质量的波动和脉动。
此外,逆变器的运行过程中也会引入一些谐波和电压扰动,进一步影响电能质量。
因此,研究并解决新能源发电系统中的电能质量问题成为了一个重要的课题。
为了保证新能源发电系统的并网电能质量符合要求,我们需要进行相关的研究。
首先,需要对新能源发电系统中的电压、电流进行监测和分析。
通过对电压波形、电流波形以及频谱特性的分析,可以了解新能源发电系统的电能质量问题。
另外,还需要对并网逆变器的运行状态和参数进行实时监控,以及进行故障检测和诊断。
通过这些研究,可以及时发现并解决新能源发电系统中的电能质量问题,确保系统的安全稳定运行。
在研究中,我们还需分析新能源发电系统对电力系统运行的影响。
新能源发电系统的并网会引入大量的电能,改变电力系统的负荷特性和电压特性。
传统的电力系统经验难以应对新能源发电系统的这些变化。
因此,我们需要研究新能源发电系统的并网对电力系统的影响规律及机制,以及相应的调控策略。
通过建立新能源发电系统与电力系统的模型和仿真平台,可以深入研究二者之间的相互作用,为电力系统的运行和调度提供依据。
新能源发电系统并网技术研究随着人们对可持续发展的追求日益增强,新能源的利用成为了当今社会发展的热门话题。
其中,新能源发电系统并网技术研究成为了学术界和产业界关注的焦点。
本文将从多个方面探讨新能源发电系统并网技术的研究进展和挑战。
一、新能源发电系统并网技术的背景和意义近年来,人们对传统能源的依赖程度逐渐减少,新能源的利用逐渐崭露头角。
可再生能源如太阳能和风能等不仅能减少对化石燃料的依赖,还能降低对环境的影响。
然而,新能源发电系统的不稳定性和间歇性给并网运行带来了一定的挑战。
因此,研究新能源发电系统并网技术变得尤为重要。
二、新能源发电系统并网技术的目标和原理新能源发电系统并网技术的目标是保证新能源发电系统能够稳定、可靠地与电网连接,并实现电力的传输和分配。
这一目标可以通过以下几个方面的技术实现:1. 电力质量控制技术:针对新能源发电系统中的电压波动、频率波动等问题,采取适当的控制措施,保证电力质量满足电网的要求。
2. 并网控制策略:通过确定新能源发电系统与电网之间的电流和功率的控制策略,实现安全可靠的并网运行。
3. 电力调度与分析:通过对新能源发电系统的电力产量和电力消耗进行调度和分析,优化电力系统的运行和分配,提高整体效能。
三、新能源发电系统并网技术的研究进展近年来,新能源发电系统并网技术的研究取得了显著的进展。
以下是一些典型的研究方向和成果:1. 无功功率控制技术:研究者通过对新能源发电系统的无功功率进行精准控制,实现电网的无功功率平衡,提高系统的稳定性和可靠性。
2. 可逆变器控制技术:采用可逆变器作为新能源发电系统的接口,实现电网对新能源发电系统的调节和控制,提高电能利用率。
3. 储能技术:研究者通过引入储能技术,如锂离子电池和超级电容器等,解决新能源发电系统不稳定性和间歇性的问题,提高系统的供电能力。
四、新能源发电系统并网技术的挑战尽管新能源发电系统并网技术取得了不少进展,但仍然存在一些挑战:1. 电力调度问题:新能源发电系统的不稳定性和间歇性给电力调度带来了一定的难度,如何合理分配和利用电力成为了一个亟待解决的问题。
新能源发电系统的并网控制技术研究随着能源需求的增长和环境保护问题的日益凸显,新能源发电系统的发展变得日益重要。
并网控制技术作为新能源发电系统的关键组成部分,扮演着连接发电系统和电网之间的桥梁,具有调节电网负荷、安全稳定运行以及提高新能源利用率的重要作用。
本文将对新能源发电系统的并网控制技术进行研究,并就其在电网连接、功率控制、电能质量和安全稳定等方面进行探讨。
首先,将介绍新能源发电系统的并网控制技术在电网连接方面的研究。
