2010年福建高考考试说明文科数学Ⅰ命题指导思想普通高等
- 格式:doc
- 大小:187.50 KB
- 文档页数:19
2010年福建省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•福建)若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()A.{x|2<x≤3}B.{x|x≥1}C.{x|2≤x<3} D.{x|x>2}【考点】交集及其运算.【分析】结合数轴直接求解.【解答】解:如图,故选A.【点评】本题考查集合的交运算,属容易题,注意结合数轴,注意等号.2.(5分)(2010•福建)计算1﹣2sin222.5°的结果等于()A.B.C.D.【考点】二倍角的余弦.【专题】三角函数的求值.【分析】利用二倍角公式把要求的式子化为cos45°,从而可得结果.【解答】解:由二倍角公式可得1﹣2sin222.5°=cos(2×22.5°)=cos45°=,故选B.【点评】本题主要考查二倍角公式的应用,属于基础题.3.(5分)(2010•福建)若一个底面是正三角形的三棱柱的正视图如图所示,其侧面积等于()A.B.2 C.2 D.6【考点】由三视图求面积、体积.【分析】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力.由图可知,棱柱的底面边为2,高为1,代入柱体体积公式易得答案.【解答】解:由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,∴底面是边长为2的等边三角形,故底面积S==,侧面积为3×2×1=6,故选D.【点评】根据三视图判断空间几何体的形状,进而求几何的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N棱锥(N值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.4.(5分)(2010•福建)i是虚数单位,等于()A.i B.﹣i C.1 D.﹣1【考点】复数代数形式的混合运算.【分析】复数的分子、分母化简,可得结果.【解答】解:=,故选C.【点评】本题考查复数的基本运算,考查计算能力.5.(5分)(2010•福建)设x,y∈R且,则z=x+2y的最小值等于()A.2 B.3 C.5 D.9【考点】简单线性规划的应用.【专题】压轴题.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数的最小值.【解答】解:约束条件,对应的平面区域如下图示:当直线Z=x+2y过点(1,1)时,z=x+2y取最小值3,故选B.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.6.(5分)(2010•福建)阅读如图所示的程序框图,运行相应的程序,输出的i值等于()A.2 B.3 C.4 D.5【考点】程序框图.【专题】图表型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S 的值,并输出满足条件S>11时,变量i的值.模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:a S i 是否继续循环循环前/0 1/第一圈 2 2 2 是第二圈8 10 3 是第三圈24 34 4 否此时i值为4故选C【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.7.(5分)(2010•福建)函数的零点个数为()A.3 B.2 C.1 D.0【考点】分段函数的解析式求法及其图象的作法.【分析】分段解方程,直接求出该函数的所有零点.由所得的个数选出正确选项.【解答】解:当x≤0时,令x2+2x﹣3=0解得x=﹣3;当x>0时,令﹣2+lnx=0解得x=100,所以已知函数有两个零点,故选:B.【点评】本题考查函数零点的概念,以及数形结合解决问题的方法,只要画出该函数的图象不难解答此题.8.(5分)(2010•福建)若向量=(x,3)(x∈R),则“x=4”是“||=5”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分又不必要条件【考点】向量的模.