初升高数学衔接知识专题讲座3
- 格式:ppt
- 大小:303.50 KB
- 文档页数:10
初三升高中数学衔接教案讲义大全初三升高中数学衔接教材教案讲义第一讲:数与式的运算——绝对值绝对值的代数意义是:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值仍是零。
即:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=-a。
绝对值的几何意义是:一个数的绝对值,是数轴上表示它的点到原点的距离。
两个数的差的绝对值的几何意义是:a-b表示在数轴上,数a和数b之间的距离。
例1:解不等式:x-1+x-3>4.练1:1) 若x=5,则x=5;若x=-4,则x=-4.2) 如果a+b=5,且a=-1,则b=6;若1-c=2,则c=-1.练2:下列叙述正确的是(A)若a=b,则a=b;(B)若a>b,则a>b;(C)若a<b,则a<b;(D)若a=b,则a=±b。
练3:化简:|x-5|-|2x-13| (x>5)。
练4:观察下列每对数在数轴上的对应点间的距离4与-2,3与5,-2与-6,-4与3,并回答下列各题:1) 你能发现所得距离与这两个数的差的绝对值有什么关系吗?2) 若数轴上的点A表示的数为x,点B表示的数为-1,则A与B两点间的距离可以表示为|a-(-1)|=|a+1|。
3) 结合数轴求得x-2+x+3的最小值为,取得最小值时x的取值范围为x≥5/3.4) 满足x+1+x+4>3的x的取值范围为x>-2/3.阅读理解题:阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|。
当A、B两点中有一点在原点时,不妨设点A在原点,如图1。
AB|=|OB|=|b|=|a-b|;当AB两点都不在原点时。
①如图2,点A、B都在原点的右边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=|a-b|。
第1讲初高衔接-计算衔接模块一绝对值知识梳理一、初中知识回顾:1、数轴上,一个数所对应的点与原点的叫做该数的绝对值.2、正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即 .3、负数比较大小,绝对值大的反而.4、绝对值不等式:∣x∣<a(a>0);∣x∣>a(a>0).5、两个数的差的绝对值的几何意义:∣a-b∣表示.二、高中知识对接:1、数轴上两点之间的距离:若M、N是数轴上的两个点,它们表示的数分别为x 1、x2,则M、N之间的距离为MN=2、含有绝对值的方程和函数:(1)含有绝对值的方程要先去掉绝对值符号,再求未知数的值;(2)绝对值函数的定义:y=∣x∣= ,绝对值函数的定义域是,值域是。
题型精练题型一、利用绝对值性质化简:例1、化简:|3x+1|+|2x-1|.例2、解不等式:|x-1|+|x-3|>4.变式训练:1.解不等式:|x+3|+|x-2|<7题型二、化简求最值例3、已知0≤a≤4,那么|a-2|+|3-a|的最大值为()A. 1B. 5C. 8D. 3变式训练:1、已知实数x、y满足|x+7|+|1-x|=19-|y-10|-|1+y|,则x+y的最小值为,最大值为 .秋季延伸探究已知-1<x<4,2<y<3,则x-y的取值范围是(),3x+2y的取值范围是()若将条件改为-1<x+y<4,2<x-y<3,求3x+2y的取值范围题型三、绝对值方程和函数例4、解下列方程:(1)|2x+3|-5=0 (2)4|x-1|-6=0 例5、做出y=|x-2|-1的函数图像。
变式训练:1、画出下列函数的图像:(1)y=-|x+3|+2秋季延伸探究1、求函数y=|x-1|+|x-3|的最小值;2、已知关于x的方程|x-2|+|x-3|=a,试着根据a的取值,讨论该方程解的情况。
模块二乘法公式知识梳理一、初中知识回顾:1、平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a±b)2=a2±2ab+b22、实际应用中经常将公式进行变形:(1)a2+b2=(a+b)2-2ab (2)a2+b2=(a-b)2+2ab(3)(a+b)2=(a-b)2+4ab (4)(a-b)2=(a+b)2-4ab(5)(a+b)2+(a-b)2=2(a2+b2)(6)(a+b)2-(a-b)2=4ab二、高中知识对接:1、立方和公式:(a+b)(a2-ab+b2)=a3+b3;2、立方差公式:(a-b)(a2+ab+b2)=a3-b3;3、三数和平方公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;4、两数和立方公式:(a+b)3=a3+b3+3a2b+3ab2;5、两数差立方公式:(a-b)3=a3-3a2b+3ab2-b3.