新能源发电系统包括风能、光能、水能等多种类型,为了将这些能源有效地并入电网中,需要实现与电网的无缝连接。
并网控制技术可以通过控制发电系统的运行状态、频率和电压等参数,使其与电网同步运行,实现平稳接入电网。
此外,还需要考虑到对电网的影响,确保并网过程中不对电网的稳定性产生负面影响。
其次,将探讨新能源发电系统的并网控制技术在功率控制方面的研究。
新能源发电系统具有间歇性和波动性的特点,因此对其功率进行控制至关重要。
并网控制技术可以通过控制风力发电机、太阳能光伏板等新能源设备的输出功率,实现对系统整体功率的调节。
在低负荷时,新能源发电系统的功率可以全部注入电网;在高负荷时,可以适当限制功率注入,以避免对电网的冲击。
接下来,将讨论新能源发电系统的并网控制技术在电能质量方面的研究。
电能质量是电网运行的重要指标,包括电压稳定性、频率稳定性和谐波等方面。
新能源发电系统接入电网后,其不稳定性和波动性可能会对电网的电能质量产生一定影响。
并网控制技术可以通过对新能源发电系统的调节和控制,提高其输出电能的稳定性和质量,并确保其符合电网的要求。
最后,将关注新能源发电系统的并网控制技术在安全稳定方面的研究。
新能源发电系统与电网的连接必须具备安全稳定的特点,以避免因系统运行不稳定而对电网安全造成威胁。
并网控制技术可以通过监测和控制系统的运行状态、保护装置的协作等方式,确保系统在任何情况下都能安全稳定地运行。
此外,还需要对系统进行有效的故障检测和故障恢复机制的设计,以提高系统的可靠性。
新能源发电系统的并网控制与优化策略研究随着全球对环境友好型能源的需求不断增加,新能源发电系统逐渐成为一种重要的能源供应方式。
与传统的化石燃料发电相比,新能源发电系统在可再生、清洁、低排放等方面具有显著优势。
然而,由于其不稳定的特性,新能源发电系统需要合理的并网控制与优化策略来确保其稳定可靠地供应电力。
并网控制是指将新能源发电系统与电力网进行有效地连接和协调运行的过程。
这一过程旨在实现新能源发电系统与电力网之间的实时沟通和调度,确保稳定的电力供应并将多余的电力储存起来以备不时之需。
而优化策略则是为了获得更高的能源利用效率和经济效益,通过合理调度和控制新能源发电系统的运行状态以减少不必要的能量损失。
在新能源发电系统的并网控制中,关键是要解决两个主要问题:一是实现新能源发电系统与电力网的无缝对接,确保电力供应的连续性和稳定性;二是合理调度和控制新能源发电系统的运行状态,以优化能源利用效率。
首先,实现新能源发电系统与电力网的无缝对接需要考虑到不同能源类型之间的差异性。
对于风力发电系统而言,因其波动性较大,需要提供鲁棒性较强的控制策略来适应外部环境变化。
而对于太阳能发电系统而言,则需要实现对光伏电池阵列的精确控制,以确保其工作在最佳工作点。
此外,对于其他类型的新能源发电系统,如潮汐能、地热能等,也需要制定相应的并网控制策略来确保其与电力网的兼容性和稳定性。
其次,合理调度和控制新能源发电系统的运行状态是实现能源利用效率优化的关键。
在这方面,应该考虑到电力网的负载需求和供应能力等因素,并结合新能源发电系统的实时运行数据来制定适当的调度策略。
同时,可以利用智能报价、能量存储等技术手段来实现对新能源发电系统的精确控制,以达到最大限度地提高能源利用效率和经济效益。
为了实现新能源发电系统并网控制与优化策略的研究,需要进行深入的理论分析和实践探索。
首先,可以通过建立新能源发电系统的数学模型,分析其动态特性和稳定性,为制定相应的控制策略提供理论依据。
电力系统中的新能源并网技术研究引言新能源成为当今世界能源发展的新趋势,它既环保又可再生,是世界各国转型发展的重要方向。
然而,新能源的接入对电网的影响和改造带来了不小的挑战。