【分析】当x=4时能够推出|a|=5成立,反之不成立,所以是充分不必要条件.【解答】解:由x=4得=(4,3),所以||=5成立反之,由||=5可得x=±4 所以x=4不一定成立.故选A.【点评】本题考查平面向量和常用逻辑用语等基础知识.9.(5分)(2010•福建)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()A.91.5和91.5 B.91.5和92 C.91和91.5 D.92和92【考点】茎叶图;众数、中位数、平均数.【专题】图表型.【分析】根据茎叶图写出这组数据,把数据按照从大到小排列,最中间的一个或最中间两个数字的平均数就是中位数,平均数只要代入平均数的公式得到结果.【解答】解:由茎叶图可知:这组数据为87,89,90,91,92,93,94,96,所以其中位数为=91.5,平均数为(87+89+90+91+92+93+94+96)=91.5,故选A.【点评】本题考查茎叶图的基础知识,考查同学们的识图能力,考查中位数与平均数的求法.在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.10.(5分)(2010•福建)将函数f(x)=sin(ωx+φ)的图象向左平移个单位.若所得图象与原图象重合,则ω的值不可能等于()A.4 B.6 C.8 D.12【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题.【分析】由题意将函数f(x)=sin(ωx+φ)的图象向左平移个单位.若所得图象与原图象重合,说明是函数周期的整数倍,求出ω与k,的关系,然后判断选项.【解答】解:因为将函数f(x)=sin(ωx+φ)的图象向左平移个单位.若所得图象与原图象重合,所以是已知函数周期的整数倍,即k•=(k∈Z),解得ω=4k(k∈Z),A,C,D正确.故选B.【点评】本题考查三角函数的周期、图象变换等基础知识,是已知函数周期的整数倍,是本题解题关键.11.(5分)(2010•福建)若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2 B.3 C.6 D.8【考点】椭圆的标准方程;平面向量数量积的含义与物理意义.【专题】综合题;压轴题.【分析】先求出左焦点坐标F,设P(x0,y0),根据P(x0,y0)在椭圆上可得到x0、y0的关系式,表示出向量、,根据数量积的运算将x0、y0的关系式代入组成二次函数进而可确定答案.【解答】解:由题意,F(﹣1,0),设点P(x0,y0),则有,解得,因为,,所以=,此二次函数对应的抛物线的对称轴为x0=﹣2,因为﹣2≤x0≤2,所以当x0=2时,取得最大值,故选C.【点评】本题考查椭圆的方程、几何性质、平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力.12.(5分)(2010•福建)设非空集合S={x|m≤x≤n}满足:当x∈S时,有x2∈S.给出如下三个命题:①若m=1,则S={1};②若m=﹣,则≤n≤1;③若n=,则﹣≤m≤0.其中正确命题的个数是()A.0 B.1 C.2 D.3【考点】元素与集合关系的判断;集合的确定性、互异性、无序性.【专题】集合.【分析】根据题中条件:“当x∈S时,有x2∈S”对三个命题一一进行验证即可:对于①m=1,得,②,则对于③若,则,最后解出不等式,根据解出的结果与四个命题的结论对照,即可得出正确结果有几个.【解答】解:由定义设非空集合S={x|m≤x≤n}满足:当x∈S时,有x2∈S知,符合定义的参数m的值一定大于等于1或小于等于0,惟如此才能保证m∈S时,有m2∈S即m2≥m,符合条件的n的值一定大于等于0,小于等于1,惟如此才能保证n∈S时,有n2∈S即n2≤n,正对各个命题进行判断:对于①m=1,m2=1∈S故必有可得n=1,S={1},②m=﹣,m2=∈S则解之可得≤n≤1;对于③若n=,则解之可得﹣≤m≤0,所以正确命题有3个.故选D【点评】本小题考查集合的运算及不等式和不等式组的解法.属于创新题,解答的关键是对新定义的概念的正确理解,列出不等关系转化为不等式问题解决.