安徽省蚌埠市蚌山区2017_2018学年八年级数学上学期期中测试试题新人教版
- 格式:docx
- 大小:169.23 KB
- 文档页数:6
2017-2018学年新人教版八年级上期中数学试卷及答案2017-2018学年新人教版八年级(上)期中数学试卷时间:120分钟分值:100分一、选择题:本大题共10小题,每小题3分,共30分。
将答案填在表格内。
1.在下列各电视台的台标图案中,是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.3cm,3cm,6cmC.5cm,8cm,2cmD.4cm,5cm,6cm3.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm4.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°5.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30B.35C.40°D.50°6.一个三角形三个内角之比为1:3:5,则最小的角的度数为()A.20°B.30°C.40°D.60°7.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形8.正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.109.AC=A′C′,在△ABC与△A′B′C′中,已知∠A=∠A′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°二、填空题:本大题共8小题,每小题2分,共16分。
人教版2017-2018学年度(上)八年级数学期中考试模拟试题一、用心选一选1. 对于实数3.1415π-227,2.36 其中有理数的个数有( ) A.1 B.2 C.3 D.42. 下列四个图案中,轴对称图形的个数是( )A .1B .2C .3D .4 3. 如图,△ABE ≌△ACD ,AB =AC ,BE =CD ,∠B =50°,∠AEC =120°,则∠DAC 的度数等于( )A.120°B. 70°C.60°D.50° 4.如图,再添加一个条件也不能使△ABD ≌△ACD 的是( )A. ∠B =∠CB. ∠ADB =∠ADCC.BD =CDD.AB =AC5.使两个直角三角形全等的条件是( )A .两个锐角对应相等B .一条边对应相等C .两条边相等D .两条边对应相等6. 在△ABC 中,点 D 在边BC 上,AB =AC =CD ,BD =AD ,则∠B 的度数为()A. 45︒B. 36︒C. 30︒D. 32︒7.下列命题中,不正确的是( )A .全等三角形一定能关于某条直线对称B .角是关于它的平分线所在的直线对称的图形C .圆有无数条对称轴D .若两图形关于直线对称,则对称轴是对应点所连线段的垂直平分线8.下列式子正确的是()5=- B. 1= C. 981=-= D. =9. 等腰三角形一边上的中线将这个三角形的周长分为15和24两个部分,则该等腰三角形的底边长为( )A. 19B.7C.8D. 19或710.如图,△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,下述结论:①BD 平分∠ABC;②AD =BD =BC ;③△BDC 的周长等于AB +BC ;④D 是AC 的中点.其中正确的个数( ).A.1B.2C.3D.4二、细心填一填11.等角三角形的一个外角70︒,则这个三角形的底角的度数是 .第3题图 第4题图 第6题图 第10题图12. 点A 关于x 轴的对称是点B ,点B 与点C 关于y 轴对称,若点C 的坐标是(5,-3),则点A 的坐标是______.13.小李从镜子里看到背后墙上的挂钟的时针与分针的位置如图所示,此时实际时间是 .14.如图,∠E =∠F =90°,∠B =∠C ,AE =AF ,对于下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ; ④CD =DN15.已知△ABC 是轴对称图形,且三条高的交点恰好是C 点,则△ABC 的形状是______.16.如图AD 是BC 的垂直平分线,图中共有全等三角形 对.17.如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分成三个三角形,则S △ABO :S △BCO :S △CAO 等于 .18.如图,在△ABC 中,∠ACB =90°,AC =BC ,AD 平分∠BAC ,DE ⊥AB 于点E ,若AB =25cm ,则△DEB 的周长为cm.19.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三条边所对的角的关系是.20. 如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点1A ,∠1A BC 的平分线与∠1ACD 的平分线交于点2A ,…,∠1n A BC -的平分线与∠1n A CD -的平分线交于点n A .设∠A =α.则:(1)∠1A =______;(2)∠n A =______.三、专心做一做21计算:3π-第13题图 第14题图 第16题图 第17题图 第18题图 第20题图22. 如图,在△ABC 中,∠A =2∠B ,AB =2AC ,求证:∠ACB =90°.23. 如图,已知∠AOB =120°,OC 是∠AOB 的平分线,P 是OC 上的一点,把三角板的60角的顶点重合于点P ,角的两边分别与OA 、OB 相交点D 、E (D 、E 不与O 重合)求证:PD =PE24.如图,以长方形ABC D 的两条对称轴为x 轴和y 轴建立直角坐标系,若A 点的坐标为(5,-4).(1)写出长方形的另外三个顶点B ,C ,D 的坐标;(2)求长方形ABCD 的面积.第22题图 第24题图第23题图25.如图,△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E,若∠CAE=∠B+30°,求∠AEB的度数.26. 如图,△ABC中,∠B=90°,AB=BC,D、E分别是AB、BC上的动点,在运动的过程中始终保持BD=CE,M是AC的中点.试探究在D、E运动的过程中,△DEM的形状是否发生改变,它是什么形状的三角形?证明你的结论.第25题图第26题图。
2017-2018学年第一学期八年级 数学(上) 参考答案及评分标准一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.> 18.3 19.2 20.8三、解答题(本大题共6个小题,共56分.解答应写出相应的文字说明或解题步骤)21.(1)解:原式=yx 2- ……………(4分) 21.(2)解:原式=2)1()1()111(a a a a a a +-∙++-+ ……………(2分) =2)1()1(11a a a +-∙+- =21-a ……………(4分) 21.(3)解:据题意得:x ﹣2=22=4,∴ x =6, ……………(1分)2y ﹣11=(﹣3)3=﹣27,∴ y =﹣8, ……………(2分)则x 2+y 2=62+(﹣8)2=36+64=100, ………………(3分)∴ x 2+y 2的平方根为±10. …………………(4分)22.解:(1)二, …………………(2分)a-24; …………………(4分) (2)由题意得,aa a -++222=2, 即a-24=2, …………………(5分) 解得:a =0, …………………(7分)经检验,a =0是原方程的解,∴ 当a =0时,原代数式的值等于2. …………………(8分)23.如图1,作出∠B =∠β得3分;作出边BC =a 得2分;作出边AC =b 和A ′C =b 共得3分,少一种情况扣1分.24.(1)命题一,命题二; …………………(4分) (2)命题一: 条件是①AB=AC ,②AD=AE ,③∠1=∠2,结论是④BD=CE .证明:∵∠1=∠2∴∠BAD=∠CAE ,又AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ) …………………(8分)∴BD=CE .…………………(9分)或:命题二:条件是①AB=AC ,②AD=AE ,④BD=CE ,结论是③∠1=∠2.证明:∵AB=AC ,AD=AE ,BD=CE ,∴△ABD ≌△ACE (SSS ),…………………(8分)∴∠BAD=∠CAE ,∴∠1=∠2.…………………(9分)25.解:(1)设第一次购进衬衫x 件. 根据题意得:48000217600=-xx .…………………(4分) 解得:x =200.…………………(6分)经检验:x =200是原方程的解.答:该服装店第一次购进衬衫一共200件.…………………(7分)(2)盈利;…………………(8分)盈利=58×(200+400)﹣(17600+8000)=9200(元)…………………(9分) 答:该服装店这笔生意一共盈利9200元.26.(1)△ABE ≌△ACE ,△ADF ≌△CDB ………………(2分)(2)CEAF =2 …………………(3分) 证明:如图2,∵AE 平分∠DAC ,图2 A′ β b图1 A C B ba∴∠CAE =∠BAE ,∵AE ⊥CE ,∴∠AEC =∠AEB =90°,在△AEC 和△AEB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BAECAE AE AE AEBAEC∴△AEC ≌△AEB (ASA ),∴CE =BE ,即CB =2CE ,…………………(5分)∵∠ADC =90°,∴∠ADF=∠CDB =90°,∴∠B +∠DCB =90°,∵∠B +∠DAF =90°,∴∠DAF =∠DCB ,在△ADF 和△CDB 中,⎪⎩⎪⎨⎧∠=∠=∠︒=∠=∠DCBDAF CD AD CDB ADF 90,∴△ADF ≌△CDB (ASA ),∴AF =CB =2CE ,即CE AF=2. …………………(7分)(3)等于; ……………(8分)辅助线如图3, …………………(9分)作法:过点P 作PG ⊥DC 交CE 的延长线于点G ,交DC 于点B . ………………(10分) 或:过点P 作PG ∥AD 交CE 的延长线于点G ,交DC 于点B . 或:延长CE 到点G ,使CE =GE ,连接PG 交DC 于点B . (说明:其它作法正确均给分)D CE 图3 G。