本文将着重探讨电力系统中的新能源并网技术研究,分别从电力系统、新能源接入、并网技术三个方面进行阐述。
第一章电力系统中新能源的发展1.1 传统电力系统的问题传统电力系统主要依靠火力发电和核能发电,这两种方式采取的都是大型的机组,需要大量的燃料和水资源,而火力发电带来的污染和核能发电带来的安全隐患日益突出,这也使得世界各国倾向于发展新能源。
1.2 新能源的发展趋势新能源主要包括太阳能、风能、水能、生物能等。
它们具有可再生性、清洁性和分散性等特点,是未来能源发展的重要方向。
1.3 电力系统中的新能源问题新能源的接入给电力系统的运行带来了很大的影响,比如,新能源出现波动对电网稳定性的影响,而新能源接入的不规范和不平衡反而会对电网发生负面的影响。
第二章新能源接入电网技术新能源接入电网技术主要包括逆变器技术、改善系统稳定性,稳压和调频技术、故障保护技术、光伏逆变器检测系统等技术。
2.1 逆变器技术逆变器用于将直流转化为交流,保证新能源的输出交流电流与电网交流电压同步,保证电能质量。
这也是新能源接入电网不可或缺的技术。
逆变器有多种结构和拓扑形式可以选择,这取决于具体的应用环境。
2.2 改善系统稳定性技术对于新能源的波动性,业内专家提出了改善电网的系统稳定性技术的解决方案,比如,可以使用卡尔曼滤波器结合模型预测技术,来进行新能源发电功率的预测和控制,还可以使用储能技术,对新能源进行储存控制,利用电池或超级电容器对新能源进行储能,保证电网的平稳运行。
2.3 稳压和调频技术稳压和调频技术是保证电力系统稳定运行的关键技术,它们可以通过智能控制技术,对电力系统中的负荷进行控制,实现电力系统的稳定运行。
2.4 故障保护技术新能源在接入电网时,可能会出现故障,这时候需要使用故障保护技术来进行保护,故障保护技术主要包括过流保护、过压保护、欠压保护等技术。
新能源并网的关键技术研究一、本文概述随着全球能源结构的转型和可持续发展的需求,新能源已成为未来能源发展的重要方向。
新能源并网技术作为新能源发电与电力系统的重要接口,其关键技术的研究与应用对于提高新能源的利用率、保障电力系统的稳定运行以及推动新能源产业的健康发展具有重要意义。
本文旨在探讨新能源并网的关键技术,包括新能源并网的基本原理、并网控制策略、电能质量控制、并网保护以及未来发展趋势等方面,以期为新能源并网技术的发展提供理论支持和实践指导。
本文将介绍新能源并网的基本原理,包括新能源发电系统的基本构成、并网方式与并网条件等,为后续的研究奠定理论基础。
将重点分析新能源并网的控制策略,包括最大功率点跟踪控制、有功功率和无功功率控制等,以提高新能源发电系统的效率和稳定性。
电能质量控制也是本文的研究重点之一,将探讨如何通过有效的技术手段提高新能源发电的电能质量,以满足电力系统的要求。
本文还将关注新能源并网的保护技术,研究如何防止并网过程中可能出现的故障和事故,保障电力系统的安全运行。
本文将展望新能源并网技术的发展趋势,分析未来新能源并网技术面临的挑战和机遇,并提出相应的建议和发展策略,以期为新能源并网技术的持续创新和进步提供参考。
通过本文的研究,旨在为新能源并网技术的深入研究和实践应用提供有益的借鉴和指导。
二、新能源并网技术概述随着全球能源结构的转型和可再生能源的大力发展,新能源并网技术已成为当今电力系统领域的热点和关键。
新能源并网主要指的是将风能、太阳能等可再生能源产生的电力接入到传统的电力网络中,实现可再生能源的规模化利用。
这一技术的核心在于如何确保新能源发电的稳定性和连续性,同时满足电网对电能质量、安全性、经济性等方面的要求。
新能源并网技术涵盖了多个方面,包括新能源发电的预测与调度、新能源电站的并网控制、电网适应性改造等。
