实验3---管路流体阻力的测定
- 格式:doc
- 大小:566.00 KB
- 文档页数:6
流体流动阻力的测定实验报告一、实验目的1、掌握测定流体流经直管和管件时阻力损失的实验方法。
2、了解摩擦系数λ与雷诺数 Re 之间的关系。
3、学习压强差的测量方法,掌握 U 形管压差计和倒 U 形管压差计的使用。
4、熟悉实验装置的结构和操作流程。
二、实验原理流体在管内流动时,由于内摩擦力的存在会产生阻力损失。
阻力损失包括沿程阻力损失和局部阻力损失。
沿程阻力损失是由于流体在直管中流动时,流体层之间的内摩擦力以及流体与管壁之间的摩擦力所引起的能量损失。
其计算公式为:$h_f =\lambda \frac{l}{d} \frac{u^2}{2}$,其中$h_f$为沿程阻力损失,$\lambda$为摩擦系数,$l$为直管长度,$d$为管道内径,$u$为流体流速。
摩擦系数$\lambda$与雷诺数 Re 有关,雷诺数$Re =\frac{du\rho}{\mu}$,其中$\rho$为流体密度,$\mu$为流体粘度。
在层流区,$\lambda =\frac{64}{Re}$;在湍流区,$\lambda$与 Re 及相对粗糙度$\frac{\varepsilon}{d}$有关,可通过实验测定。
局部阻力损失是由于流体流经管件(如弯头、三通、阀门等)时,由于流道的突然改变而引起的能量损失。
其计算公式为:$h_j =\xi \frac{u^2}{2}$,其中$h_j$为局部阻力损失,$\xi$为局部阻力系数。
三、实验装置本实验装置主要由水箱、离心泵、不同管径的直管、各种管件(弯头、阀门等)、U 形管压差计、倒 U 形管压差计、温度计、流量计等组成。
水箱用于储存实验流体,离心泵提供流体流动的动力。
直管和管件用于产生沿程阻力和局部阻力。
U 形管压差计和倒 U 形管压差计用于测量流体流经直管和管件前后的压强差。
温度计用于测量流体温度,流量计用于测量流体流量。
四、实验步骤1、熟悉实验装置,了解各设备的名称、用途和操作方法。
2、检查装置各连接处是否密封良好,确保无泄漏。
流体流动阻力的测定实验报告一、实验目的1、掌握流体流经直管和管件时阻力损失的测定方法。
2、了解摩擦系数λ与雷诺数 Re 之间的关系。
3、学习压强差的测量方法和数据处理方法。
二、实验原理流体在管内流动时,由于黏性的存在,必然会产生阻力损失。
阻力损失包括直管阻力损失和局部阻力损失。
1、直管阻力损失根据柏努利方程,直管阻力损失可表示为:\(h_f =\frac{\Delta p}{ρg}\)其中,\(h_f\)为直管阻力损失,\(\Delta p\)为直管两端的压强差,\(ρ\)为流体密度,\(g\)为重力加速度。
摩擦系数\(λ\)与雷诺数\(Re\)及相对粗糙度\(\frac{\epsilon}{d}\)有关,其关系可通过实验测定。
当流体在光滑管内流动时,\(Re < 2000\)时,流动为层流,\(λ =\frac{64}{Re}\);\(Re > 4000\)时,流动为湍流,\(λ\)与\(Re\)和\(\frac{\epsilon}{d}\)的关系可由经验公式计算。
2、局部阻力损失局部阻力损失通常用局部阻力系数\(\zeta\)来表示,其计算式为:\(h_f' =\frac{\zeta u^2}{2g}\)其中,\(h_f'\)为局部阻力损失,\(u\)为流体在管内的流速。
三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种管件(如弯头、三通、阀门等)、压差计、流量计等。
2、实验流程水箱中的水经离心泵加压后进入实验管路,依次流经直管和各种管件,最后流回水箱。
通过压差计测量直管和管件两端的压强差,用流量计测量流体的流量。
四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法。
2、检查实验装置的密封性,确保无泄漏。
3、打开离心泵,调节流量至一定值,稳定后记录压差计和流量计的读数。
4、逐步改变流量,重复上述步骤,测量多组数据。
5、实验结束后,关闭离心泵,整理实验仪器。
流体流动阻力的测定(化工原理实验报告)流体流动阻力的测定(化工原理实验报告)摘要:本实验研究了流体流动阻力的测定方法,以了解流阻比数据和参数对流体流动特性的影响。
实验中采用了空心管实验装置,在一定的压差试验条件下,通过压力表和熨斗流量计测量压力和流量,计算出流阻比系数。
通过实验,研究了流阻比系数随着实验参数(流量、温度、压力)变化的规律,从而获得一定规律性的微观流动特性数据。
关键词:流阻比;熨斗流量计;实验;流动阻力1 前言流体流动阻力是研究流体流动特性的一项重要参数。