安徽省蚌埠市2017-2018学年八年级数学上学期期末教学质量监测试题考试时间90分钟,满分120分一、精心选一选:(本大题共10小题,每小题3分,共30分,在每小题给出的 A, B, C , D 四个选项中, 只有一个选项是符合题目要求的,请将正确答案的字母代号填在答题卷相应位置 )1.点P ( — 3,— 2)到y 轴的距离是A .— 2 B.— 3C. 2D. 3 2.如图坐标系中, 小正方形边长为 1个单位, 则点 C 的坐标为A . ( — 1 , 5) B. ( — 5, 1) C. (5 , — 1)D. (1 , — 5) 直线y =— kx + k — 3与直线y = kx 在同一坐标系中的大致图象可能是图中的A B C D10. 一段笔直的公路 AC 长20千米,途中有一处休息点B, AB 长15千米,甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/时的速度匀速跑至点 B ,原地休息半小时后,再以10千米/时的速度匀速跑3. 4.7, 9, 13(单位:厘米)的四段木棒为边摆三角形,B. 2个如图,在△ ABC 中, AB= BC =kx + 2的图象经过点A,贝U1A.-2用长分别为5, A . 1个C. 3个5.6.7.8.B.各顶点在如图所示坐标轴上,且顶点 k 的值为 12下列命题的逆命题是真命题的是A .全等三角形的周长相等C.等边三角形的三个内角都是 60°直线y = x + 1与两坐标轴围成的三角形面积为1 3A . B.-2 2C.B. D.C.可摆出不同的三角形的个数为D. 4个C 的坐标为(2 , 0)。
若一次函数y D.— 1对顶角相等 全等三角形的对应角相等 D. 1 已知一次函数y = (k — 2)x — m 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则 下列结论正确的是A . k v 2, m > 0 如图,△ ABC 的三边 △ BOC S ^AOC 等于 A . 1:111B. k v 2, rm< 0 AB BC CA 分别长为 B. 1:2:3C. k >2, m > 0D. k v 0, m v 0 20、30、40, AO BO CC 分别是三个内角平分线, C. 2:3:4D. 3:4:5则 S\AOB S 9.至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是B C D二、耐心填一填:(本大题共5个小题,每小题4分,共20分,请将答案直接填在题中的横线上)11. _________________________________________________________________________________ 如图,D是线段AC上一点,连BD用不等号“V”表示/ A,Z 1的大小关系为___________________________________ 。
数 学时间:100分钟 总分:120分一、选择题(本大题共10小题,每小题3分,计30分)1.点P (-2,1)关于 y 轴对称的点的坐标为( )A .(-2,-1)B .(-2,1)C .(2,-1)D .(2,1)2.P (a ,b )是第二象限内一点,则P ′(b,a)位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.一次函数23y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.三角形中至少有一个角大于或等于( )A .30°B .60°C .70°D .80°5.直线1y x =-+上有两点A (1x ,1y ),B (2x ,2y ),且12x x <,则1y 与2y 的大小系是( )A .12y y >B .12y y =C .12y y <D .无法确定6.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中,能作为第三边是( )A .13cmB .5cmC .6cmD .4cm7.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )8.等腰三角形一边长是8,另一边长是5,则周长是( )A .21B .18C .16D .18或219.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-110.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且ABC S ∆=4cm 2,则S 阴影等于( )A .2cm 2B .1 cm 2C .12 cm 2D .14cm 2 二、填空题(本大题共4小题,每小题5分,计20分)11.已知一个等腰三角形底边的长为5cm ,一腰上的中线把其周长分成的两部分的差为1cm,则腰长为 。
2017-2018学年八年级(上)期中数学试卷一、选择题1.下列实数是无理数的是( )A .﹣1B .0C .πD .2.下列各组数是勾股数的是( )A .3,4,5B .7,8,9C .9,41,47D .52,122,1323.满足﹣<x <的整数x 的个数是( ) A .1 B .2C .3D .4 4.下列二次根式中的最简二次根式是( )A .B .C .D .5.下列计算正确的是( )A .2×3=6B . +=C .2﹣=2D .2÷= 6.如果点P 在第二象限内,点P 到x 轴的距离是5,到y 轴的距离是2,那么点P 的坐标为( )A .(﹣5,2)B .(﹣5,﹣2)C .(﹣2,5)D .(﹣2,﹣5) 7.点M (3,﹣4)关于y 的轴的对称点是M 1,则M 1关于x 轴的对称点M 2的坐标为( )A .(﹣3,4)B .(﹣3,﹣4)C .(3,4)D .(3,﹣4)8.某商店售货时,在进价基础上加一定利润,其数量x 与售价y 如下表所示,则售价y 与数量x 的函数关系式为( )A .y=8+0.4xB .y=8x +0.4C .y=8.4xD .y=8.4x +0.49.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2m B.2.5m C.2.25m D.3m10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A 落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题11.的立方根是.12.比较大小:.13.如图,说出数轴上点A所表示的数是.14.已知a、b、c位置如图所示,试化简:|a+b﹣c|+=.15.如图,Rt△ABO中,∠ABO=90°,其顶点O为坐标原点,点B在第二象限,点A在x轴负半轴上.若BD⊥AO于点D,OB=,AB=2,则点A的坐标为,点B的坐标为.16.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运运,若∠AOB=45°,OP=2,则△PMN的周长的最小值为.17.如图:A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=2,且MN=4,P为直线上的动点,|PA﹣PB|的最大值为.三、解答题18.计算(1)×﹣3(2)(+)(﹣)﹣(3)+﹣(4)(3﹣2+)÷2.19.解方程(1)4x2﹣1=0(2)8(x+1)3=﹣27.20.如图,在平面直角坐标系中,A(3,4),B(1,2),C(5,1).(1)如图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案).A1:,B1:,C1:;(3)求△ABC的面积.21.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W 元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用为9500元,求超市所获利润.(提示:利润=售价﹣进价)23.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:∵a===2﹣∴a﹣2=﹣∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1)化简+++…+(2)若a=求4a2﹣8a+1的值.24.如图,已知在平面直角坐标系中,A(0,﹣1)、B(﹣2,0)、C(4,0)(1)求△ABC的面积;(2)在y轴上是否存在一个点D,使得△ABD是以AB为底的等腰三角形,若存在,求出点D坐标;若不存,说明理由.=S△ABC,请你求出a的值.(3)有一个P(﹣4,a),使得S△PAB四、附加题25.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC 为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)一、选择题1.下列实数是无理数的是()A.﹣1 B.0 C.