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2010•福建)若双曲线﹣=1(b>0)的渐近线方程式为y=,则b等于 1 .【考点】双曲线的简单性质;函数解析式的求解及常用方法.【专题】计算题.【分析】根据双曲线的性质求得渐近线方程的表达式求得b.【解答】解:由双曲线方程可得渐近线方程为y=±,又双曲线的渐近线方程式为y=,∴,解得b=1.故答案为1【点评】本小题考查双曲线的几何性质、待定系数法,属基础题.14.(4分)(2010•福建)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于60 .【考点】频率分布直方图.【专题】计算题.【分析】根据比例关系设出各组的频率,在频率分布表中,频数的和等于样本容量,频率的和等于1,求出前三组的频率,再频数和建立等量关系即可.【解答】解:设第一组至第六组数据的频率分别为2x,3x,4x,6x,4x,x,则2x+3x+4x+6x+4x+x=1,解得,所以前三组数据的频率分别是,故前三组数据的频数之和等于=27,解得n=60.故答案为60.【点评】本小题考查频率分布直方图的基础知识,熟练基本公式是解答好本题的关键,属于基础题.15.(4分)(2010•福建)对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集,给出平面上4个点集的图形如下(阴影区域及其边界):其中为凸集的是②③(写出所有凸集相应图形的序号).【考点】元素与集合关系的判断.【专题】新定义;集合.【分析】由凸集的定义,可取一些线段试一下,若有不在图形内部的点即可排除.【解答】解:①中取最左边的点和最右边的点的连线,不在集合中,故不为凸集;④中取两圆的公切线,不在集合中,故不为凸集;②③显然符合.故答案为:②③.【点评】本题为新定义题,正确理解定义是解决问题的关键,难度不大.16.(4分)(2010•福建)观察下列等式:①cos2α=2cos2α﹣1;②cos4α=8cos4α﹣8cos2α+1;③cos6α=32cos6α﹣48cos4α+18cos2α﹣1;④cos8α=128cos8α﹣256cos6α+160cos4α﹣32cos2α+1;⑤cos10α=mcos10α﹣1280cos8α+1120cos6α+ncos4α+pcos2α﹣1;可以推测,m﹣n+p= 962 .【考点】类比推理.【专题】压轴题;规律型.【分析】本小题考查三角变换、类比推理等基础知识,考查同学们的推理能力等.观察等式左边的α的系数,等式右边m,n,p的变化趋势,我们不难归纳出三个数的变化规律,进而得到结论.【解答】解:因为2=21,8=23,32=25,…,128=27所以m=29=512;每一行倒数第二项正负交替出现,1×2,﹣2×4,3×6,﹣4×8,5×10,可推算出p=50,然后根据每行的系数和都为1,可得n=﹣400.所以m﹣n+p=962.故答案为:962.【点评】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).三、解答题(共6小题,满分74分)17.(12分)(2010•福建)数列{a n}中,a1=,前n项和S n满足S n+1﹣S n=()n+1(n∈N*).(Ⅰ)求数列{a n}的通项公式a n以及前n项和S n;(Ⅱ)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.【考点】等比数列的通项公式;等比数列的前n项和;等差关系的确定.【专题】计算题.【分析】(Ⅰ)根据a n+1=S n+1﹣S n求得a n+1进而根据a1求得数列{a n}的通项公式,根据等比数列的求和公式求得前n项的和.(Ⅱ)根据求得(1)的前n项和的公式,求得S1,S2,S3,进而根据等差中项的性质求得t.【解答】解:(Ⅰ)由S n+1﹣S n=()n+1得(n∈N*);又,故(n∈N*)从而(n∈N*).(Ⅱ)由(Ⅰ)可得,,.从而由S1,t(S1+S2),3(S2+S3)成等差数列可得:,解得t=2.【点评】本题主要考查了等比数列的通项公式和求和公式.属基础题.18.(12分)(2010•福建)设平面向量=(m,1),=(2,n),其中m,n∈{1,2,3,4}.(Ⅰ)请列出有序数组(m,n)的所有可能结果;(Ⅱ)记“使得m⊥(m﹣n)成立的(m,n)”为事件A,求事件A发生的概率.