新能源发电的预测与调度是确保电网稳定运行的基础,通过对新能源发电的准确预测和智能调度,可以优化电网的资源配置,减少弃风、弃光等现象的发生。
新能源发电系统的电网接入与并网技术研究随着全球对环境保护和可持续发展的重视,新能源发电系统逐渐成为替代传统能源的重要选择。
然而,新能源发电系统的电网接入与并网技术仍然是一个具有挑战性的问题。
本文将探讨新能源发电系统的电网接入和并网技术的研究进展,以及面临的挑战和未来发展方向。
1. 新能源发电系统的电网接入新能源发电系统包括风能、太阳能、潮汐能等多种形式。
这些能源的发电方式与传统的燃煤、石油等发电方式存在差异,因此需要特定的电网接入技术。
电网接入是将新能源发电系统与现有电网相连接的过程,确保可靠、安全地将新能源发电系统的电能注入电网。
2. 并网技术的研究进展并网技术是指将新能源发电系统与电网实现互联互通的技术。
目前,研究人员关注的主要问题是如何实现新能源发电系统与电网之间的能量匹配和电能质量控制。
具体而言,包括以下几个方面的研究进展:a) 频率和电压控制:新能源发电系统的接入会引起电网频率和电压的波动,因此需要采取措施来控制这些波动,以确保电网的稳定运行。
b) 电能质量控制:新能源发电系统的电能质量与传统发电方式存在差异,因此需要研究如何控制电能质量,以满足电网的要求。
c) 电网保护:新能源发电系统的接入可能会引起电网保护系统的问题,因此需要研究如何优化电网保护系统,以确保电网的安全运行。
3. 面临的挑战新能源发电系统的电网接入与并网技术面临着一些挑战。
首先,新能源发电系统的波动性和不确定性增加了电网的稳定性和可靠性的要求。
其次,传统电网的基础设施需要进行升级和改造,以适应新能源发电系统的接入需求。
此外,政策和法规的制定也是一个挑战,需要制定相应的政策和法规来规范新能源发电系统的电网接入。
4. 未来发展方向为了解决新能源发电系统的电网接入与并网技术面临的挑战,需要进一步的研究和发展。
未来的发展方向包括以下几个方面:a) 增强电网的智能化:通过引入智能电网技术,实现对新能源发电系统的接入和并网过程的智能化管理,提高电网的稳定性和可靠性。
新能源发电系统并网技术研究与应用第一章引言随着全球能源需求的不断增加和环境问题的日益严重,新能源作为一种清洁、可再生的能源形式,逐渐受到了广泛关注。
新能源发电系统的并网技术是实现新能源利用和交流电力系统互联互通的关键环节。
本章将介绍论文的研究背景和意义,并概述本文的研究内容。
第二章新能源发电系统概述本章将对新能源发电系统进行概述。
首先介绍了新能源的定义、分类及特点,然后重点介绍了几种常见的新能源发电系统,包括太阳能光伏发电系统、风能发电系统和潮汐能发电系统等。
同时,本章还介绍了新能源发电系统的优势和局限性。
第三章并网技术概述本章将对并网技术进行概述。
首先介绍了并网技术的定义及其在电力系统中的作用,然后详细介绍了传统电力系统中常用的三种并网方式:直流接口并网、交流接口并网和混合接口并网。
随后,本章还介绍了新能源发电系统中常用的一种特殊的并网方式:微网,并探讨了微网在新能源并网中的应用前景。
第四章新能源发电系统并网技术研究本章将对新能源发电系统并网技术进行研究。
首先介绍了新能源发电系统并网技术研究的背景和意义,然后详细介绍了目前新能源并网面临的一些关键技术问题,如电力系统稳定性、频率和电压的调控等。
接着,本章将对现有的一些新能源发电系统并网技术进行了综述和评述,包括发电系统的控制策略和通信系统设计等。
第五章新能源发电系统并网技术应用本章将对新能源发电系统并网技术的应用进行研究。
首先介绍了新能源发电系统并网技术应用的基本原则和要求,然后详细介绍了新能源发电系统并网技术在实际工程中的应用案例,包括太阳能发电系统和风能发电系统的并网接入案例。