πD.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是整数,是有理数,故A选项错误;B、是整数,是有理数,故B选项错误;C、是无理数,故C选项正确;D、是分数,是有理数,故D选项错误.故选:C.2.下列各组数是勾股数的是()A.3,4,5 B.7,8,9 C.9,41,47 D.52,122,132【考点】勾股数.【分析】根据勾股定理的逆定理进行分析,从而得到答案.【解答】解:A、是,因为32+42=52;B、不是,因为72+82≠92;C、不是,因为92+412≠472;D、不是,因为(52)2+2.故选:A.3.满足﹣<x<的整数x的个数是()A.1 B.2 C.3 D.4【考点】估算无理数的大小.【分析】先求出和的范围,即可得出答案.【解答】解:∵1,2<3,∴﹣2<﹣<﹣1,∴满足﹣<x<的整数x有﹣1,0,1,2,共4个,故选D.4.下列二次根式中的最简二次根式是()A. B. C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A5.下列计算正确的是()A.2×3=6B. += C.2﹣=2 D.2÷=【考点】二次根式的混合运算.【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B、D进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=6,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=,所以C选项错误;D、原式=,所以D选项正确.故选D.6.如果点P在第二象限内,点P到x轴的距离是5,到y轴的距离是2,那么点P的坐标为()A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限内,点P到x轴的距离是5,到y轴的距离是2,∴点P的横坐标为﹣2,纵坐标为5,∴点P的坐标为(﹣2,5).故选C.7.点M(3,﹣4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为()A.(﹣3,4)B.(﹣3,﹣4)C.(3,4) D.(3,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出M1,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可.【解答】解:∵点M(3,﹣4)关于y的轴的对称点是M1,∴M1的坐标为(﹣3,﹣4),∴M1关于x轴的对称点M2的坐标为(﹣3,4).故选A.8.某商店售货时,在进价基础上加一定利润,其数量x与售价y如下表所示,则售价y与数量x的函数关系式为()A.y=8+0.4x B.y=8x+0.4 C.y=8.4x D.y=8.4x+0.4【考点】函数关系式.【分析】根据数量x与售价y如下表所示所提供的信息,列出售价y与数量x的函数关系式y=(8+0.4)x.【解答】解:依题意得:y=(8+0.4)x=8.4x,故选:C.9.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A.2m B.2.5m C.2.25m D.3m【考点】勾股定理的应用.【分析】经分析知:可以放到一个直角三角形中计算.此直角三角形的斜边是竹竿的长,设为x米.一条直角边是1.5,另一条直角边是(x﹣0.5)米.根据勾股定理,得:x2=1.52+(x﹣0.5)2,x=2.5.那么河水的深度即可解答.【解答】解:若假设竹竿长x米,则水深(x﹣0.5)米,由题意得,x2=1.52+(x﹣0.5)2解之得,x=2.5所以水深2.5﹣0.5=2米.故选A.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A 落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,=AC•BC=AB•CE,∵S△ABC∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:B.二、填空题11.的立方根是.【考点】立方根.【分析】直接根据立方根的定义求解.【解答】解:的立方根为.故答案为.12.比较大小:>.【考点】实数大小比较.【分析】先求出的取值范围为3<<4,可得1<﹣2<2,再比较分子的大小即可求解.【解答】解:∵3<<4,∴1<﹣2<2,∴>.故答案为:>.13.如图,说出数轴上点A所表示的数是﹣.【考点】实数与数轴.【分析】先根据勾股定理求出斜边的长度,再根据点A在数轴上的位置即可求解.【解答】解:由勾股定理,得斜边的长为:=,则数轴上点A所表示的数是﹣.故答案为﹣.14.已知a、b、c位置如图所示,试化简:|a+b﹣c|+=﹣2a+c.【考点】二次根式的性质与化简.【分析】直接利用数轴得出a+b﹣c<0,b﹣a>0,进而化简即可.【解答】解:由数轴可得:a+b﹣c<0,b﹣a>0,故:|a+b﹣c|+=﹣(a+b﹣c)+b﹣a=﹣2a+c.故答案为:﹣2a+c.15.如图,Rt△ABO中,∠ABO=90°,其顶点O为坐标原点,点B在第二象限,点A在x轴负半轴上.若BD⊥AO于点D,OB=,AB=2,则点A的坐标为(﹣5,0),点B的坐标为(﹣1,2).【考点】勾股定理;坐标与图形性质.【分析】根据勾股定理求出AO,即可得出A的坐标,证△BDO∽△ABO,得出比例式,代入求出OD、BD,即可得出B的坐标.【解答】解:在Rt△ABO中,∠ABO=90°,OB=,AB=2,由勾股定理得:OA==5,即A的坐标是(﹣5,0),∵BD⊥OA,∴∠BDO=∠BAO=90°,∵∠BOD=∠BOD,∴△BDO∽△ABO,∴,∴,解得:OD=1,BD=2,即B的坐标是(﹣1,2),故答案为:(﹣5,0),(﹣1,2).16.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运运,若∠AOB=45°,OP=2,则△PMN的周长的最小值为4.【考点】轴对称﹣最短路线问题.【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD=OC=×2=4.故答案是:4.17.如图:A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=2,且MN=4,P为直线上的动点,|PA﹣PB|的最大值为2.【考点】轴对称﹣最短路线问题.【分析】作点B于直线l的对称点B,则PB=PB′因而|PA﹣PB|=|PA﹣PB′|,则当A,B′、P在一条直线上时,|PA﹣PB|的值最大.根据平行线分线段定理即可求得PN和PM的值然后根据勾股定理求得PA、PB′的值,进而求得|PA﹣PB|的最大值.【解答】解:作点B于直线l的对称点B′,连AB′并延长交直线l于P.∴B′N=BN=2,∵AM∥B′N,∴=,即=,解得:PN=4,PM=4+4=8,∴PA==4,PB′==2,∴|PA﹣PB|的最大值=2.故答案为:2.三、解答题18.计算(1)×﹣3(2)(+)(﹣)﹣(3)+﹣(4)(3﹣2+)÷2.【考点】二次根式的混合运算.【分析】(1)首先利用二次根式的乘法法则计算,然后进行减法计算;(2)首先利用平方差公式计算,化简二次根式,然后进行加减即可;(3)首先对二次根式进行化简,然后合并同类二次根式即可;(4)首先对二次根式进行化简,然后对括号内的根式合并同类二次根式,然后进行除法计算即可.【解答】解:(1)原式=﹣3=4﹣3=1;(2)原式=3﹣7﹣4=﹣8;(3)原式=5+﹣6=﹣;(4)原式=(6﹣+4)÷2=÷2=.19.解方程(1)4x2﹣1=0(2)8(x+1)3=﹣27.【考点】立方根;平方根.【分析】根据平方根与立方根的性质即可求出x的值.【解答】解:(1)x2=x=±(2)(x+1)3=﹣x+1=﹣x=﹣20.如图,在平面直角坐标系中,A(3,4),B(1,2),C(5,1).(1)如图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案).A1:(﹣3,4),B1:(﹣5,1),C1:(﹣1,2);(3)求△ABC的面积.【考点】作图﹣轴对称变换.【分析】(1)首先确定A、B、C三点关于y轴的对称点,再连接即可;(2)根据平面直角坐标系写出各点坐标即可;(3)利用矩形的面积减去周围多余三角形的面积即可.【解答】解:(1)如图所示:(2)A1(﹣3,4),B1(﹣5,1),C1(﹣1,2);故答案为:(﹣3,4);(﹣5,1);(﹣1,2);(3)△ABC的面积:3×4﹣2×2﹣2×3﹣1×4=12﹣2﹣2﹣2=6.21.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.【考点】勾股定理的逆定理;勾股定理.【分析】(1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理即可证明△ABC为直角三角形;(2)根据S阴影=S Rt△ABC﹣S Rt△ACD,利用三角形的面积公式计算即可求解.【解答】(1)证明:∵在Rt△ADC中,∠ADC=90°,AD=8,CD=6,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC为直角三角形;(2)解:S阴影=S Rt△ABC﹣S Rt△ACD=×10×24﹣×8×6=96.22.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W 元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用为9500元,求超市所获利润.