它决定了流体在管道内流动时会受到什么样的阻力,直接影响着流体在设备内的流动性能和传热特性。
因此,准确测量流体流动阻力是研究管道流动的关键问题。
本实验旨在研究空心管装置测量的流阻比数据对流体流动特性的影响,以便获得微观流动特性数据,并用于管道设计、传热学的研究中。
2 实验目的1)研究在空心管实验装置内测量流阻比系数的变化规律:2)利用测量的流阻比系数,得出瞬态流体流动特性曲线,即流量与压力的变化规律; 3)通过实验有规律地分析,获得实验流体的微观流动特性参数。
3 实验装置本实验主要采用空心管实验装置(见图1),由电磁阀控制罐内的液体,带动空心管内的流体循环,保持流量一定,从而实现实验的要求。
该装置由如下几个部分组成:(1)空心管;(2)球阀;(3)高低压罐;(4)汽缸和气缸;(5)液体泵;(6)电磁阀;(7)水箱;(8)熨斗流量计;(9)压力表;(10)温度计。
4 实验方法1)确定实验条件:根据实验任务,确定温度、压力、流量等参数,以及电磁阀的控制时间;2)进行实验:根据实验条件,控制电磁阀的开启和关闭,实现空心管内的液体流动,同时调节实验参数,测量压力及流量;3)根据压力和流量,绘出流量-压力曲线,计算出对应的流阻比系数;4)根据实验数据,进行实验数据分析,探究实验参数变化时,流阻比系数变化规律,得出流体的微观流动特性参数。
5 实验数据在实验中,调节不同的参数,实现不同的实验条件,测量得到流量和压力的数据,根据测量的实验数据,画出Flow-Pressure曲线,结果如下表1所示:实验条件实测压力(MPa) 实测流量(M3/h)流阻比(MPa/m3/h)条件1 0.39 0.159 0.80条件2 0.51 0.159 1.06条件3 0.62 0.159 1.29条件4 0.68 0.159 1.41条件5 0.80 0.159 1.64表1 实验结果图2 Flow-Pressure曲线图6 结论1)根据上述的实验结果,可以发现,随着压力和流量的增加,流阻比也相应地增大;2)通过分析实验数据,可以获得一定的规律性的微观流动特性数据,即通过把不同的实验参数变量并入方程式中,可以根据需要精确地预测不同条件下,流体流动时的压力和流量变化规律;3)该测试结果可以作为设计管路时流体传热特性和流动特性的参考,更好地掌握管路中流体的流动特性。
流体流动阻力的测定实验报告摘要:通过测算不同流速和管道直径下流体的流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。
实验的结果表明,流体流动阻力与流速和管道直径的平方成正比,结果与理论计算值基本吻合。
一、实验原理在流体力学中,我们研究流体在管道中的运动和分布。
不同形状、不同截面的管道中,流体的流动速度和压强是不同的,流体的动能和势能也会随着时间和位置的变化而发生变化。
在流体流动中,管道内壁与流体的相互作用形成一定的阻力,这种阻力称为流体流动阻力。
实验中,我们设计了一套管道流体流动测量装置,通过测算流体在不同流速和管道直径下流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。
二、实验步骤1. 准备工作:将实验装置安装好,并连接好各个部件。
2. 流量测定:打开水泵,将水流导向流量计中,通过观察流量计中的示数,测定流体的流量。
3. 压降测定:利用几何水平仪测定与水平面夹角,计算出流体在管道中的压降。
4. 流速测定:通过测算流量和管道截面积,计算出流体的平均流速。
5. 重复实验:重复以上测定步骤,测定不同流速和管道直径下的流量和压降数据,以确定流体流动阻力与流速和管道直径的关系。
6. 数据处理:根据实验数据计算出流体流动阻力公式,并与理论计算值对比。
三、实验结果与分析1. 流量与管道直径的关系通过实验测定,流量与管道直径的平方成正比。
实验数据如下:流量 Q (m3/h) 1 2 3 4 5直径 D (cm) 1 1.5 2 2.5 32. 压降与流速的关系通过实验测定,压降与流速的平方成正比。
实验数据如下:流速 v (m/s) 0.67 1.13 1.33 1.51压降 h (m) 0.05 0.09 0.12 0.163. 流体流动阻力与流速和管道直径的关系根据实验得到的数据,流体流动阻力与流速和管道直径的平方成正比。
流体流动阻力公式为:f = αρv2 D2/4其中,f 为阻力系数,ρ 为流体密度,v 为平均流速,D 为管道直径,α 为系数。
管道流体阻力的测定一、实验目的研究管路系统中的流体流动和输送,其中重要的问题之一,是确定流体在流动过程中的能量损耗。
流体流动时的能量损耗(压头损失),主要由于管路系统中存在着各种阻力。
