东 南 大 学04-05-3概率与数理统计(含答案)
- 格式:doc
- 大小:168.50 KB
- 文档页数:5
概率论与数理统计试题与答案(2021-2021-1)概率统计模拟题一一、填空题〔此题总分值18分,每题3分〕1、设,3.0)(,7.0)(=-=B A P A P 那么)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,假设95)1(=≥X p ,那么=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,那么=+-)543(Y X D 。
4、设随机变量X 的方差为2,那么根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,那么统计量∑==n1i iXY 服从分布。
6、设正态总体),(2σμN ,2σ未知,那么μ的置信度为α-1的置信区间的长度=L 。
〔按下侧分位数〕 二、选择题〔此题总分值15分,每题3分〕 1、假设A 与自身独立,那么〔 〕(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P 2、以下数列中,是概率分布的是〔 〕(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,那么有〔 〕(A) np X E 2)12(=- (B) )1(4)12(p np X D -=- (C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,那么随着σ的增大,概率()σμ<-X P 〔 〕。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,那么以下结果错误的选项是......〔 〕。
第3章习题答案祥解1.现有10件产品,其中6件正品,4件次品。
从中随机抽取2次,每次抽取1件,定义两个随机变量、如下:X Y ⎩⎨⎧=。
次抽到次品第次抽到正品第11,0;,1X ⎩⎨⎧=。
次抽到次品第次抽到正品第22,0;,1Y 试就下面两种情况求的联合概率分布和边缘概率分布。
),(Y X (1)第1次抽取后放回;(2)第1次抽取后不放回。
解(1)依题知所有可能的取值为.因为),(Y X )1,1(),0,1(),1,0(),0,0(; 254104104)0|0()0()0,0(1101411014=⨯=⋅===⋅====C C C C X Y P X P Y X P 256106104)0|1()0()1,0(1101611014=⨯=⋅===⋅====C C C C X Y P X P Y X P 256104106)1|0()1()0,1(1101411016=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 259106106)1|1()1()1,1(1101611016=⨯=⋅===⋅====C CC C X Y P X P Y X P 所以的联合概率分布及关于、边缘概率分布如下表为:),(Y X X Y (2)类似于(1),可求得; 15293104)0|0()0()0,0(191311014=⨯=⋅===⋅====C C C C X Y P X P Y X P YX01⋅i p 0254256251012562592515jp ⋅251025151YX01⋅i p -111p 041021p 22p 21; 15496104)0|1()0()1,0(191611014=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 15494106)1|0()1()0,1(191411016=⨯=⋅===⋅====C C C C X Y P X P Y X P 15595106)1|1()1()1,1(191511016=⨯=⋅===⋅====C C C C X Y P X P Y X P 所以的联合概率分布及关于、边缘概率分布如下表为:),(Y X X Y 2.已知随机变量、的概率分布分别为X Y 且,求1)0(==⋅Y X P (1)和的联合概率分布;(2).X Y )(Y X P =解(1)因为)1,0()0,0()0,1()0,1()0(=======-===⋅Y X Y X Y X Y X Y X 所以1)1,0()0,0()0,1()0,1()0(22213111=+++==+==+==+=-===⋅p p p p Y X P Y X P Y X P Y X P Y X P = 又根据得,从而.于是由表12131=∑∑==j i ijp03212=+p p 03212==p p YX01⋅i p 01521541561154155159jp ⋅1561591X P-11412141Y P12121YX01⋅i p -141041002121141021jp ⋅21211可得,,,.4111=p 4131=p 2122=p 0212221=-=p p 故的联合概率分布为),(Y X (2)由(1)知.0)1,1()0,0()(===+====Y X P Y X P Y X P 3.设二维随机向量服从矩形区域上的均匀分),(Y X {}10,20),(≤≤≤≤=y x y x D 布,且⎩⎨⎧>≤=.,1;,0Y X Y X U ⎩⎨⎧>≤=.2,1;2,0Y X Y X V 求与的联合概率分布。
《概率论与数理统计》考试题一、填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则a )、若B A ,互斥,则=)B -A (p 0.5 ;b )若B A ,独立,则=)B A (p 0.65 ;c )、若2.0)(=⋅B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 .4、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。
5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比}85{≥X P 为 0.0228 。
其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a _0.1_,X的数学期望=)(X E ___0.4___,Y X 与的相关系数=xy ρ___-0.25______。
7、设161,...,X X 及81,...,Y Y 分别是总体)16,8(N 的容量为16,8的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差。
则:~X N(8,1) ,~Y X - N(0,1.5) ,{}5.12>-Y X p = 0.0456 ,~161521S )15(2χ,~2221S S F(15,7) 。
概率论与数理统计答案
1. 概率论中,事件的概率是什么?