(提示:利润=售价﹣进价)【考点】一次函数的应用.【分析】(1)根据题意和表格中的数据可以得到W关于x的函数关系式;(2)根据表格中的数据可以求得购进两种T恤的件数,然后根据(1)中函数关系式即可求得超市所获利润.【解答】解:(1)由题意可得,W=(80﹣50)x+(65﹣40)=5x+5000,即W关于x的函数关系式W=5x+5000;(2)由题意可得,50x+×40=9500,解得,x=150,∴W=5×150+5000=5750(元),即超市所获利润为5750元.23.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:∵a===2﹣∴a﹣2=﹣∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1)化简+++…+(2)若a=求4a2﹣8a+1的值.【考点】二次根式的化简求值.【分析】(1)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类二次根式即可求解;(2)首先化简a,然后把所求的式子化成4(a﹣1)2代入求解即可.【解答】解:(1)原式=(﹣1)+(﹣)+(﹣)+…+(﹣)=﹣1=10﹣1=9;(2)a=+1,则原式=4(a2﹣2a+1)﹣3=4(a﹣1)2,当a=+1时,原式=4×()2=8.24.如图,已知在平面直角坐标系中,A(0,﹣1)、B(﹣2,0)、C(4,0)(1)求△ABC的面积;(2)在y轴上是否存在一个点D,使得△ABD是以AB为底的等腰三角形,若存在,求出点D坐标;若不存,说明理由.=S△ABC,请你求出a的值.(3)有一个P(﹣4,a),使得S△PAB【考点】等腰三角形的判定;坐标与图形性质;勾股定理.【分析】(1)根据AO=1,BC=6,求得△ABC的面积;(2)设D(0,a),则AD=1+a,OD=a,根据BD=AD=1+a,∠BOD=90°,可得Rt △BOD中,OD2+OB2=BD2,即a2+22=(a+1)2,进而得出点D坐标;=S△ABC,(3)分两种情况进行讨论,点P在第二象限或第三象限内,根据S△PAB求出a的值.【解答】解:(1)∵A(0,﹣1)、B(﹣2,0)、C(4,0),∴AO=1,BC=6,∴△ABC的面积=×6×1=3;(2)存在一个点D,使得△ABD是以AB为底的等腰三角形.如图所示,设D(0,a),则AD=1+a,OD=a,∵BD=AD=1+a,∠BOD=90°,∴Rt△BOD中,OD2+OB2=BD2,∴a2+22=(a+1)2,解得a=,∴D(0,);(3)在x轴负半轴上取点D(﹣4,0),过D作x轴的垂线l,则点P在该垂线l上,=S△ABC,过C作CP∥AB,交l于点P,则S△PAB∵A(0,﹣1)、B(﹣2,0),∴直线AB的解析式为y=﹣x﹣1,设直线CP解析式为y=﹣x+b,把C(4,0)代入,可得0=﹣2+b,解得b=2,∴直线CP解析式为y=﹣x+2,∴F(0,2),当x=﹣4时,y=2+2=4,∴P(﹣4,4);当点P'在x轴下方时,设过P'且平行于AB的直线交y轴于E,则AE=AF=3,∴OE=4,即E(0,﹣4),∴直线P'E解析式为y=﹣x﹣4,当x=﹣4时,y=2﹣4=﹣2,∴P'(﹣4,﹣2),∴a的值为4或﹣2.四、附加题25.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC 为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=2;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)【考点】勾股定理的应用;相似形综合题.【分析】(1)①在等腰直角三角形ACB中,由勾股定理先求得AB的长,然后根据PA的长,可求得PB的长;过点C作CD⊥AB,垂足为D,从而可求得CD、PD的长,然后在Rt三角形CDP中依据勾股定理可求得PC的长;②△ACB为等腰直角三角形,CD⊥AB,从而可求得:CD=AD=DB,然后根据AP=DC﹣PD,PB=DC+PD,可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(2)过点C作CD⊥AB,垂足为D,则AP=(AD+PD)=(DC+PD),PB=(DP﹣BD)=(PD﹣DC),可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(3)根据点P所在的位置画出图形,然后依据题目中的比值关系求得PD的长(用含有CD的式子表示),然后在Rt△ACP和Rt△DCP中由勾股定理求得AC 和PC的长度即可.【解答】解:(1)如图①:①∵△ABC是等腰直直角三角形,AC=1+∴AB===+,∵PA=,∴PB=,∵△ABC和△PCQ均为等腰直角三角形,∴AC=BC,PC=CQ,∠ACP=∠BCQ,∴△APC≌△BQC.∴BQ=AP=,∠CBQ=∠A=45°.∴△PBQ为直角三角形.∴PQ=.∴PC=PQ=2.故答案为:,2;②如图1.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD﹣PD)2=(DC﹣PD)2=DC2﹣2DC•PD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2D C•PD+PD2∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2(2)如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2,PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2.(3)如图③:过点C作CD⊥AB,垂足为D.①当点P位于点P1处时.∵,∴.∴.在Rt△CP1D中,由勾股定理得:==DC,在Rt△ACD中,由勾股定理得:AC===DC,∴.②当点P位于点P2处时.∵=,∴.在Rt△CP2D中,由勾股定理得:==,在Rt△ACD中,由勾股定理得:AC===DC,∴.综上所述,的比值为或.2017年5月5日。
ABCDA B D C M N2017-2018学年度上期期中教学质量检测 八年级数学试题(本试卷120分 考试时间100分钟)一、选择题(每小题3分,满分24分)下列各小题均有四个答案,其中只有一个是正确的1.下列平面图形中,不是轴对称图形的是 ( )2.以下列各组线段为边,能组成三角形的是( )A. 2 cm ,3 cm ,5 cmB. 3 cm ,3 cm ,6 cmC. 5 cm ,8 cm ,2 cmD. 4 cm ,5 cm ,6 cm 3.已知等腰三角形的两边长分别为3和6,则它的周长等于( ) A. 12 B. 12或15 C. 15 D. 15或184.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A.∠M=∠NB.AM=CNC.AB=CDD.AM ∥CN 5.一个多边形的内角和等于1080°,这个多边形的边数是( ) A .9 B .8 C .7 D .6 6.下列说法中,错误的是 ( )A.一个三角形的三个内角中,至少有一个角不大于600B.有一个外角是锐角的三角形是钝角三角形C.锐角三角形中,两个角的和小于直角D.直角三角形中有一个外角等于和它相邻的内角7. AD 是△ABC 的角平分线,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F•,则下列结论不一定正确的是( )A .DE=DFB .BD=CDC .AE=AFD .∠ADE=∠ADF8.如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么, 有下列说法: ①△EBD 是等腰三角形,EB=ED ②折叠后∠ABE 和∠CBD 一定座号:________A B CD相等 ③折叠后得到的图形是轴对称图形 ④△EBA 和△EDC 一定是全等三角形 其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.在△ABC 中,∠A ∶∠B ∶∠C =2∶3∶4,则∠A =________,∠C =________ 10.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______. 11. 在△ABC 中,∠C=90°,BC=16cm ,∠BAC 的平分线交BC 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.12. 如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有_____ 个。