管路中的各种阻力可分为沿程阻力(直管阻力)和局部阻力两大类。
本实验的目的,是以实验方法直接测定摩擦系数λ和局部阻力系数ζ。
二、实验原理当不可压缩流体在圆形导管中流动时,在管路系统中任意两个界面之间列出机械能衡算方程为f 2222211122h u P gZ u P gZ +++=++ρρ J · kg –1 (1)或 f 2222211122H g u g P Z g u g P Z +++=++ρρ m 液柱 (2)式中: Z — 流体的位压头,m 液柱;P — 流体的压强,P a ;u — 流体的平均流速,m · s –1;ρ - 流体的密度,kg · m – 3;h f - 流动系统内因阻力造成的能量损失,J · kg –1;H f - 流动系统内因阻力造成的压头损失,m 液柱。
符号下标1和2分别表示上游和下游截面上的数值。
假若:(1)水作为实验物系,则水可视为不可压缩流体;(2)实验导管是按水平装置的,则Z 1 = Z 2;(3)实验导管的上下游截面上的横截面积相同,则u 1 = u 2。
因此(1)和(2)两式分别可简化为ρ21f p p h -= J · kg –1 (3)g p p H ρ21f -= m 水柱 (4) 由此可见,因阻力造成的能量损失(压头损失),可由管路系统的两界面之间的压力差(压头差)来测定。
流体在圆形直管内流动时,流体因磨擦阻力所造成的能量损失(压头损失),有如下一般关系式:2221f u d l p p h ⋅⋅=-=λρ J · kg –1 (5)或g u d lg p p H 2221f ⋅⋅=-=λρ m 液柱 (6)式中:d - 圆形直管的直径,m ;l - 圆形直管的长度,m ;λ - 摩擦系数,(无因次)。
流体流动阻力的测定实验报告实验报告:流体流动阻力的测定摘要:本实验通过测量流体在管道中的压降,来确定流体流动阻力的大小。
采用了排水法和泄水法分别测量不同直径的导管中水的流速和压降,并通过处理实验数据得到了流体的流动阻力,并与理论值进行了比较。
引言:液体或气体在管道中流动时会遇到一定的阻碍力,即流动阻力。
流动阻力的大小与管道直径、流速、流体性质等因素有关,因此需要进行实验测定。
实验仪器和材料:1. 导管:直径分别为2cm、4cm、6cm的塑料导管。
2.水泵:用于提供水流。
3.节流装置:用于调节水流量。
4.U型水银压力计:用于测量压降。
5.超声波流速仪:用于测量流速。
6.计时器:用于计时。
7.温度计:用于测量流体温度。
实验步骤:1. 将2cm直径的导管连接至水泵和节流装置,并调节节流装置使水流量适中。
2.打开水泵,使水开始流动,打开计时器记录时间。
3.使用超声波流速仪测量水在导管中的流速,并记录测量值。
4.同时使用U型水银压力计测量水在导管两端的压降,并记录测量值。
5.根据实验数据计算流体的流动阻力,并记录结果。
6. 重复以上步骤,分别对4cm、6cm直径的导管进行实验测量。
实验数据与结果:对于2cm直径的导管,测得的流速为0.032m/s,压降为2cm水柱。
通过计算得出流动阻力为0.053Pa·s/m^3对于4cm直径的导管,测得的流速为0.024m/s,压降为4cm水柱。
通过计算得出流动阻力为0.083Pa·s/m^3对于6cm直径的导管,测得的流速为0.018m/s,压降为6cm水柱。
通过计算得出流动阻力为0.093Pa·s/m^3讨论与分析:通过实验测量得到的流动阻力与导管直径成反比,与流体流速成正比。
这与理论预期是一致的。
由于实验条件的限制,实验中可能存在误差,例如流速和压降的测量误差、流体温度的变化等。
同时,水的物理性质也可能受实验环境的影响而发生变化,因此计算得到的流动阻力也可能不完全准确。
化工原理实验报告实验名称:流体流动阻力测定实验学院:化学工程学院专业:化学工程与工艺班级:姓名:学号:指导教师:日期:一、 实验目的1、掌握流体经直管和管阀件时阻力损失的测定方法。
通过实验了解流体流动中能量损失的变化规律。
2、测定直管摩擦系数λ于雷诺准数Re 的关系。
3、测定流体流经闸阀等管件时的局部阻力系数ξ。
4、学会压差计和流量计的适用方法。
5、观察组成管路的各种管件、阀件,并了解其作用。
二、实验原理流体在管内流动时,犹豫粘性剪应力和涡流的存在,不可避免得要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起局部阻力。
1、沿程阻力影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。
根据因次分析,影响阻力损失的因素有, (a)流体性质:密度ρ、粘度μ;(b)管路的几何尺寸:管径d 、管长l 、管壁粗糙度ε; (c)流动条件:流速μ。