同时,本章还对新能源发电系统并网技术应用中可能面临的一些问题进行了探讨,并提出了相应的解决方法和建议。
第六章新能源发电系统并网技术研究展望本章将对新能源发电系统并网技术的研究展望进行探讨。
首先分析了当前新能源发电系统并网技术研究中存在的一些问题和挑战,如效率提升和可靠性改进等。
新能源发电与电网并网技术研究随着能源需求的不断增长和环境保护的重要性日益凸显,新能源发电已成为全球能源领域的热门话题。
新能源发电技术不仅具有减少二氧化碳排放和可再生的特点,而且能够促进能源产业的转型升级和经济可持续发展。
然而,新能源发电技术的广泛应用还面临着一个重要挑战,即如何实现新能源与电网的高效并网。
本文将重点探讨新能源发电与电网并网技术的研究进展,并分析现有问题及未来发展方向。
首先,新能源发电与电网并网技术的研究是解决可再生能源发电波动性和电力系统稳定性问题的关键。
由于可再生能源发电的不稳定性,比如风力和太阳能发电的波动性,需要电网系统能够实时调节和管理电力供需平衡。
目前,研究人员主要关注的是如何提高新能源发电系统的可靠性和稳定性,以确保其能够与传统电网无缝对接。
例如,通过引入先进的智能电网技术,可以实现对新能源发电的监测、控制和预测,从而有效应对能源波动性带来的挑战。
其次,新能源发电与电网并网技术的研究还需要重点关注与电网的互联互通和互操作性。
传统电网是由大型中央发电厂供电的,而新能源发电系统则具有分布式和分散的特点。
为了实现新能源发电的高效利用,需要建立起新能源发电系统与电网之间的有效连接和协同运行机制。
当前的研究主要集中在制定标准化的电力系统接口和通信协议,以确保新能源发电系统与电网之间的兼容性和互联互通。
此外,还需要研究新能源发电系统的响应和适应能力,能够及时调整电力输出,以应对电网的需求变化。
另外,新能源发电与电网并网技术的研究还需要关注电网安全和可靠性问题。
电网作为一个庞大复杂的系统,需要考虑到新能源发电系统的接入可能带来的对电网运行和安全性的影响。
因此,需要研究开发新的电力系统分析和评估方法,以提前发现潜在的问题并采取相应的措施。
此外,还需要研究电网运行管理和控制策略,以确保新能源发电系统的接入对电网运行的影响降到最低,并保证电力系统的稳定性和可靠性。
最后,新能源发电与电网并网技术的研究还需要关注经济和政策因素的影响。
新能源电力系统的并网技术分析在当今能源转型的大背景下,新能源电力系统的发展日新月异。
其中,并网技术作为新能源电力有效接入电网的关键环节,其重要性不言而喻。
新能源电力主要包括太阳能、风能、水能等可再生能源发电形式,它们在与传统电网的连接过程中,面临着诸多技术挑战和机遇。
新能源电力系统的并网,首先要面对的是电压和频率的稳定性问题。
由于新能源发电的间歇性和随机性,其输出功率会出现较大波动。
比如风能,风速的变化会直接影响风力发电机的输出功率;太阳能则受到天气、昼夜交替等因素的影响,发电功率不稳定。
这种不稳定的功率输出可能导致电网电压和频率的波动,影响电网的正常运行。
为了解决这一问题,先进的电力电子技术被广泛应用。
例如,在风力发电系统中,通过使用变速恒频技术,可以使风力发电机在不同风速下保持稳定的输出频率。
而在光伏发电系统中,逆变器的性能对于保证输出电能的质量至关重要。
高性能的逆变器能够将直流电高效地转换为交流电,并实现与电网的良好同步。
另外,新能源电力系统的并网还需要考虑谐波问题。
在电力电子设备的运行过程中,容易产生谐波电流注入电网,这会增加电网的电能损耗,影响电能质量,甚至可能损坏电气设备。
为了降低谐波的影响,通常会采用滤波装置,如无源滤波器和有源滤波器。
