2014年学校数学建模模拟赛(戒烟)
- 格式:pdf
- 大小:1.28 MB
- 文档页数:27
2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号): 27027006 所属学校(请填写完整的全名):宝鸡文理学院参赛队员 (打印并签名) :1. 李思怡2. 甘功伟3. 史少阳指导教师或指导教师组负责人 (打印并签名):李晓波(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014年 09 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):对创意平板折叠桌的最优化设计摘要本文主要研究了创意平板折叠桌的相关问题。
对于问题一,首先,我们根据所提供的已知尺寸的长方形平板和桌面形状,桌高的要求,以圆桌面中心作为原点建立了相应的空间直角坐标系,分别求出了各个桌腿的长度,根据在折叠过程中,钢筋穿过的每个点距离桌面的高度相同这一性质,利用MATLAB程序计算出了每根木棒卡槽的长度和桌脚底端每个点的坐标,其中卡槽长度依次为(从最外侧开始,单位:cm):0、 4.3564、7.663、10.3684、12.5926、14.393、15.8031、16.8445、17.5314、17.8728,并且根据底端坐标拟合出了桌脚边缘线的方程并进行了检验?。
2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):创意平板折叠桌摘要折叠与伸展也已成为家具设计行业普遍应用的一个基本设计理念,占用空间面积小而且家具的功能又更加多样化自然会受到人们的欢迎,着看创意桌子把一整块板分成若干木条,组合在一起,也可以变成很有创意的桌子,就像是变魔术一样,真的是创意无法想象。
HIMCM 2014美国中学生数学建模竞赛试题Problem A: Unloading Commuter TrainsTrains arrive often at a central Station, the nexus for many commuter trains from suburbs of larger cities on a “commuter” line. Most trains are long (perhaps 10 or more cars long). The distance a passenger has to walk to exit the train area is quite long. Each train car has only two exits, one near each end so that the cars can carry as many people as possible. Each train car has a center aisle and there are two seats on one side and three seats on the other for each row of seats.To exit a typical station of interest, passengers must exit the car, and then make their way to a stairway to get to the next level to exit the station. Usually these trains are crowded so there is a “fan” of passengers from the train trying to get up the stairway. The stairway could accommodate two columns of people exiting to the top of the stairs.Most commuter train platforms have two tracks adjacent to the platform. In the worst case, if two fully occupied trains arrived at the same time, it might take a long time for all the passengers to get up to the main level of the station.Build a mathematical model to estimate the amount of time for a passenger to reach the street level of the station to exit the complex. Assume there are n cars to a train, each car has length d. The length of the platform is p, and the number of stairs in each staircase is q. Use your model to specifically optimize (minimize) the time traveled to reach street level to exit a station for the following:问题一:通勤列车的负载问题在中央车站,经常有许多的联系从大城市到郊区的通勤列车“通勤”线到达。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):宝鸡文理学院参赛队员 (打印并签名) :1. 李思怡2. 甘功伟3. 史少阳指导教师或指导教师组负责人 (打印并签名):李晓波(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014年 09 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):对创意平板折叠桌的最优化设计摘要本文主要研究了创意平板折叠桌的相关问题。
对于问题一,首先,我们根据所提供的已知尺寸的长方形平板和桌面形状,桌高的要求,以圆桌面中心作为原点建立了相应的空间直角坐标系,分别求出了各个桌腿的长度,根据在折叠过程中,钢筋穿过的每个点距离桌面的高度相同这一性质,利用MATLAB程序计算出了每根木棒卡槽的长度和桌脚底端每个点的坐标,其中卡槽长度依次为(从最外侧开始,单位:cm):0、、、、、、、、、,并且根据底端坐标拟合出了桌脚边缘线的方程并进行了检验?。