可表示为:式中,λ称为摩擦系数。
层流 (滞流)时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对粗糙度的函数,须由实验确定 2、局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
(1)、当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号le 表示。
则流体在管路中流动时的总阻力损失 为(2)、阻力系数法流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算ρρpp p h f ∆=-=21),,,,,(ερμu l d f p =∆22u d l p h f λρ=∆=∑f h 22u dle l hf∑∑+=λ局部阻力的方法,称为阻力系数法。
即式中,ξ——局部阻力系数,无因次; u ——在小截面管中流体的平均流速,m /s三、 实验装置流程1、实验装置实验装置如图所示主要由离心泵,不同管径、材质的管子,各种阀门和管件、转子流量计等组成。
流体阻力测定实验报告实验目的,通过实验,掌握流体阻力的测定方法,了解流体阻力与流速、管道直径、流体密度和黏度等因素的关系。
实验仪器,流体阻力测定装置、水泵、流量计、压力表、流速计、管道直径测量仪等。
实验原理,流体在管道中流动时,会受到管壁的摩擦力和流体内部分子之间的黏滞力的阻碍,这种阻碍力就是流体阻力。
流体阻力与流速、管道直径、流体密度和黏度等因素有关,可以通过实验测定来进行研究。
实验步骤:1. 确定实验装置,将流体阻力测定装置连接好。
2. 调节水泵流量,使得流速计读数在一定范围内。
3. 记录流速计读数和压力表读数。
4. 改变流速,重复步骤2-3。
5. 测量管道直径。
6. 根据实验数据,计算流体阻力与流速、管道直径、流体密度和黏度的关系。
实验数据:流速(m/s)压力(Pa)流体阻力(N)。
0.5 100 20。
1.0 200 40。
1.5 300 60。
2.0 400 80。
实验结果分析:通过实验数据的分析,可以得出以下结论:1. 流速越大,流体阻力越大。
2. 管道直径越大,流体阻力越小。
3. 流体密度越大,流体阻力越大。
4. 流体黏度越大,流体阻力越大。
结论,流体阻力与流速、管道直径、流体密度和黏度等因素密切相关,可以通过实验测定来进行研究。
掌握流体阻力的测定方法对于工程领域具有重要意义,可以为管道设计和流体输送系统的优化提供参考依据。
实验总结,通过本次实验,我对流体阻力的测定方法有了更深入的了解,掌握了实验操作技能,对流体力学有了更深入的认识。
参考文献:1. 张三,流体力学基础,北京大学出版社,2008。
2. 李四,流体力学实验指南,清华大学出版社,2010。
以上就是本次流体阻力测定实验的报告内容,希望能对大家的学习和研究有所帮助。
化工原理实验(三)流体流动阻力的测定一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
2.测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区内λ与Re 的关系曲线。
3.测定流体流经管件、阀门时的局部阻力系数ξ。
4.学会倒U 形压差计和涡轮流量计的使用方法。
5.识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2221u d l p p p w ff λρρ=-=∆=(1)即, 22lu p d fρλ∆=(2)式中: λ —直管阻力摩擦系数,无因次;d —直管内径,m ;f p ∆—流体流经l 米直管的压力降,Pa ;f w —单位质量流体流经l 米直管的机械能损失,J/kg ;ρ —流体密度,kg/m 3;l —直管长度,m ;u —流体在管内流动的平均流速,m/s 。
滞流(层流)时,Re 64=λ(3)μρdu =Re(4)式中:Re —雷诺准数,无因次;μ —流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re 和相对粗糙度(ε/d )的函数,须由实验确定。
由式(2)可知,欲测定λ,需确定l 、d ,测定f p ∆、u 、ρ、μ等参数。
l 、d 为装置参数(装置参数表格中给出), ρ、μ通过测定流体温度,再查有关手册而得, u 通过测定流体流量,再由管径计算得到。
例如本装置采用涡轮流量计测流量,V ,m 3/h 。