事件的概率是指该事件发生的可能性大小。
通常用0到1之间的数值表示,0表示不可能发生,1表示一定会发生。
2. 如何计算联合概率和条件概率?
联合概率指两个事件同时发生的概率,可以用乘法原理计算。
条件概率是指已知一个事件发生的前提下,另一个事件发生的概率,可以用条件概率公式P(A|B) = P(A∩B) / P(B)来计算。
3. 如何计算期望和方差?
期望是指随机变量取值的平均值,可以用加权平均数来计算。
方差是指随机变量的取值与其期望之差的平方的平均数,可以用期望和平方的期望之差来计算。
4. 什么是正态分布?
正态分布是一种常见的连续概率分布,也称为高斯分布。
其具有对称、单峰、钟形曲线的特点,通过平均数和标准差来描述。
5. 如何进行假设检验?
假设检验是一种基于样本数据推断总体参数的方法。
通常先提出一个假设(原假设或备择假设),根据样本数据计算出一个统计量,然后根据这个统计量的概率分布来判断原假设是否成立。
《概率论与数理统计》作业集及答案第1章概率论的基本概念§ 1 .1随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H、反面T出现的情形.样本空间是:S= __________________________(2)—枚硬币连丢3次,观察出现正面的次数.样本空间是:S= _____________________________________ ;2.(1)丢一颗骰子.A :出现奇数点,贝U A= _________________ ; B:数点大于2,则B=(2)一枚硬币连丢2次, A :第一次出现正面,则A= _________________ ;B:两次出现同一面,则 = ________________ ; C :至少有一次出现正面,则C= § 1 .2随机事件的运算1•设A、B C为三事件,用A B C的运算关系表示下列各事件:(1)A、B、C都不发生表示为: __________ .(2)A 与B都发生,而C不发生表示为:(3)A与B都不发生,而C发生表示为:.(4)A 、B C中最多二个发生表示为:(5)A、B、C中至少二个发生表示为:.(6)A 、B C中不多于一个发生表示为:2.设S = {x : 0 _ x _ 5}, A = {x :1 :: x _ 3}, B = {x : 2 _ :: 4}:贝y(1) A 一 B = , (2) AB = , (3) AB = _______________ ,(4) A B = __________________ , (5) AB = ________________________ 。
§ 1 .3概率的定义和性质1.已知P(A B)二0.8, P( A)二0.5, P(B)二0.6,贝U(1) P(AB) = , (2)( P( A B) )= , (3) P(A B)= .2.已知P(A) =0.7, P(AB) =0.3,则P(AB)= .§ 1 .4古典概型1.某班有30个同学,其中8个女同学,随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3)至少有2个女同学的概率.2.将3个不同的球随机地投入到 4个盒子中,求有三个盒子各一球的概率.§ 1 .5条件概率与乘法公式1 •丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是 ____________________ 。
概率与数理统计习题答案概率与数理统计习题答案在学习概率与数理统计的过程中,习题是我们重要的练习和巩固知识的方式。
通过解答习题,我们可以更好地理解和应用概率与数理统计的概念和方法。
本文将为大家提供一些概率与数理统计习题的答案,希望能够帮助大家更好地掌握这门学科。
一、概率1. 一枚硬币抛掷三次,求至少出现一次正面的概率。
解答:设事件A为至少出现一次正面,事件A的对立事件为B,即三次抛掷都出现反面。
根据概率的加法规则,P(A) = 1 - P(B) = 1 - (1/2)^3 = 7/8。
2. 一副扑克牌中随机抽取一张牌,求抽到红心的概率。
解答:设事件A为抽到红心,事件A的样本空间为52张牌中的红心牌,即A={红心牌}。
