四年级奥数复习(一)
- 格式:doc
- 大小:44.50 KB
- 文档页数:1
四年级奥数知识点:速算与巧算(一)例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10001去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算201999+20199+2019+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)201999+20199+2019+199+19=(20199+1)+(20199+1)+(2019+1)+(199+1)+(19+1)-5=201900+20190+2019+200+20-5=222220-5=22225.例3 计算(1+3+5++1989)-(2+4+6++1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990497+9951990497=995.例4 计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数. 389+387+383+385+384+386+388=3907137564=273028=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=3807+9+7+3+5+4+6+8=2660+42=2702.例5 计算(4942+4943+4938+4939+4941+4943)6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)6=(49406+2+321+1+3)6=(49406+6)6(这里没有把49406先算出来,而是运=494066+66运用了除法中的巧算方法)=4940+1=4941.副标题#e#例6 计算54+9999+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+9999+45=(54+45)+9999=99+9999=99(1+99)=99100=9900.例7 计算 99992222+33333334解:此题如果直接乘,数字较大,容易出错.如果将9999变为33333,规律就出现了.99992222+33333334=333332222+33333334=33336666+33333334=3333(6666+3334)=333310000=33330000.例8 2019+999999解法1:2019+999999=1000+999+999999=1000+999(1+999)=1000+9991000=1000(999+1)=10001000=1000000.解法2:2019+999999=2019+999(1000-1)=2019+999000-999=(2019-999)+999000=1000+999000=1000000.观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
奥数已经成为现在孩子学习的加强工具。
一种思维方式的训练,一种让孩子学以致用,举一反三的法宝,一种可以扩宽孩子思维的奥秘兵器。
老师经常对学生们说,养成好的学习品质,拥有好的学习方法比学习知识自己重要得多,它是学好知识的前提。
学习奥数更是如此。
奥数题对学生们的要求是非常严格的,你既要注意到思维有广度有深度,在做题时还要加倍小心。
有些题往往是一字之差,谬之千里。
习惯的养成不是一朝一夕之功。
要养成好的学习习惯,首先,需要学生对这个问题有个正确的认识,有些家长往往错误地认为。
只要是标题问题理解了,出点小错不妨。
这样做的结果,往往助长了学生粗心大意之习气。
而在奥数题中,一点小错,往往是致命的。
学生做题出错了,我们应把它做为一个好的教育学生的契机,引导学生找出错误原因并不停积累,是知识方面的,要牢记。
是习惯方面的,要改正。
相信久而久之,好的习惯必能养成。
第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【答案】(1)18(2)15(3)18,8(4)37,25(5)24,96(6)54,486(7)16,4(8)13,3【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
小学四年级上册奥数题(10篇)1.小学四年级上册奥数题篇一1、小明上山用了4小时,每小时行3千米,下山的速度加快,是6千米/时,下山用了多长的时间?2、车间原计划每天生产15台机器,24天就可以完成,实际每天生产18台,实际只要几天就可以完成任务?3、实验小学要为三、四年级的学生每人买一本价格为12元的作文辅导书。
已知三年级有145人,四年级有155人,两个年级一共需要多少元?4、有370人去旅游,每辆汽车坐30人,要几辆汽车才能拉完?5、有450千克大米,每天吃60千克,最多能吃几天?参考答案:1、4×3÷6=2(小时)2、15×24÷18=20(天)3、12×(145+155)=3600(元)4、370÷30=12(辆)……10(人)需要13辆5、450÷60=7.5(天)7天半2.小学四年级上册奥数题篇二1、小明的家在学校南边,小芳的家在学校北边,两家之间相距1410米,每天上学时,如果小明比小芳提前出发3分钟,两人就可以同时到校。
已知小明每分钟走70米,小芳每分钟走80米,小明的家离学校多少米?2、粮库里有860吨粮食,19辆同样的汽车5次拉走380吨,照这样计算,剩下的粮食要6次拉完,需要增加几辆同样的汽车?参考答案:1、所谓同时到校,也就是两人在校门口相遇。
已知两家之间的路程是1410米,二小明每天总是提前3分钟,这3分钟小明可以走3×70=210米,剩下的路程1 410-210=1200(米)是两人同时出发,相向而行,这样可以求出相遇时间。
有了相遇时间,问题也就得到了解决。
列式为:小明3分钟可以走:3×70=210(米)剩下的路程:1410-210=1200(米)小芳与小明相遇时间:1200÷(70+80)=8(分钟)小明所走的时间:8+3=11(分钟)小明家离学校的距离是:11×70=770(米)答:小明的家离学校770米。
第一讲等差数列根底关于第一讲等差数列,是中年级学习的一个重点。
高年级的很多题虽不是直接考察等差数列,但往往中间的*一步需要用到等差数列的知识。
等差数列这讲公式繁多,但希望孩子们千万不要死记硬背这些公式,一定要理解着记忆。