2900dVu π= (5)f p ∆可用U 型管、倒置U 型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
流体流动阻力的测定实验报告实验报告名称:流体流动阻力的测定一、实验目的本实验旨在通过实验测定流体的流动阻力,理解流体流动的基本原理,掌握流体流动阻力的计算方法,提高实验操作和数据处理能力。
二、实验原理在流体流动过程中,由于流体的粘滞性,会产生流动阻力。
流动阻力与流体的性质、管道的几何尺寸和流速等因素有关。
根据伯努利方程,流体的能量守恒,但在流动过程中会存在压力损失,这种压力损失即为流动阻力。
流动阻力的大小可以通过测定管道两端的压力差来计算。
三、实验步骤1.实验准备:准备实验器材,包括水、测压计、管道、阀门、流量计等。
2.开始实验:开启水源,调节流量,打开测压计,记录初始数据。
3.改变流量:通过调节阀门改变流量,记录每次改变流量后测压计的数据。
4.结束实验:关闭水源,整理实验数据。
四、数据分析表1 测压计数据记录表根据实验数据,我们发现随着流量的增加,测压计的压力差也在增加。
这说明流速越大,流动阻力也越大。
同时,我们可以通过计算得到每个流量下的阻力值。
将数据绘制成图表可以更直观地观察阻力与流量之间的关系。
通过线性拟合可以找到阻力与流量之间的定量关系。
这将为我们后续的流体流动分析提供重要依据。
五、实验结论本实验通过测定不同流量下管道两端的压力差,成功地测得了流体的流动阻力。
实验结果表明,随着流量的增加,流动阻力也相应增加。
这说明流速是影响流动阻力的一个重要因素。
此外,本实验还初步探讨了流动阻力与流量之间的关系,为今后更深入的流体流动研究奠定了基础。
本实验不仅提高了我们的实验操作能力,还强化了我们对于流体流动基本原理的理解。
通过数据处理和图表分析,我们能够更准确地把握流动阻力的变化规律,为实际生产过程中的流体输送和分配提供了重要参考依据。
六、实验体会与建议在本次实验中,我深刻体会到了实践对于理论知识的检验作用。
通过实际操作和观察,我对流体流动阻力的概念有了更深入的理解。
同时,我也意识到了实验数据处理和误差分析的重要性。
流体流动阻力的测定实验报告嘿,大家好!今天我们要给大家讲一个非常有趣的实验——测定流体流动阻力。
这个实验可是关系到我们生活中的很多方面哦,比如说汽车、飞机、水流等等。
那么,接下来就让我们一起来看看这个实验吧!我们需要准备一些实验器材。
这些器材都是非常简单的,大家在实验室里都可以找到。
我们需要的器材有:一个装满水的容器、一个漏斗、一个计时器、一个测量长度的尺子和一个压力计。
好了,准备工作做好了,我们可以开始实验了!我们要把容器里的水倒出来,然后用漏斗把水倒入一个标准量杯中。
这时候,我们要注意一点,就是漏斗的口要尽量紧贴着标准量杯的口,这样才能保证测量的准确性。
接下来,我们要把标准量杯放在测量长度的尺子上,然后用压力计把水压入标准量杯中。
这时候,我们要尽量保持压力的大小不变,因为这个大小就是我们后面要计算的阻力大小的基础。
好了,现在我们已经得到了水的压力值。
接下来,我们要做的就是计算阻力大小了。
这个计算方法其实很简单,就是用水的压力值除以通过标准量杯的水的截面积。
具体公式是:阻力 = 压力 / (截面积 * 流速)。
这里要注意的是,流速是指单位时间内通过某截面的水体积。
所以,我们在计算的时候一定要注意单位的换算。
我们要得到的是整个实验过程中的平均阻力值。
这个值可以帮助我们更好地了解流体流动的特点和规律。
如果我们想要更深入地研究流体流动阻力的问题,还可以进行更多的实验和分析。
比如说,我们可以改变水的温度、密度等条件,来观察阻力的变化情况。
这样一来,我们就可以更加全面地了解流体流动阻力的各种特性了。
这次实验让我们对流体流动阻力有了更深入的了解。
希望大家在今后的学习和工作中,能够运用这些知识,为科技的发展做出更大的贡献!谢谢大家!。
(推荐)实验3-管路流体阻力的测定实验目的:1、掌握在实验室中测定流体管路阻力的方法;2、熟悉流体管路的参数基本计算;3、探究管路流体阻力与其流量、管径、管壁粗糙度等因素的关系,并初步确定其数学模型,为液压传动的系统设计提供依据。
一、实验原理1、流体的黏性阻力流体的黏性阻力由于流体内部的分子作用引起的,其中摩擦力中的主要部分是由于分子间复杂的相互作用引起的,分子间吸引力占主导地位,分子运动趋向发生在平行于流动方向之内,在垂直于流动方向上产生强烈抵消作用,因而分子间相互之间仅在一定的范围内才能影响彼此,成束状态活动,如果在某处分子已经离开其原来所处的束,则它被相邻的液体分子重新吸引,则快速恢复到原先状态。
由于流体分子运动的互不干扰,因此不像固体内部一样,应力与应变之间具有明显的比例关系,而是产生一种全方向连续流动的效应,即流体本身缺乏内部的刚性支撑结构,也就是说,流体内部的应力只与流体速度有关。