2017-2018学年八年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列语句中,不是命题的是()A.直角都等于90°B.对顶角相等C.互补的两个角不相等D.作线段AB3.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:14.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)5.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<06.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣28.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B.C.D.9.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC 的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化10.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C. D.16二.填空题(本大题共8小题,每小题3分,共24分)11.点M(3,﹣1)到x轴距离是,到y轴距离是.12.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.13.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1y2.(填“>”、“=”或“<”)15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.18.在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图所示,观察图象,下列说法:①出发m h内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43km;④此次越野赛的全程为90km,正确的有(把正确结论的序号填在横线上).三、解答题(本大题共6小题,第19题8分,20题10分,21题10分,22题12分,23题12分,24题14分,共66分)19.(8分)如图,一只甲虫在5×5的方格如图,直线l1在平面直角坐标系中与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.21.(10分)如图,已知在△ABC中,∠B>∠C,AD是BC边上的高,AE是∠BAC的平分线,求证:∠DAE=(∠B﹣∠C).22.(12分)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?23.(12分)阅读理解:在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点.①若点B(0,3),则点A与点B的“非常距离”为;②若点A与点B的“非常距离”为2,则点B的坐标为;③直接写出点A与点B的“非常距离”的最小值;(2)已知点D(0,1),点C是直线y=x+3上的一个动点,如图2,求点C与点D“非常距离”的最小值及相应的点C的坐标.24.(14分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200 170乙连锁店160 150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?2016-2017学年安徽省蚌埠市三校八年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】坐标确定位置.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣1,2)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.下列语句中,不是命题的是()A.直角都等于90°B.对顶角相等C.互补的两个角不相等D.作线段AB【考点】命题与定理.【分析】根据命题的定义可以判断选项中的各个语句是否为命题,本题得以解决.【解答】解:直角都等于90°是一个真命题,对顶角相等是一个真命题,互补的两个角不相等是一个假命题,作线段AB不是命题,故选D.【点评】本题考查命题与定理,解题的关键是明确命题的定义.3.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:1【考点】三角形的外角性质.【分析】设三角形的三个外角的度数分别为3x、4x、5x,根据三角形的外角和等于360°列出方程,解方程得到答案.【解答】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,3x=90°,4x=120°,5x=150°,相应的外角分别为90°,60°,30°,则这个三角形内角之比为:90°:60°:30°=3:2:1,故选:C.【点评】本题考查的是三角形外角和定理,掌握三角形的外角和等于360°是解题的关键.4.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)【考点】坐标确定位置.【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:如图所示:∵“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,∴“炮”的坐标是:(﹣2,1).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.5.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0【考点】一次函数图象与系数的关系.【分析】先将函数解析式整理为y=(k﹣1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:一次函数y=kx+b﹣x即为y=(k﹣1)x+b,∵函数值y随x的增大而增大,∴k﹣1>0,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<0.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.熟知一次函数的增减性是解答此题的关键.6.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【考点】三角形内角和定理.【分析】根据直角三角形的判定对各个条件进行分析,从而得到答案.【解答】解:①、∵∠A+∠B=∠C=90°,∴△ABC是直角三角形,故小题正确;②、∵∠A:∠B:∠C=1:2:3,∴∠A=30°,∠B=60°,∠C=90°,△ABC是直角三角形,故本小题正确;③、设∠A=x,∠B=2x,∠C=3x,则x+2x+3x=180°,解得x=30°,故3x=90°,△ABC是直角三角形,故本小题正确;④∵设∠C=x,则∠A=∠B=2x,∴2x+2x+x=180°,解得x=36°,∴2x=72°,故本小题错误;⑤∠A=2∠B=3∠C,∴∠A+∠B+∠C=∠A+∠A+A=180°,∴∠A=°,故本小题错误.综上所述,是直角三角形的是①②③共3个.故选B.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.7.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣2【考点】一次函数与一元一次不等式.【分析】y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的交点是(1,﹣2),根据图象得到x<1时不等式k1x+b<k2x+c成立.【解答】解:由图可得:l1与直线l2在同一平面直角坐标系中的交点是(1,﹣2),且x<1时,直线l1的图象在直线l2的图象下方,故不等式k1x+b<k2x+c的解集为:x<1.故选B.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.8.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B.C.D.【考点】动点问题的函数图象.【分析】运用动点函数进行分段分析,当P在BC上与CD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【解答】解:∵AB=2,BC=1,动点P从点B出发,P点在BC上时,BP=x,AB=2,∴△ABP的面积S=×AB×BP=×2x=x;动点P从点B出发,P点在CD上时,△ABP的高是1,底边是2,所以面积是1,即s=1;∴s=x时是正比例函数,且y随x的增大而增大,s=1时,是一个常数函数,是一条平行于x轴的直线.所以只有C符合要求.故选C.【点评】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.9.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC 的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线定义得出∠ACB=2∠DCB,∠MBC=2∠CBE,根据三角形外角性质得出2∠D+∠ACB=∠A+∠ACB,求出∠A=2∠D,即可求出答案.【解答】解:∵CD平分∠ACB,BE平分∠MBC,∴∠ACB=2∠DCB,∠MBC=2∠CBE,∵∠MBC=2∠CBE=∠A+∠ACB,∠CBE=∠D+∠DCB,∴2∠CBE=∠D+∠DCB,∴∠MBC=2∠D+∠ACB,∴2∠D+∠ACB=∠A+∠ACB,∴∠A=2∠D,∵∠A=100°,∴∠D=50°.故选:B.【点评】本题考查了三角形外角性质和角平分线定义的应用,关键是求出∠A=2∠D.10.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C. D.16【考点】一次函数综合题.【分析】根据题意画出相应的图形,由平移的性质得到△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C在直线y=2x﹣6上,根据C坐标得出CA的长,即为FD的长,将C纵坐标代入直线y=2x﹣6中求出x的值,确定出OD的长,由OD﹣OA求出AD,即为CF的长,平行四边形BCFE的面积由底CF,高FD,利用面积公式求出即可.