希望孩子们能够每天坚持练几道大数乘除法。
乘法可以按照三位数×一位数,两位数×两位数,三位数×两位数,四位数×两位数,三位数×三位数,四位数×三位数。
除法可以从三位数÷一位数,四位数÷一位数,三位数÷两位数,四位数÷一位数,五位数÷一位数,五位数÷三位数等等这样的顺序练起。
一、通项公式知识点解析:⒈第n项=首项+〔n-1〕×公差辅助练习:等差数列5、8、11……求这个数列的第2021项是多少?这个公式含有四个量首项,第n项,项数n,公差,这四个其实是知三求一的。
⒉首项=第n项-〔n-1〕×公差辅助练习:等差数列……91,95,99共17项,求第一项为哪一项多少?〔此公式本讲没有涉及〕⒊项数n=〔第n项-首项〕÷公差+1辅助练习:等差数列105,111,117……,567共多少项?⒋公差=〔第n项-首项〕÷〔项数n-1〕辅助练习:等差数列首项为6,末项为94,共23项,求公差〔此公式本讲例6涉及到〕一定要注意的是,这些公式千万不要死记硬背,一定要通过理解,多练习来记忆。
其中第一个和第三个是重点。
⒌首项和公差相等的数列〔求n项或项数时不用套公式,可直接求〕:如3,6,9,12……〔首项为3,公差也为3,首项和公差相等〕⑴1000项是几?⑵6000是这个数列的第几项?⒍等差数列任意两项的差:第m项-第n项=〔m-n〕×公差如2,5,8,11,14,17……第5项14比第1项2多5-1个公差3所以第5项-第1项=〔5-1〕×3=12附加练习:对于4,7,10,13,16……⑴第49项是多少?⑵49是这个数列的第几项?⑶100项和第50项的差值是多少?例1 数列2、3、4、6、6、9、8、12、…,问:这个数列的第2000个数是多少?第2003个数是多少?学案1 数列2,1,4,3,6,5,8,7,……,问2021是这个数列中的第几项?二、求和公式知识点解析:前n项和=〔首项+第n项〕×项数n÷2例2 计算⑴1+3+4+6+7+9+10+12+13+……+66+67+69+70⑵1000+999-998+997+996-995+……+106+105-104+103+102-101③原数列=2485-805=1680⑵1000+999-998+997+996-995+……+106+105-104+103+102-101三、中项定理知识点解析:中间项=〔首项+末项〕÷2和=中间项×项数n对于任意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项和末项和的一半;各项和等于中间相乘以项数。
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
四年级奥数问题合集(一)含答案多次相遇问题专项训练【篇一】某人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了十分钟,遇到自行车,已知自行车速度是人步行速度的三倍,问汽车的速度是步行速度的()倍.考点:多次相遇问题.分析:人遇见汽车的时候,离自行车的路程是:(汽车速度-自行车速度)×10,这么长的路程要自行车和人合走了10分钟,即:(自行车+步行)×10,等式:(汽车速度-自行车速度)×10=(自行车+步行)×10,即:汽车速度-自行车速度=自行车速度+步行速度.汽车速度=2×自行车速度+步行速度,又自行车的速度是步行的3倍,所以汽车速度是步行的7倍.解答:(汽车速度-自行车速度)×10=(自行车+步行)×10,即:汽车速度-自行车速度=自行车速度+步行速度.汽车速度=2×自行车速度+步行,又自行车的速度是步行的3倍,所以汽车速度=(2×3+1)×步行速度=步行速度×7.故答案为:7.点评:解答此题的关键是要推出:汽车与自行车的速度差等于人与自行车的速度和. 【篇二】1.红旗钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?解析请看下一页分析:在往返来回相遇问题中,第一次相遇两人合走完一个全程,以后每次再相遇,都合走完两个全程.即:两人相遇时是在他们合走完1,3,5个全程时.然后根据路程÷速度和=相遇时间解答即可.解答:解答:①第三次相遇时两车的路程和为:90+90×2+90×2,=90+180+180,=450(千米);②第三次相遇时,两车所用的时间:450÷(40+50)=5(小时);③距矿山的距离为:40×5-2×90=20(千米);答:两车在第三次相遇时,距矿山20千米.点评:在多次相遇问题中,相遇次数n与全程之间的关系为:1+(n-1)×2个全程=一共行驶的路程.【篇三】求两地之间的距离1.给出两人的速度以及某次相遇的时间,求两地距离。
(一)、填空1.等腰三角形的两条边( ),它是( )图形,有( )条对称轴;等边三角形的( )相等,每个角都是( )度,它是( )图形,有( )条对称轴。
2.两条边相等的三角形叫( )三角形,已知它的底角为75°,那么顶角是( )度。
3.一个等腰三角形的一个底角是45°,顶角是( )度,它又叫( )三角形。
4.任何一个三角形三个内角的和是( )度。
5.三角形的一个内角为45°,另一个内角是它的2倍,第三个内角是( )度,这个三角形叫( )三角形。
(二)、判断,对的打“√”,错的打“×”6.∠1=75°,∠2=20°,∠3=85°,能组成三角形。
( )7.∠1=65°,∠2=76°,∠3=40°,不能组成三角形。
( )8.三条边分别为15厘米、7厘米、8厘米。
能组成三角形。
( )9.三条边分别为2.5厘米、4.5厘米、8厘米。
不能组成三角形。
( )10.一个三角形三条边的长度分别是6厘米、5厘米、6厘米,这个三角形是等腰三角形。
( )11.等腰三角形不可能是钝角三角形。
( )12.有两个角是锐角的三角形一定是锐角三角形。
( )13.等边三角形是等腰三角形,等腰三角形也是等边三角形。
( )(三)、等腰三角形的一个底角是75°,顶角是多少度?(四)、画出下面三角形底边上的高。
2.在一个等腰三角形中,底角的度数是顶角的2倍,求顶角和底角的度数。
3.计算9999×2222+3333×3334(用简便计算)4、父亲45岁,儿子23岁。
问几年前父亲年龄是儿子的2倍?5.求1至100内所有不能被5或9整除的整数和。
6.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.23, 26, 30, 33A、B、C、D 4个数的平均数是多少?7.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?。