样本空间为S={所有牌},则P(A) = |A|/|S| = 13/52 = 1/4。
二、随机变量与概率分布1. 设随机变量X服从参数为λ的指数分布,求P(X > 2λ)。
解答:指数分布的概率密度函数为f(x) = λe^(-λx),其中λ > 0。
所以P(X > 2λ) = ∫(2λ, +∞) λe^(-λx) dx = e^(-2)。
2. 设随机变量X服从参数为μ和σ^2的正态分布,求P(X > μ+σ)。
解答:正态分布的概率密度函数为f(x) = (1/√(2πσ^2))e^(-(x-μ)^2/(2σ^2))。
所以P(X > μ+σ) = ∫(μ+σ, +∞) (1/√(2πσ^2))e^(-(x-μ)^2/(2σ^2)) dx,由于正态分布是对称的,所以P(X > μ+σ) = P(X < μ-σ)。
根据标准正态分布的性质,P(X < μ-σ) = P(Z < (μ-σ-μ)/σ) = P(Z < -1) = 0.1587。
三、参数估计1. 设X1, X2, ..., Xn为来自总体X的一个样本,求总体X的均值μ的极大似然估计。
第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。
共 5 页 第 1 页
东 南 大 学 考 试 卷( A 卷)
课程名称 概率论与数理统计 考试学期 04-05-3 得分
适用专业 全校
考试形式
闭卷
考试时间长度 120分钟
备用数据:
( 1.645)0.05(0.5792)0.7088(1)0.8413(0.2)0.5792
(1.414)0.9213(1.96)0.975(2)0.9772
Φ-=Φ=Φ=Φ=Φ=Φ=Φ=
2222
1515221616224~()(7.261)0.95 (24.996)0.05 (7.962)0.95 (26.2961)0.05 (13.848)0.95 n n P P P P P χχχχχχχ≥=≥=≥=≥=≥=:;;
;;;2242225252235353 (36.416)0.05 (14.611)0.95 (37.652)0.05 (22.465)0.95 (49.802)0.05 (P P P P P P χχχχχχ≥=≥=≥=≥=≥=;;;;;2269922999923.269)0.95 (129.995)0.002(117.4069)0.1 (81.4493)0.9P P P χχχ≥=≥=≥=≥=;; ;;
1515161624~(): ( 1.3406)0.10 ( 1.7531)0.05 ( 1.3368)0.10 ( 1.7459)0.05 ( 2.0639)0.025 n T t n P T P T P T P T P T P
≥=≥=≥=≥=≥=;;;;;242525353599( 1.7109)0.05 ( 2.0595)0.025 ( 1.7081)0.05 ( 2.0301)0.025 ( 1.6869)0.05 ( 2.0812)T P T P T P T P T P T ≥=≥=≥=≥=≥=≥;
;;;;
990.02 ( 1.9842)0.025P T =≥=;;
10)
1.设A ,B 为两个事件,4.0)(,8.0)(=⋃=B A P A P ,则_______)(=B A P 。
2.袋中有6个白球,3个红球,从中有放回的抽取,则第2次取到红球是在第4
次抽取时取到的概率为_____________。
3.设随机变量X 服从正态分布)1,2(N ,已知95.0)(≥>x X P ,则x 最大值为_______。
4.设X , Y 独立同服从下列分布
共 5 页 第 2 页
则},max{2Y X Z =的分布律为_____________________。
5.设(X,Y )的联合密度函数为4010,() ,y x y
f x ≤≤≤-⎧=⎨⎩
其它,则
__________)2
1
(=≤+Y X P 。
6.设X 和Y 是两个独立的随机变量,EX =EY =0,DX =1,DY =4,则cov(2X +Y ,X -Y )=______。
7.设 ,,,,21n X X X 是独立同在区间[0,2]上均匀分布U(0,2)的随机变量序列 ,则