【解答】解:如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C在直线y=2x﹣6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x﹣6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD﹣OA=5﹣1=4,=CF•FD=16.则线段BC扫过的面积S=S平行四边形BCFE故选D.【点评】此题考查了一次函数综合题,涉及的知识有:坐标与图形性质,平移的性质,以及平行四边形面积求法,做出相应的图形是解本题的关键.二.填空题(本大题共8小题,每小题3分,共24分)11.点M(3,﹣1)到x轴距离是1,到y轴距离是3.【考点】点的坐标.【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:M(3,﹣1)到x轴距离是1,到y轴距离是3,故答案为:1,3.【点评】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值是解题关键.12.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=15°.【考点】三角形的外角性质.【分析】根据常用的三角板的特点求出∠EAD和∠BFD的度数,根据三角形的外角的性质计算即可.【解答】解:由一副常用的三角板的特点可知,∠EAD=45°,∠BFD=30°,∴∠ABF=∠EAD﹣∠BFD=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=6.【考点】两条直线相交或平行问题.【分析】根据两直线平行的问题得到k=2,然后把(﹣2,2)代入y=2x+b可计算出b的值.【解答】解:∵直线y=kx+b与直线y=2x+1平行,∴k=2,把(﹣2,2)代入y=2x+b得2×(﹣2)+b=2,解得b=6.故答案为6;【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1<y2.(填“>”、“=”或“<”)【考点】一次函数图象上点的坐标特征.【分析】由k=﹣2<0根据一次函数的性质可得出该一次函数单调递减,再根据x1>x2,即可得出结论.【解答】解:∵一次函数y=﹣2x+5中k=﹣2<0,∴该一次函数y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,解题的关键是根据k=﹣2<0得出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次项系数的正负得出该函数的增减性是关键.15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是x=2.【考点】一次函数与一元一次方程.【分析】函数图象的交点坐标的横坐标即是方程的解.【解答】解:∵已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),∴关于x的方程kx+3=﹣x+b的解是x=2,故答案为:x=2.【点评】考查了一次函数与一元一次方程的知识,解题的关键是了解函数的图象的交点与方程的解的关系,难度不大.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为125°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,由三角形内角和定理即可求出∠BPC的度数.【解答】解:∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣70°=110°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°,∴∠P=180°﹣(∠2+∠4)=180°﹣55°=125°.故答案为:125°.【点评】本题考查的是三角形内角和定理及角平分线的定义,熟知三角形的内角和定理是解答此题的关键.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是175米.【考点】一次函数的应用.【分析】根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程﹣甲所走的路程即可得出答案.【解答】解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×150=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.【点评】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.18.在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图所示,观察图象,下列说法:①出发m h内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43km;④此次越野赛的全程为90km,正确的有①②④(把正确结论的序号填在横线上).【考点】一次函数的应用.【分析】①根据函数图象可以判断出发mh内小明的速度比小刚快是否正确;②根据图象可以得到关于a、b、m的三元一次方程组,从而可以求得a、b、m的值,从而可以解答本题;③根据②中的b、m的值可以求得小刚追上小明时离起点的路程,本题得以解决;④根据②中的数据可以求得此次越野赛的全程.【解答】解:由图象可知,出发mh内小明的速度比小刚快,故①正确;由图象可得,,解得,,故②正确;小刚追上小明走过的路程是:36×(0.5+0.7)=36×1.2=43.2km>43km,故③错误;此次越野赛的全程是:36×(0.5+2)=36×2.5=90km,故④正确;故答案为①②④.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共6小题,第19题8分,20题10分,21题10分,22题12分,23题12分,24题14分,共66分)19.如图,一只甲虫在5×5的方格(2016秋•蚌埠期中)如图,直线l1在平面直角坐标系中与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】待定系数法求一次函数解析式;坐标与图形变化-平移.【分析】(1)根据平移的法则即可得出点C的坐标,设直线l1的解析式为y=kx+c,根据点B、C的坐标利用待定系数法即可求出直线l1的解析式;(2)由点B的坐标利用待定系数法即可求出直线l2的解析式,再根据一次函数图象上点的坐标特征求出点A、E,根据三角形的面积公式即可求出△ABE的面积.【解答】解:(1)由平移法则得:C点坐标为(﹣3+1,3﹣2),即(﹣2,1).设直线l1的解析式为y=kx+c,则,解得:,∴直线l1的解析式为y=﹣2x﹣3.(2)把B点坐标代入y=x+b得,3=﹣3+b,解得:b=6,∴y=x+6.当x=0时,y=6,∴点E的坐标为(0,6).当x=0时,y=﹣3,∴点A坐标为(0,﹣3),∴AE=6+3=9,∴△ABE的面积为×9×|﹣3|=.【点评】本题考查了待定系数法求一次函数解析式、坐标与图形变化中的平移以及三角形的面积,根据点的坐标利用待定系数法求出函数解析式是解题的关键.21.(10分)(2016秋•蚌埠期中)如图,已知在△ABC中,∠B>∠C,AD是BC边上的高,AE是∠BAC的平分线,求证:∠DAE=(∠B﹣∠C).【考点】三角形内角和定理.【分析】根据三角形内角和定理以及AD是BC边上的高,求得∠BAD=90°﹣∠B,再根据AE平分∠BAC,求得∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣∠B﹣∠C,最后根据∠DAE=∠BAE﹣∠BAD即可求解.【解答】证明:∵AD是BC边上的高,∴∠BAD=90°﹣∠B.∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣∠B﹣∠C.∵∠DAE=∠BAE﹣∠BAD,∴∠DAE=(90°﹣∠B﹣∠C)﹣(90°﹣∠B)=∠B﹣∠C=(∠B﹣∠C).【点评】本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是三角形的内角和定理:三角形内角和是180°.22.(12分)(2009春•宜春期末)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?【考点】三角形的面积;三角形的外角性质.【分析】(1)根据三角形内角与外角的性质解答即可;(2)过E作BC边的垂线即可;(3)过A作BC边的垂线AG,再根据三角形中位线定理求解即可.【解答】解:(1)∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)过E作BC边的垂线,F为垂足,则EF为所求;(3)过A作BC边的垂线AG,∴AD为△ABC的中线,BD=5,∴BC=2BD=2×5=10,∵△ABC的面积为40,∴BC•AG=40,即×10•AG=40,解得AG=8,∵EF⊥BC于F,∴EF∥AG,∵E为AD的中点,∴EF是△AGD的中位线,∴EF=AG=×8=4.【点评】本题涉及到三角形外角的性质、三角形中位线定理及三角形的面积公式,涉及面较广,但难度适中.23.(12分)(2016•开江县二模)阅读理解:在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点.①若点B(0,3),则点A与点B的“非常距离”为3;②若点A与点B的“非常距离”为2,则点B的坐标为(0,2)或(0,﹣2);③直接写出点A与点B的“非常距离”的最小值;(2)已知点D(0,1),点C是直线y=x+3上的一个动点,如图2,求点C与点D“非常距离”的最小值及相应的点C的坐标.