无源滤波器结构简单、成本较低,但滤波效果有限;有源滤波器则能够实现动态跟踪和补偿,滤波效果更好,但成本相对较高。
在实际应用中,往往会根据具体情况选择合适的滤波方案。
新能源电力的并网规模也在不断扩大,这对电网的规划和调度提出了新的要求。
传统的电网规划和调度方法主要基于确定性的负荷预测和电源布局,而新能源的不确定性使得这种方法不再适用。
因此,需要引入更加先进的预测技术和优化算法。
例如,通过对历史气象数据和新能源发电数据的分析,利用机器学习算法进行短期和中长期的发电功率预测,为电网规划和调度提供依据。
同时,智能调度系统能够根据实时的电网运行状态和新能源发电情况,灵活调整发电计划和负荷分配,提高电网的运行效率和可靠性。
新能源电力系统并网技术研究
随着全球气候变化的严重,可再生能源成为了世界各国发展的一个重要方向。
其中,新能源电力系统是实现可持续能源发展的关键。
然而,新能源电力系统的并网面临着一系列技术难题,本文将对新能源电力系统并网技术进行研究与探讨。
第一部分:新能源电力系统概述
1.1 可再生能源的发展趋势
近年来,可再生能源如风能、太阳能等的利用率不断提高,逐渐成为人们重要
的能源选择。
特别是在欧洲、中国等地,可再生能源的应用已经取得了长足的进步。
1.2 新能源电力系统的特点
新能源电力系统具有分布式、间断性和不稳定性等特点。
与传统的电力系统相比,新能源电力系统需要针对这些特点进行技术改进,以确保系统运行的稳定性和可靠性。
第二部分:新能源电力系统并网技术的挑战
2.1 可再生能源的波动性与不确定性
新能源电力系统中的可再生能源具有波动性和不确定性,例如,风能和太阳能
的时空分布不均匀,这导致了电力系统的不稳定性。
因此,如何准确预测和控制新能源的波动性成为了研究者需要解决的一个关键问题。
2.2 电力系统的稳定性与可靠性
新能源电力系统与传统电力系统的不同之处在于其分布式特点,新能源发电设
备分布在不同地理位置,仅仅依靠传输线路将其并入电力系统是不够的。
同时,由于新能源的不稳定性,电力系统的稳定性和可靠性面临着挑战。
因此,研究并改进新能源电力系统的稳定控制技术势在必行。
第三部分:新能源电力系统并网技术的研究
3.1 新能源电力系统的规划与建设
新能源电力系统的规划与建设需要充分考虑受纳容量、电力负载需求等因素。
在规划过程中,需要综合评估电力系统的潜力,并选择合适的新能源发电设备进行布局。
3.2 新能源电力系统的优化调度
优化调度是确保新能源电力系统稳定运行的关键环节。
通过合理安排新能源发电设备的发电模式和功率输出,可以最大程度地减小系统的波动性,提高系统的供电可靠性。
3.3 新能源电力系统的储能技术
储能技术是解决新能源电力系统波动性与不确定性问题的关键措施。
通过储能装置对新能源发电进行调峰填谷,可以提高系统的稳定性和可靠性。
目前,储能技术主要包括压缩空气储能、电池储能等多种形式。
第四部分:新能源电力系统并网技术的前景展望
4.1 新能源电力系统与智能电网的融合
随着信息技术的发展,智能电网的概念日渐成熟。
新能源电力系统可以借助智能电网的技术手段,实现对系统的监测、调度与管理,进一步提高系统的运行效率与可靠性。
4.2 新能源电力系统与能源互联网的关联
能源互联网是指基于互联网技术进行的能源资源整合与调度,以实现能源的高效利用和共享。
新能源电力系统可以作为能源互联网的重要组成部分,通过与其他能源形式的互联互通,实现全方位的能源整合。
结语
新能源电力系统并网技术研究对于可持续发展具有重要意义。
我们需要不断探索和创新,以解决新能源电力系统在并入传统电力系统时所面临的各种技术难题。
通过优化调度、储能技术等手段,新能源电力系统可以实现稳定可靠的运行,并为全球能源转型做出更大的贡献。