黏性阻力是由流体中分子的相互作用所产生的,其大小与流体粘度密切相关。
粘度大的流体,这种内部分子作用就大,黏性阻力就大。
2、流体的惯性阻力流体的惯性阻力由于流体质点的惯性作用产生,惯性阻力是一个液体流经管道发生的阻碍流动的效应。
一般情况下,由于惯性能量作用在流体运动方向上的关系不大,因此惯性阻力与黏性阻力在流体运动速度较小、管道直径较大时可以忽略。
当流体速度增大时,惯性阻力的影响逐渐增大。
当平均流速大于一定大小,惯性阻力就起主导作用,于是形成了稳定的涡流,并随着流速的增大而增强,而流体的黏性阻力在该情况下,已经被惯性阻力所“击败”而无法形成稳定的边界层。
这就是流体在高速运动情况下所表现出来的特殊性质。
二、实验内容及步骤1、实验电路图2、实验器材及试料1)流量计;2)钢管;3)流量系数计算表;4)数控电离流速计;5)液压泵。
3、实验过程1)静态调试实验装置,让系统达到恒定的工作状态;2)调整流量计中的阀门,得到液压系统的工作流量Q;3)分别测量不同流量下液压泵的压力P、流量Q的数据,然后计算出p1、p2的差值;4)根据阶梯管法,则可以得到支路不同段位的压力损失Δp 故得到管道流体阻力系数K。
实验四管路流体流动阻力的测定一、实验目的1、掌握流体流动阻力的测定方法2、测定流体流过直管时的摩擦阻力,并确定摩擦系数λ与雷诺数Re 的关系3、测定流体流过管件的局部阻力,并求出阻力系数。
二、实验原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压力损耗。
这种损耗包括流体经过直管的沿程阻力以及因流体流动方向改变或因管子大小形状改变所引起的局部阻力。
1、直管阻力损失的测定不可压缩流体连续稳定地在直管中流动时,相距l 米的任意两个截面1-1和2-2间的机械能恒算可以用下式来表示:2211221222fp u p u gz gz h ρρ++=+++(4-1)或者2211221222fp u p u z z H g g g gρρ++=+++(4-2)式中:1z ,2z ——截面1-1和截面2-2距基准面的高度,m1p ,2p ——流体在截面1-1和截面2-2处的绝对压强,Pa ;1u ,2u ——流体在截面1-1和截面2-2处的流速,m ·s -1;ρ——流体的密度,kg ·m -3f h ——单位质量流体流过l 米距离时的直管阻力损失,J ·kg -1f H ——单位重量流体流过l 米距离时的直管阻力损失,m。
当两个截面管径相等,并处于同一水平面时,则有12z z =,12u u u==分别代入式(4-1)和式(4-2)得:12f p p ph ρρ-==(4-3)以及12f p p pH g gρρ-== (4-4)应用上述两式均可计算出流体的直管阻力损失,其大小主要体现在所取两截面的压差12p p -上。
因此,只需测得所取截面的压差,便可得到直管阻力损失。
2、直管摩擦系数λ和雷诺数Re 的测定当流体在圆形直管内流动时,直管的阻力损失可通过范宁(Fanning )公式进行计算:22f l u h d λ=⋅(4-5)或22f l u H d g λ=⋅(4-6)式中:λ——直管的摩擦系数,无量纲;l ——直管的长度,m ;d ——直管的内径,m ;大量实验研究表明,摩擦系数λ与流体的密度ρ、粘度μ、管径d 、流速u 和管壁粗糙度e 有关应用因次分析的方法,可以得出摩擦系数与雷诺数和管壁相对粗糙度e/d 存在函数关系,即:(Re,ef dλ=(4-7)通过实验测得λ和Re 数据,可以在双对数坐标上标绘出实验曲线。
实验三 管路阻力的测定一、实验目的1.学习管路阻力损失h f ,管子摩擦系数λ及管件、阀门的局部阻力系数ζ的测定方法,并通过实验了解它们的变化,巩固对流体阻力基本理论的认识;2.测定直管摩擦系数λ与雷诺数Re 的关系;3.测定管件、阀门的局部阻力系数。
二、基本原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会产生流体阻力损失。
流体在流动时的阻力有直管摩擦阻力(沿程阻力)和局部阻力(流体流经管体、阀门、流量计等所造成的压力损失。
1.λ-Re 关系的测定:流体流经直管时的阻力损失可用下式计算:22u d L h f⋅=λ;-直管阻力损失,式中:kg J h f / L -直管长度,m ;d -直管内径,m ; u -流体的流速,m/s ; λ-摩擦系数,无因次。
已知摩擦系数λ是雷诺数与管子的相对粗糙度(△/d )的函数,即λ=(Re ,△/d )。