【考点】一次函数综合题.【分析】(1)①根据若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|解答即可;②根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;③设点B的坐标为(0,y).因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0=x0+2,据此可以求得点C的坐标.【解答】解:(1)∵|﹣﹣0|=,|0﹣3|=3,∴<3,∴点A与点B的“非常距离”为3.故答案为:3;②∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2),故答案为:(0,2)或(0,﹣2);③点A与点B的“非常距离”的最小值为.故答案为:;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|,即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.24.(14分)(2011•日照)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200 170乙连锁店160 150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?【考点】一次函数的应用.【分析】(1)首先设调配给甲连锁店电冰箱(70﹣x)台,调配给乙连锁店空调机(40﹣x)台,电冰箱60﹣(70﹣x)=(x﹣10)台,列出不等式组求解即可;(2)由(1)可得几种不同的分配方案;依题意得出y与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案.【解答】解:(1)由题意可知,调配给甲连锁店电冰箱(70﹣x)台,调配给乙连锁店空调机(40﹣x)台,电冰箱为60﹣(70﹣x)=(x﹣10)台,则y=200x+170(70﹣x)+160(40﹣x)+150(x﹣10),即y=20x+16800.∵∴10≤x≤40.∴y=20x+16800(10≤x≤40);(2)由题意得:y=(200﹣a)x+170(70﹣x)+160(40﹣x)+150(x﹣10),即y=(20﹣a)x+16800.∵200﹣a>170,∴a<30.当0<a<20时,20﹣a>0,函数y随x的增大而增大,故当x=40时,总利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x的取值在10≤x≤40内的所有方案利润相同;当20<a<30时,20﹣a<0,函数y随x的增大而减小,故当x=10时,总利润最大,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意。
安徽省蚌埠市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020七下·南通期中) 下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A . 3cm,4cm,5cmB . 7cm,8cm,15cmC . 3cm,12cm,20cmD . 5cm,5cm,11cm2. (2分) (2019九上·博罗期中) 下列图形中,既是轴对称图形又是中心对称图形的是().A .B .C .D .3. (2分) (2016八上·孝南期中) 若一个正多边形的一个外角是45°,则这个正多边形的边数是()A . 10B . 9C . 8D . 64. (2分) (2018八上·盐城期中) 如图,△ACB≌△A′CB′,∠B=50°,则∠B′的度数为()A . 20°B . 30°5. (2分)下列图形中具有稳定性的是()A . 正三角形B . 正方形C . 正五边形D . 正六边形6. (2分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A . 带其中的任意两块去都可以B . 带1、2或2、3去就可以了C . 带1、4或3、4去就可以了D . 带1、4或2、4或3、4去均可7. (2分)(2019·河池) 如图,在正六边形ABCDEF中,AC=2 ,则它的边长是()A . 1B .C .D . 28. (2分)如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是()A . 25°D . 65°9. (2分) (2016八上·东营期中) 如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A . PC=PDB . ∠CPD=∠DOPC . ∠CPO=∠DPOD . OC=OD10. (2分) (2020七下·浦东期末) 如图,BA//DE,∠B=30°,∠D=40°,则∠C的度数是()A . 10°B . 35°C . 70°D . 80°11. (2分)(2020·菏泽) 等腰三角形的一边长是3,另两边的长是关于的方程的两个根,则的值为()A . 3B . 4C . 3或4D . 712. (2分)以下列各组数据为边长,可以构成等腰三角形的是()A . 2,3,4B . 5,5,10C . 2,2,1二、填空题 (共6题;共7分)13. (1分) (2020八下·兰州期末) 一个边形内角和为,则等于________.14. (1分) (2019七下·西安期末) 若等腰三角形一腰上的中线将其周长分成9和6两部分则这个等腰三角形的三边长分别为 ________.15. (1分) (2016八上·抚宁期中) 点P(3,1)关于x轴的对称点P′的坐标是________.16. (1分)(2017·柘城模拟) 如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为________.17. (2分) (2017七下·河东期末) 如图所示,若AB∥DC,∠1=39°,∠C和∠D互余,则∠D=________,∠B=________.18. (1分) (2020八上·吴兴期末) 如图,直角△ABC中,∠A=90°,CD=DE=BE,当∠ACD=21°时,∠B=________.三、解答题 (共8题;共63分)19. (5分) (2017八上·海淀期末) 如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20. (5分) (2015九上·柘城期末) 如图,已知△ABC和△CEF是两个不等的等边三角形,且有一个公共顶点C,连接AF和BE,线段AF和BE有怎样的大小关系?证明你的猜想.21. (15分) (2019八上·诸暨期末) 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(,5),(,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.22. (5分) (2019八上·昭阳开学考) 如图,在△ABC中,∠A=70°,外角平分线CE∥AB.求∠B和∠ACB的度数.23. (5分) (2020七下·太原月考) 如图,在△ABC和△ADE中,AB=AD,∠1=∠2,∠C=∠E,求证:BC=DE。
2017-2018学年度第一学期期中测试八年级数学
(时间:120分钟满分:150分)
班级:__________姓名:__________得分:__________
一、选择题(每小题3分,共30分)
1.一次函数y=x-6的图象不经过点()
A.(6,0)B.(0,-6)C.(2,-4)D.(-6,0)
2.若点P(a,4-a)是第四象限的点,则a必须满足()
A.a<4 B.a>4 C.a<0 D.0<a<4
3.在△ABC中,∠A,∠B,∠C的度数之比为2:3:4,则∠B的度数为()
A.120°B.80°C.60°D.40°
4.如下图,为了估计湖泊岸边A,B两点间的距离,小刚同学在湖泊一侧选取一点O,测得OA =30米,OB=12米,则A,B间的距离不可能是()
A.25米B.37米C.17米D.38米
(第4题图)(第6题图)(第8题图)
5.下列命题中,是假命题的是()
A.三角形的外角大于与它不相邻的任何一个内角
B.能被2整除的数,末尾数字必是偶数
C.两直线平行,同旁内角互补
D.绝对值等于它本身的数是0
6.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如上图,在某平面直角坐标系中,
所在位置的坐标为(-3,1),所在位置的坐标为(2,-1),那么,所在位置的坐标为()
A.(0,1)B.(4,0)C.(-1,0)D.(0,-1)
7.对于一次函数y=-x+8,下列命题错误的是()
A.函数值随自变量的增大而减小
B.函数的图象经过第一、二、四象限
C .函数的图象向下平移4个单位长度得到y =-x +4的图象
D .函数的图象与x 轴的交点坐标是(0,8)
8. 如上图,直线y =kx +b 交坐标轴于A 、B 两点,则不等式kx +b <0的解集是( )
A .x >-2
B .x >3
C .x <-2
D .x <3
9.一次函数y =-kx -k 的图象可能是( )
10.如图,在△ABC 中,AD 是BC 边上的中线,点E 是AD 的中点,过点E 作垂线交BC 于点F ,已知BC =20,△ABD 的面积为24,则EF 的长为( )
A .1.2
B .2.4
C .3.6
D .4.8
二、填空题(每小题4分,共32分)
11.函数y =
3
x -中自变量x 的取值范围是________. 12.对于正比例函数1
m y mx -=,若y 的值随x 的值增大而减小,则m 的值为______.