【公式1】(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc 例1、计算:(x 2-2x+13)2【公式2】(a+b )(a 2-ab+b 2)=a 3+b 3(立方和公式) 例2、计算:(2a+b )(4a 2-2ab+b 2)【公式3】(a-b )(a 2+ab+b 2)=a 3-b 3(立方差公式) 例3、计算:(2x-3)(4x 2+6xy+9)变式训练:1、已知a+b+c=4,ab+bc+ac=4,求a 2+b 2+c 2的值.例4、已知x 2-3x+1=0,求33x1x 的值.1、已知a 、b 是方程x 2-7x+11=0的两个根,求:(1)a 2b+ab 2; (2)a bb a +;(3)a 3+b 3; (4)(a-b )4.变式训练2:1、已知x (x+1)-(x 2+y )=-3,求2y x 22+-xy 的值。
高初中数学的衔接讲座-育才编(全套,新课标人教A版)如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。
但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。
在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。
相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。
渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。
造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。
下面就对造成这种现象的一些原因加以分析、总结。
希望同学们认真吸取前人的经验教训,搞好自己的数学学习。
一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。
确实,初、高中的数学语言有着显着的区别。
初中的数学主要是以形象、通俗的语言方式进行表达。
而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2 思维方法向理性层次跃迁。
高中数学思维方法与初中阶段大不相同。
初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。
即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。
因此,初中学习中习惯于这种机械的、便于操作的定势方式。
高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。
当然,能力的发展是渐进的,不是一朝一夕的。
这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。
3 知识内容的整体数量剧增。
初高中数学衔接讲义摘要:一、引言1.初高中数学衔接的重要性2.初高中数学内容的差异和挑战二、初高中数学衔接策略1.知识体系的构建2.学习方法的调整3.学习态度的转变4.时间的管理和规划三、具体学科的衔接方法1.数学思维的培养2.数学运算能力的提升3.数学解题技巧的训练四、应对数学考试的策略1.熟悉考试大纲和题型2.做好复习计划和时间分配3.提高应试技巧和心理素质五、实例解析1.初高中数学衔接案例分享2.成功学员的经验总结六、结语1.初高中数学衔接的长期性和持续性2.鼓励学生勇敢面对挑战,积极学习正文:初高中数学衔接讲义一、引言随着我国教育制度的深化改革,初高中阶段的学习成为了每个学生必经的历程。
在这个阶段,数学作为基础学科之一,其重要性不言而喻。
然而,许多学生在升入高中后,往往会发现数学学科的难度有了明显的提升,初高中数学的衔接成为了一道必须要过的难关。
1.初高中数学衔接的重要性初高中数学衔接不仅关乎学生高中阶段的学习,更影响到学生的未来发展和职业生涯。
一个良好的衔接,能够帮助学生建立扎实的数学基础,培养良好的数学素养,为后续学习提供有力支持。
2.初高中数学内容的差异和挑战相较于初中数学,高中数学在知识点、难度、思维方式等方面都有了很大提升。
例如,高中数学更注重知识的体系性和逻辑性,要求学生具备较强的抽象思维和逻辑推理能力。
同时,高中数学的题型也更加丰富多样,需要学生掌握一定的解题技巧。
二、初高中数学衔接策略面对初高中数学的差异和挑战,学生需要调整自己的学习策略,以更好地适应高中数学的学习。
1.知识体系的构建学生在学习高中数学时,应重视知识体系的构建。
可以从以下几个方面入手:(1)理清知识点之间的关系;(2)把握数学概念的本质;(3)了解数学方法的应用场景。
2.学习方法的调整初高中数学的学习方法有很大差异。
初中数学侧重于模仿和记忆,而高中数学则需要学生理解概念、探索方法、总结规律。
因此,学生应调整学习方法,培养自己的独立思考和解决问题的能力。