2014年数学建模美赛题目原文及翻译作者:Ternence Zhang转载注明出处:/zhangtengyuan23MCM原题PDF:/detail/zhangty0223/6901271PROBLEM A: The Keep-Right-Except-To-Pass RuleIn countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies),multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane.Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important.In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirements be needed.Lastly, the rule as stated above relies upon human judgment for compliance. If vehicle transportation on the same roadway was fully under the control of an intelligent system –either part of the road network or imbedded in the design of all vehicles using the roadway –to what extent would this change the results of your earlier analysis?问题A:车辆右行在一些规定汽车靠右行驶的国家(即美国,中国和其他大多数国家,除了英国,澳大利亚和一些前英国殖民地),多车道的高速公路经常使用这样一条规则:要求司机开车时在最右侧车道行驶,除了在超车的情况下,他们应移动到左侧相邻的车道,超车,然后恢复到原来的行驶车道(即最右车道)。
2014全国大学生数学建模竞赛A题题目及参考答案_ 2011高教社杯全国大学生数学建模竞赛题目,请先阅读“全国大学生数学建模竞赛论文格式规范”,A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息,有了这些信息,如何建立模型解决问题,DJHFSJKDHFKDSJKFHSJKDFHJKDSHFDJKSFHJKDSHFJKDSHFJK题目 A题城市表层土壤重金属污染分析摘要,本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
2014年数学建模模拟训练4【A题】举世瞩目的2014年世界杯决赛阶段的比赛2014年6月12日至7月13日在南美洲国家巴西举行。
巴西世界杯共有32支球队参赛。
除去东道主巴西自动获得参赛资格以外,其他31个国家需通过参加2011年6月开始的预选赛获得参赛资格。
巴西世界杯期间,总共在巴西境内举办共计64场比赛角逐出冠军。
假如你是中国体育彩票中心研究员,请根据赛制、赛程安排、分组形势及各自的实力,请建立数学模型进行分析,并给出:1.中国体育彩票中心设计若干世界杯竞猜游戏,并分析各种奖项出现的可能性,奖项和奖金额设置对彩民的吸引力等各因素评价游戏的合理性。
例如:给出本次世界杯32强的各级(32进16,16进8,8进4,4进2,夺冠)赔率。
2.给足球彩民写一篇短文,供买彩票参考。
【B题】众所周知,吸烟不仅危害自身健康,而且由此引起的被动吸烟更是危害公众身心健康的主要原因。
为此,如何帮助相关人士摆脱烟瘾的困扰也就成为一个重要的研究课题。
本文研究数据涉及234人,他们都自愿表示戒烟但还未戒烟。
在他们戒烟的这一天,测量了每个人的CO(一氧化碳)水平并记下他们抽最后一支烟到CO 测定时间.。
CO的水平提供了一个他们先前抽烟数量的客观指标,但其值也受到抽最后一支烟的时间的影响, 因此抽最后一支烟的时间可以用来调整CO的水平。
记录下研究对象的性别、年龄及自述每日抽烟支数。
这个调查跟踪1年, 考察他们一直保持戒烟的天数, 由此估计这些人中再次吸烟的累加发病率, 也就是原吸烟者戒烟一段时间后又再吸烟的比例. 其中假设原烟民戒烟的可信度是很低的(更恰当地说多数是再犯者)戒烟天数是从0到他(她)退出戒烟或研究截止时间(1 年)的天数。
假定他们全部没有人中途退出研究。
请回答下列问题:1)试分析上述234人中再次吸烟的累加发病率分布情况(如不同年龄段、不同性别等因素下的累加发病率分布情况)。
2)你认为年龄、性别、每日抽烟支数及调整的CO浓度等因素会影响戒烟时间(天数)长短吗?如果影响请利用附录中的数据,分别给出戒烟时间与上述你认为有影响的因素之间的定量分析结果。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要嫦娥三号卫星着陆器实现了我国首次地外天体软着陆任务。
要保证准确的在月球预定区域内实现软着陆轨道与控制策略的设计。
问题一运用活力公式[1]来建立速度模型,利用matlab软件代入数值计算出。
所求速度33⨯⨯(=1.692210m/s,=1.613910m/s)v v远近采用轨道六根数[2]来建立近月点,远月点位置的模型。
轨道根数是六个确定椭圆轨道的物理量,也是联系赤道直角坐标与轨道极坐标重要夹角的关系。
通过着陆点的位置求出轨道根数各个值的数据,从而确定近月点,远月点的位置,坐标分别为(19.51W 27.88N 15KM),(160.49 27.885S 100KM)E。
题目:影响戒烟成功的因素分析姓名1:许沛韩姓名2:马雪瑜姓名3:秦栋2012年8月20日星期一目录摘要 (3)关键词 (3)问题重述 (4)问题分析 (5)建模过程 (5)问题一 (5)模型假设与约定 (5)符号说明及名词定义 (6)模型建立与求解 (6)问题二 (9)模型假设与约定 (9)符号说明及名词定义 (9)建立模型进行求解 (9)问题三 (15)模型假设与约定 (15)符号说明及名词定义 (15)建立模型进行求解 (16)问题四 (18)模型优缺点 (19)参考文献及参考书籍和网站 (19)附录 (20)摘要据调查,中国是烟草生产和消费大国,生产和消费均占全球三分之一以上。
目前,中国约有3.5亿吸烟者,尽管与之前相比吸烟率略有下降,但是随着中国总人口的增加,吸烟人数仍然在增加。
为了帮助相关人士摆脱烟瘾的困扰,研究小组对234个自愿表示戒烟但还未戒烟的人进行调查,并记录下了调查的数据。
根据数据,我们对戒烟成功的因素、再次吸烟的累加发病率和影响戒烟时间长短的因素进行分析。
在分析过程中,我们利用MATLAB和SAS统计工具对数据进行拟合并进行逐步多元回归分析和方差分析,其次在建立模型时我们还利用了残差分析法发现了模型的缺陷,并及时引入交互作用项来对模型进行修改。
而在分析再次吸烟的累加发病率时,我们用控制变量法对各个影响因素的数据进行控制并在Excel中用直方图表现出来,使其看起来直观易懂。
最后,通过了对其建立起模型分析,得出了影响戒烟成功的因素有每天抽烟的支数、CO的浓度和调整的CO 浓度等三个因素,而影响戒烟时间长短除了上述三个因素外则还有性别的因素在影响。
关键词累加发病率、CO的浓度、调整的CO浓度为了帮助相关人士摆脱烟瘾的困扰,研究小组展开了调查,对234个自愿表示戒烟但还未戒烟的人进行调查. 在他们戒烟的这一天, 测量了每个人的CO(一氧化碳)水平并记下他们抽最后一支烟到CO 测定的时间. CO的水平提供了一个他们先前抽烟数量的客观指标,但其值也受到抽最后一支烟的时间的影响, 因此抽最后一支烟的时间可以用来调整CO 的水平. 记录下研究对象的性别、年龄及自述每日抽烟支数.这个调查跟踪1年, 考察他们一直保持戒烟的天数, 由此估计这些人中再次吸烟的累加发病率, 也就是原吸烟者戒烟一段时间后又再吸烟的比例. 戒烟天数是从0到他(她)退出戒烟或研究截止时间(1 年)的天数.假定他们全部没有人中途退出研究.1)试分析上述234人中再次吸烟的累加发病率在不同因素下的分布情况。