__________
)3
4(lim 1
2=≤
∑=∞
→n
X P n
i i n 。
8.设321,,X X X 为来自总体)2,0(2N 的简单随机样本,则统计量2322
1)(4
1X X a X -+服从)2(2χ分布,则a =_______________。
9.设总体X 的密度为⎪⎩
⎪
⎨⎧<<-<<=其他,021,110,)(x x x f θθ,n X X X ,,,21 是来自X 的简单随机样
本,则θ的矩估计量为___________________。
10.设n X X X ,,,21 是来自泊松分布)(λP 的简单随机样本,X 是样本均值,则
______________2
=X E 。
二、(10分)对以往统计数据分析的结果表明:当机器调整良好时,产品的合格率为98%,而当机器发生某种故障时,其合格率为55%,每天早上机器开动时,机器调整良好的概率为95%,求:
1、某天早上机器生产的第一个产品是合格品的概率;
2、已知某天早上机器生产的第一个产品是合格品,则该天机器调整良好的概率。
三、(10分)设随机变量X 的分布密度函数为⎩⎨⎧≤>=-0
,00
,)(x x e x f x ,
求:x
e Y =的分布函数)(y F Y 。
共 5 页 第 3 页
四、(12分)把3个不同的球随机地放到4个盒子中,令X 表示落到第一个盒子中的球的个
数,令Y 表示落到第二个盒子中的球的个数,求: 1、(X ,Y )的联合分布律; 2、X 的边缘分布律; 3、EX 。
五、(8分)盒子中有6个相同大小的球,其中有1个球标有号码1,有2个球标有号码2,
有3个球标有号码3,从盒子中有放回地抽取100个球,利用De. Morive —Laplace 中心极限定理求取出的100个球中2号球的频率不小于0.3606的概率近似值。
六、(15分)设总体X 的分布密度函数为⎪⎩⎪
⎨⎧≤>=+0
,01,),(1x x x x f θθ
θ ,其中θ>1是未知参
数,(n X X X ,,,21 )是来自总体X 的容量为n 的简单随机样本,求: 1、θ的矩估计量θ
; 2、θ的最大似然估计量L θ
; 3、1-X 是否是
1
1
-θ的无偏估计,证明你的结论。
七、(7分)设总体X 服从正态分布),(2σμN ,10021,,,X X X 为来自总体X 的容量为
100的简单随机样本,算得统计量∑==100
11001i i X X 的观测值10=x ,∑=-100
1
2)(i i X X 的观测值
2475)
(100
1
2
=-∑=i i
x x ,
若已知2
σ的双侧置度为1-α的双侧的置信区间下限为21.0805,求置信度为1-α。
八、(8分)设总体X 服从正态分布),(2
σμN ,10021,,,X X X 为来自总体X 的容量为
100的简单随机样本,算得统计量∑=-100
1
2
)(i i
X X
的观测值2475)(100
1
2=-∑=i i x x ,对检
验问题:
5.9:5.9:10≠↔=μμH H
共 5 页 第 4 页
若已知在显著水平α下,接受5.9:0=μH 的区域为:
(){}
5406.10|,,1001<<=x a x x S
其中x 是样本均值X 的观测值,求显著水平α。
答案: (一)填空: 1、0.2; 2、4/27; 3、0.355; 4、
5、1/4
6、-2
7、1/2
8、1/8
9、
X -2
3
10、
2λλ
+n
(二)①0.9585;②0.971
(三)⎪⎩
⎪
⎨⎧>-≤=1,1
11,0)(y y y y F Y (四)①)3;3,2,1,0,(42),(3
333≤+==
==---j i j i C C j Y i X P j
i j i i
②()()3,2,1,0434141,3~33=⎪⎭
⎫ ⎝⎛⎪
⎭
⎫
⎝⎛==⎪
⎭⎫
⎝⎛-k C k X P B X k
k
k
共 5 页 第 5 页
③3/4 (五)0.2912
(六)①1
ˆ-=X X
θ
②⎪⎪⎭
⎫
⎝⎛=∏=n
i i L
X n 1ln ˆθ
③()
1
1
1-=-θX E , 是无偏估计 (七)0.8 (八)0.04。