初高中数学衔接课程三因式分解教学目标掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.教学重点与难点重点:用因式分解法解一元二次方程.难点:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便一、教学设计因式分解的概念是把一个多项式化成几个整式的积的形式二、十字相乘法1.2()x p q x pq +++型式子的因式分解式子特征:引导学生发现⑴二次项系数是1⑵常数项是两个数之和⑶一次向系数是常数项的两个因数之和2()x p q x pq +++=2()()x px qx pq +++=()()()()x x p q x p x p x q +++=++因此2()x p q x pq +++()()x p x q =++同步练习:把下列各式因式分解⑴276x x -+ ⑵21336x x ++ ⑶2524x x +- ⑷2215x x --2.一般二次三项式2ax bx c ++的分解因式我们知道2(2)(35)31110x x x x ++=++,反过来,就得到231110x x ++的因式分解的形式,231110(2)(35)x x x x ++=++,我们发现,二次项的系数3分解成1、3两个因数的积;常数项10分解成2、5两个因数的积,我们把1、3、2、5写成 后,发现1523⨯+⨯正好等于一次项系数11。
由上面的例子,我们可以尝试如何把二次三项式2ax bx c ++进行因式分解,即2112212122111()()a x c a x c a a x a c x a c x c c ++=+++1122()()a x c a x c =++我们发现,二次项的系数a 分解成12,a a ,常数项c 分解成1c 和2c ,并且把1212,,,a a c c 排列如右:这里按照斜线相乘再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解成1122()()a x c a x c ++. 说明:十字相乘法有时候有很多种的可能,往往要经过多次的尝试,才能确定。
第1章代数式与恒等变形1.1四个公式知识衔接在初中,我们学习了实数与代数式,知道代数式中有整式,分式,根式,它们具有类似实数的属性,可以进行运算。
在多项式乘法运算中,我们学习了乘法公式,如:平方差公式22))((b a b a b a -=-+;完全平方公式2222)(b ab a b a +±=±,并且知道乘法公式在整式的乘除,数值计算,代数式的化简求值以及代数等式的证明等方面有着广泛的应用。
而在高中阶段的学习中,将会遇到更复杂的多项式运算为此在本章中我们将拓展乘法公式的内容。
知识延展1多项式的平方公式:ac bc ab c b a c b a 222)(2222+++++=++2立方和公式:3322))((b a b ab a b a +=+-+3立方差公式:3322))((b a b ab a b a -=++-4完全立方公式:3223333)(b ab b a a b a ±+±=±注意:(1)公式中的字母可以是数,也可以是单项式或多项式;(2)要充分认识公式自身的价值,在多项式乘积中,正确使用乘法公式能提高运算速度,减少运算中的失误;(3)对公式的认识应当从发现,总结出公式的思维过程中学习探索,概括,抽象的科学方法;(4)由于公式的范围在不断扩大,本章及初中所学的仅仅是其中最基本,最常用的几个公式。
一计算和化简例1计算:))(()(222b ab a b a b a +++-变式训练:化简62222))()()((y xy y x xy y x y x y x +-+++-+二利用乘法公式求值;例2已知0132=+-x x ,求331xx +的值。
变式训练:已知3=++c b a 且2=++ac bc ab ,求222c b a ++的值。
三利用乘法公式证明例3已知0,0333=++=++c b a c b a 求证:0200920092009=++c b a变式训练:已知2222)32()(14c b a c b a ++=++,求证:3:2:1::=c b a 习题精练1化简:322)())((b a b ab a b a +-+-+2化简)1)(1)(1)(1)(1)(1(12622+++-+++-aa a a a a a a 3已知10=+y x 且10033=+y x ,求代数式22y x +的值;4已知21201,19201,20201+=+=+=x c x b x a ,求代数式ac bc ab c b a ---++222的值; 5已知)(3)(2222z y x z y x ++=++,求证:z y x ==6已知abcd d c b a 44444=+++且d c b a ,,,均为正数,求证:以d c b a ,,,为边的四边形为菱形。