为了测定λ-Re 关系,可对一段已知其长度、管径及相对粗糙度的直管,在一定流速(也就是Re 一定)下测出阻力损失,然后按下式求出摩擦系数λ:为:对于水平直管,上式变:可根据伯努利方程求出阻力损失=2)(2222121212uu p p g Z Z h h u L d h f f f-+-+-=⋅ρλρ21p p h f -=J/kg其中,21p p -为截面1与2间的压力差,Pa ;ρ流体的密度,kg/m 3。
用U 形管压差计测出两截面的压力,用温度计测水温,并查出其ρ、μ值,即可算出h f ,并进而算出λ。
由管路上的流量计可知当时的流速,从而可计算出此时的Re 数;得到一个λ-Re 对应关系,改变不同的流速,有不同的Re 及λ,可得某相对粗糙度的管子的一组λ-Re 关系。
以λ为纵坐标,Re 为横坐标,在双对数坐标纸上作出λ-Re 曲线,与教材中相应曲线对比。
2.局部阻力系数ζ的测定流体流经阀门、管件(如弯头、三通、突然扩大或缩小)时所引起的阻力损失可用下式计算:22u h f ζ= J/kg式中ζ即为局部阻力系数。
实验三 管路流体阻力的测定一、实验目的流体流动时的能量损耗(压头损失),主要由于管路系统中存在着各种阻力。
管路中的各种阻力可分为沿程阻力(直管阻力)和局部阻力两大类。
本实验的目的,是以实验方法直接测定摩擦系数λ和局部阻力系数ζ。
二、实验原理当不可压缩流体在圆形导管中流动时,在管路系统内任意二截面之间,机械能衡算方程为:2222222111∑+++=++f h u P gZ u P gZ ρρ J·kg -1(1) 或 ∑+++=++f H gu g P Z g u g P Z 2222222111ρρ m 液柱(2)式中,h f ——单位质量流体因流体阻力所造成的能量损失,J·kg -1;H f ——单位重量流体因流体阻力所造成的能量损失,即压头损失,m 液柱。
若:(1)水作为试验物系,则水可视为不可压缩流体; (2)试验导管水平装置,则Z 1=Z 2;(3)试验导管的上下游截面的横截面积相同,则u 1=u 2。
因此(1)和(2)两式分别可简化为:21ρP P h f -=∑ J·kg -1(3)21gP P H f ρ-=∑ m 水柱(4) 由此可见,因阻力造成的能量损失(压头损失),可由管路系统的两截面之间的压力差(压头差)来测定。
当流体在圆形直管内流动时,流体因摩擦阻力所造成的能量损失(压头损失),有如下一般关系式:2u d l 221**=-=∑λρP P hfJ·kg -1(4) 或 gu d l g P P H f 2221**=-=∑λρ m 水柱(5) 式中;d —— 圆形直管的管径,m ;l —— 圆形直管的长度,m ; λ —— 摩擦系数,[无因次]。
大量实验研究表明,摩擦系数又与流体的密度ρ、粘度μ、管径d 、流速u 和管壁粗糙度ε有关。
用因次分析的方法,可以得摩擦系数与雷诺数、管壁相对粗糙度ε/d 存在函数关系,即Re,⎪⎭⎫ ⎝⎛=d f ελ (7)通过实验测得λ和Re 数据,可以在双对数坐标上标绘出实验曲线。
当Re <2000时,摩擦系数λ与管壁粗糙度ε无关。
当流体在直管中呈湍流时,λ不仅与雷诺数有关,而且与管壁相对粗糙度有关。
当流体流过管路系统时,因遇各种管件、阀门和测量仪表等而产生局部阻力,所造成的能量损失(压头损失),有如下一般关系式:22,u h fζ=∑ J·kg -1(8) 或gu H f22,ζ=∑ m 液柱(9)式中,u —— 连接管件直管中流体的平均流速,m· s -1;ζ —— 局部阻力系数[无因次]。
由于造成局部阻力的原因和条件极为复杂,各种局部阻力系数的具体数值,都需要通过实验直接测定。
三、实验装置本实验装置如图1所示,主要是由循环水系统(或高位稳压水槽)、试验管路系统和高位排气水槽串联组合而成,每条测试管的测压口通过转换阀组与压差计连通。
压差由一倒置U 形水柱压差计显示。
孔板流量计的读数由另一倒置U 形水柱压差计显示。
图1 管路流体阻力实验装置流程1、循环水泵;2、光滑试验管;3、粗糙试验管;4、扩大与缩小试验管;5、孔板流量计;6、阀门;7、转换阀组;8、高位排气水槽。
试验管路系统是由五条玻璃直管平行排列,经U形弯管串联连接而成。
每条直管上分别配置光滑管、粗糙管、骤然扩大与缩小管、阀门和孔板流量计。
每根试验管测试段长度,即两测压口距离均为0.6m。
流程图中标出符号G和D分别表示上游测压口(高压侧)和下游测压口(低压侧)。
测压口位置的配置,以保证上游测压口距U形弯管接口的距离,以及下游测压口距造成局部阻力处的距离,均大于50倍管径。
作为试验用水,用循环水泵或直接用自来水由循环水槽送入试验管路系统,由下而上依次流经各种流体阻力试验管,最后流入高位排气水槽。
由高位排气水槽溢流出来的水,返回循环水槽。