13.已知△ABC 的三个顶点分别为A (2,-3),B (4,-2),C (5,0),现将△ABC 平移至△A′B′C′处,且A′坐标为(4,-1),则B′点的坐标为________.
14.一次函数y =-3x +6的图象与y 轴的交点坐标是_______. 15.根据如图中的程序,当输入x =2时,输出结果y =______.
16.将命题“等角对等边”改写成“如果…,那么…”的形式:_________________________. 17.如图,△ABC 中,点D 在BA 的延长线上,DE ∥BC ,如果∠BAC =70°,∠C =30°,那么∠BDE 的度数是_______.
(第17题图) (第18题图)
18.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y (千米)与行驶时间x (小时)的对应关系如图所示:下列结论:①甲乙两地相距600千米;②慢车的速度是60千米/小时;③两车相距300千米时,x =2;④慢车走400千米时快车已到达甲地.其中正确的是_______.(填写所有正确结论的序号)
三、解答题(共58分)
19.(8分)如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (0,3),B (-3,5),
C (-4,1).把△ABC 向右平移2个单位,再向下平移3个单位得到△A 1B 1C 1.
(1)请画出△A 1B 1C 1,并写出点A 1的坐标; (2)连接OC 、A 1A ,求四边形ACOA 1的面积.
20.(8分)若△ABC 中,∠B =100°,∠A 的度数为x ,∠C 的度数为y ,试写出y 与x 之间的函数关系式,并画出图象.
21.(10分)已知,a 、b 、c 为△ABC 的三边长,b 、c 满足()2
230b c -+-=,且a 为方程42a -=的解,求△ABC 的周长.
22.(10分)已知直线y=kx+b经过点A(3,4),B(-2,0).(1)求直线AB的解析式;
(2)若直线y=-x+2与直线AB相交于点C,求点C的坐标.
B
A C
-24
3
23.(10分)如图,BD是△ABC的角平分线,D E∥BC,交AB于点E,∠A=45°,∠BDC=60°.(1)求∠C的度数;
(2)求∠BED的度数.
24.(12分)某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.
(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;
(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少
元?
蚌埠第一实验学校2017-2018学年度第一学期期中测试答案
八年级数学
1.D
2.B
3.C
4.C
5.D
6.D
7.D 8.C 9.B 10.B
11.x ≥-5且x ≠312.-2 13.(6,0) 14.(0,6) 15.-1 16.如果有两个角相等,那么这两个角所对的边也相等 17.100° 18.①②④
19.解:(1)如图所示,点A 1的坐标为(2,0);(5分)
(2)四边形ACOA 1的面积为S △AOC +S △AOA 1=12AO ×4+12AO ·A 1O =12×3×4+1
2
×2×3=9.(8分)
20.解:∵△ABC 中,∠B =100°,∠A 的度数为x ,∠C 的度数为y ,(1分) ∴100+x +y =180,(3分) ∴y =80-x (0<x <80),(5分) 图象如图所示.(8分)
80
60402080604020
21.解:∵(b -2)2
+|c -3|=0, ∴b -2=0,c -3=0, 解得:b =2,c =3,(3分) ∵a 为方程|a -4|=2的解, ∴a -4=±2,解得:a =6或2,(5分) ∵a 、b 、c 为△ABC 的三边长,b +c <6, ∴a =6不合题意,舍去, ∴a =2,(8分)
∴△ABC 的周长为:2+2+3=7.(10分)
22.解:(1)根据题意,得
34
20
k b
k b
+=
⎧
⎨
-+=
⎩
,解得
4
5
8
5
k
b
⎧
=
⎪⎪
⎨
⎪=
⎪⎩
,(4分)
∴直线AB的解析式为
48
55
y x
=+;(5分)
(2)∵直线y=-x+2与直线AB相交于点C,
∴
48
55
2
y x
y x
⎧
=+
⎪
⎨
⎪=-+
⎩
,解得
2
9
16
9
x
y
⎧
=
⎪⎪
⎨
⎪=
⎪⎩
,(9分)
∴点C的坐标为(2
9
,
16
9
). (10分)
23.解:(1)∵∠BDC=∠ABD+∠A,
∴∠ABD=∠BDC-∠A=15°.
∵BD平分∠ABC,
∴∠ABC=2∠ABD=30°.(3分)
∵∠A+∠ABC+∠C=180°,
∴∠C=180°-∠A-∠ABC=105°.(5分)
(2)∵DE∥BC,
∴∠AED=∠ABC=30°.(7分)
∵∠BED+∠AED=180°,
∴∠BED=180°-∠AED=150°.(10分)
24.解:(1)由题意,得
y=550x+450(7-x),
化简,得y=100x+3150,
即y(元)与x(辆)之间的函数表达式是y=100x+3150;(4分)(2)由题意,得
60x+45(7-x)≥380,(6分)
解得,x≥13
3
.(8分)
∵y=100x+3150,
∴k=100>0,则y随着x的增大而增大,(9分)
∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),
即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.
(12分)。