一、数与式的运算必会的乘法公式【公式1】ca bc ab c b a c b a 222)(2222+++++=++ 证明:2222)(2)(])[()(c c b a b a c b a c b a ++++=++=++ca bc ab c b a c bc ac b ab a 222222222222+++++=+++++=∴等式成立【例1】计算:22)312(+-x x说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列. 【公式2】3322))((b a b ab a b a +=+-+(立方和公式)证明: 3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+ 说明:请同学用文字语言表述公式2.【例2】计算: (2a+b )(4a 2-2ab+b 2)=8 a 3+b 3【公式3】3322))((b a b ab a b a -=++-(立方差公式)1.计算 (1)(3x+2y )(9x 2-6xy+4y 2)= (2)(2x-3)(4x 2+6xy+9)=(3))916141(31212++⎪⎭⎫ ⎝⎛-m m m =(4)(a+b )(a 2-ab+b 2)(a-b )(a 2+ab+b 2)=2.利用立方和、立方差公式进行因式分解 (1)27m 3-n 3=(2)27m 3-81n 3=(3)x 3-125= (4) m 6-n 6=【公式4】33322()33a b a b a b ab +=+++ 【公式5】33223()33a b a a b ab b -=-+- 【例3】计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.【例4】已知2310x x -+=,求331xx +的值. 说明:本题若先从方程2310x x -+=中解出x 的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举.【例5】已知0=++c b a ,求111111()()()a b c b c c a a b+++++的值. 说明:注意字母的整体代换技巧的应用.【例6】设x y =,求33x y +的值.说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.二、因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.(一)、公式法【例1】用立方和或立方差公式分解下列各多项式:(1) 38x +(2) 30.12527b -分析: (1)中,382=,(2)中3330.1250.5,27(3)b b ==.说明:(1) 在运用立方和(差)公式分解因式时,经常要逆用幂的运算法则,如3338(2)a b ab =,这里逆用了法则()n n n ab a b =;(2) 在运用立方和(差)公式分解因式时,一定要看准因式中各项的符号. 【例2】分解因式:(1) 34381a b b -(2) 76a ab -(二)、分组分解法从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如ma mb na nb +++既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.1.分组后能提取公因式【例3】把2105ax ay by bx -+-分解因式.2.分组后能直接运用公式 【例4】把22x y ax ay -++分解因式【例5】把2222428x xy y z ++-分解因式. (三)拆、添项法【例6】分解因式3234x x -+1.把下列各式分解因式:(1) 327a +(2) 38m -(3) 3278x -+2.把下列各式分解因式:(1) 34xy x +(2) 33n n x x y +-(3) 2232(2)y x x y -+3.把下列各式分解因式:(1) 232x x -+ (2) 2627x x --(3) 2245m mn n --4.把下列各式分解因式: (1) 5431016ax ax ax -+ (2) 2126n n n a a b a b +++- (3) 22(2)9x x --(4) 2282615x xy y +-(5) 27()5()2a b a b +-+-5.把下列各式分解因式:(1) 233ax ay xy y -+-(2) 328421x x x +-- (3) 251526x x xy y -+-(4) 22414xy x y +-- (5) 432234ab b a b a b a --+ (6) 66321x y x --+(7) 2(1)()x x y xy x +-+ 6.已知2,23a b ab +==,求代数式22222a b a b ab ++的值. 7.证明:当n 为大于2的整数时,5354n n n -+能被120整除.8.已知0a b c ++=,求证:32230a a c b c abc b ++-+=.三、一元二次方程根与系数的关系【例1】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.四、一元高次方程的解法含有一个未知数,且未知数的最高次项的次数大于2的整式方程叫做一元高次方程。