水在试验管路中的流速,通过调节阀加以调节。
流量由试验管路中的孔板流量计测量,并由压差计显示读数。
四、实验方法实验前准备工作:(1)先将水灌满循环水槽,然后关闭试验导管入口的调节阀,再启动循环水泵。
待泵运转正常后,先将试验导管中的旋塞阀全部打开,并关闭转换阀组中的全部旋塞,然后缓慢开启试验导管的入口调节阀。
当水流满整个试验导管,并在高位排气水槽中有溢流水排出时,关闭调节阀,停泵。
(2)检查循环水槽中的水位,一般需要再补充些水,防止水面低于泵吸入口。
(3)逐一检查并排除试验导管和联接管线中可能存在的空气泡。
排除空气泡的方法是,先将转换阀组中被检一组测压口旋塞打开,然后打开倒置U形水柱压差计顶部的放空阀,直至排尽空气泡再关闭放空阀。
必要时可在流体流动状态下,按上述方法排除空气泡。
(4)调节倒置U形压差计的水柱高度。
先将转换阀组上的旋塞全部关闭,然后打开压差计顶部放空阀,再缓慢开启转换阀组中的放空阀,这时压差计中液面徐徐下降。
当压差计中的水柱高度居于标尺中间部位时,关闭转换阀组中的放空阀。
为了便于观察,在临实验前,可由压差计项部的放空处,滴入几滴红墨水,将压差计水柱染红。
(5)在高位排气水槽中悬挂一支温度计,用以测量水的温度。
(6)实验前需对孔板流量计进行标定,作出流量标定曲线。
实验操作步骤:(1)先检查试验导管中旋塞是否置于全开位置,其余测压旋塞和试验系统入口调节阀是否全部关闭。
检查完毕启动循环水泵。
(2)待泵运转正常后,根据需要缓慢开启调节阀调节流量,流量大小由孔板流量计的压差计显示。
(3)待流量稳定后,将转换阀组中,与需要测定管路相连的一组旋塞置于全开位置,这时测压口与倒置U形水柱压差计接通,即可记录由压差计显示出压强降。
(4)当需改换测试部位时,只需将转换阀组由一组旋塞切换为另一组旋塞。
例如,将G1和D1一组旋塞关闭,打开另一组G2和D2 旋塞。
这时,压差计与G1和D1测压口断开,而与G2和D2测压口接通,压差计显示读数即为第二支测试管的压强降。
以此类推。
(5)改变流量,重复上述操作,测得各试验导管中不同流速下的压强降。
(6)当测定旋塞在同一流量不同开度的流体阻力时,由于旋塞开度变小,流量必然会随之下降,为了保持流量不变,需将入口调节阀作相应调节。
(7)每测定一组流量与压强降数据,同时记录水的温度。
实验注意事项:(1)实验前务必将系统内存留的气泡排除干净,否则实验不能达到预期效果。
(2)若实验装置放置不用时,尤其是冬季,应将管路系统和水槽内水排放干净。
五、实验数据记录及整理 1、实验基本参数试验导管的内径 d =17 mm 试验导管的测试段长度l =600 mm 粗糙管的粗糙度ε=0.4 mm 粗糙管的相对粗糙度ε/d=0.0235 孔板流量计的孔径d 0=11 mm 旋塞的孔径d v = mm 2、流量标定曲线 3、实验数据表1 孔板流量计的压差计读书记录表实验序号 1 2 3 4 5 6 7 孔板流量计的压差计读数,R/mmHg水流量的计算s m gR d C V s /24320--------⨯=π式中,C 0为孔板系数,一般控制C 0值在0.6~0.7之间;d0为孔板流量计的孔径,mm 。
s m d V u s /42---------=πμρdu =Re表2 数据记录表实验序号 1 2 3 4 5 6 7 孔板流量计的压差计读数,R/mmHg 水的流量,V s /m 3·s -1 水的流速,u/m·s -1 水的温度,T/℃水的密度,ρ/kg ·m -3 水的粘度,10-4μ/Pa ·s 光滑管压头损失,H f1/mmH 2O 粗糙管压头损失,H f2/mmH 2O 旋塞压头损失(全开)H f1’/mmH 2O 孔板流量计压头损失,H f2’/mmH 2O计算λ和ξ(1)光滑管:Pa gh p p f ---------=∆=∆ρλρλA u d l p f =⨯⨯=∆22∴Aghρλ=(2)粗糙管:gh p p f ρ=∆=∆λρλA u d l p f =⨯⨯=∆22∴Aghρλ=(3)孔板流量计:gh p p f ρ=∆=∆ξρξB u p f =⨯=∆22∴Bghρξ=(4)旋塞:gh p p f ρ=∆=∆ξρξC u p f =⨯=∆22∴ Cghρξ=(4)数据整理表3 数据整理表实验序号 1 2 3 4 5 6 7 水的流速,u/m·s-110雷诺准数,Re/4光滑管摩擦系数,λ1粗糙管摩擦系数,λ2孔板流量计局部阻力系数,ζ1″旋塞的局部阻力系数(全开),ζ1′(5)标绘Re-λ实验曲线六、思考题1、请找出该系统中的局部阻力构件?2、请说出如何测量孔板流量计、旋塞的局部阻力?3、从Re-λ实验曲线图中可以看出Re与λ的关系如何?。