【考点】古典概型及其概率计算公式;计数原理的应用.【专题】计算题.【分析】(I)按照第一个数字从小变大的顺序,列举出所有的事件,共有16种结果.(II)根据向量垂直的充要条件,列出关于m,n的关系式.把关系式整理成最简单的形式,根据所给的集合中的元素,列举出所有满足条件的事件,根据古典概型概率公式得到结果.【解答】解:(I)有序数对(m,n)的所有可能结果是:(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共有16个,(II)∵m⊥(m﹣n),∴m2﹣2m+1﹣n=0,∴n=(m﹣1)2∵m,n都是集合{1,2,3,4}的元素.∴事件A包含的基本事件为(2,1)和(3,4),共有2个,又基本事件数是16,∴所求的概率是P==【点评】本题主要考查概率古典概型,考查向量垂直的充要条件,考查运算求解能力、应用意识,是一个比较好的题目,这种题目值得同学们仔细研究.不要没有规律的胡乱写出来,防止漏掉.19.(12分)(2010•福建)已知抛物线C:y2=2px(p>0)过点A(1,﹣2).(Ⅰ)求抛物线C的方程,并求其准线方程;(Ⅱ)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;抛物线的简单性质.【专题】计算题.【分析】(I)将(1,﹣2)代入抛物线方程求得p,则抛物线方程可得,进而根据抛物线的性质求得其准线方程.(II)先假设存在符合题意的直线,设出其方程,与抛物线方程联立,根据直线与抛物线方程有公共点,求得t 的范围,利用直线AO与L的距离,求得t,则直线l的方程可得.【解答】解:(I)将(1,﹣2)代入抛物线方程y2=2px,得4=2p,p=2∴抛物线C的方程为:y2=4x,其准线方程为x=﹣1(II)假设存在符合题意的直线l,其方程为y=﹣2x+t,由得y2+2y﹣2t=0,∵直线l与抛物线有公共点,∴△=4+8t≥0,解得t≥﹣又∵直线OA与L的距离d==,求得t=±1∵t≥﹣∴t=1∴符合题意的直线l存在,方程为2x+y﹣1=0【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.20.(12分)(2010•福建)如图,在长方体ABCD﹣A1B1C1D1中,E、H分别是棱A1B1,D1C1上的点(点E 与B1不重合),且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G(Ⅰ)证明:AD∥平面EFGH(Ⅱ)设AB=2AA1=2a,在长方体ABCD﹣A1B1C1D1内随机选取一点,记该点取自于几何体A1ABFE﹣D1DCGH 内的概率为p,当点E、F分别在棱A1B1,B1B上运动且满足EF=a时,求p的最小值.【考点】直线与平面平行的判定;几何概型.【专题】综合题;空间位置关系与距离;概率与统计.【分析】(Ⅰ)证明AD∥平面EFGH,只需证明AD∥EH;(Ⅱ)根据几何槪型的概率公式,结合基本不等式求出取自于几何体A1ABFE﹣D1DCGH内的概率为p的最小值,即可求出概率.【解答】(Ⅰ)证明:∵AD∥A1D1,EH∥A1D1,∴AD∥EH,∵AD⊄平面EFGH,EH⊂平面EFGH∴AD∥平面EFGH;(Ⅱ)解:根据几何槪型的概率公式可知,点取自于几何体A1ABFE﹣D1DCGH内的概率为P=,∴若p最小,则只需几何体A1ABFE﹣D1DCGH的体积最小,即五边形A1ABFE的面积最小,等价为三角形EFB1的面积最大,∵EF=a,∴=a2,则S△B1EF=≤(B1E2+B1F2)=,当且仅当B1F=B1E时取等号,此时五边形A1ABFE的面积最小为2a2﹣=,则取自于几何体A1ABFE﹣D1DCGH内的概率为P==.【点评】本题主要考查线面平行,考查几何槪型的概率计算,根据体积槪型结合基本不等式求出最值是解决本题的关键.21.(12分)(2010•福建)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;(Ⅲ)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.【考点】解三角形的实际应用.【专题】综合题;压轴题.【分析】(1)先假设相遇时小艇的航行距离为S,根据余弦定理可得到关系式S=整理后运用二次函数的性质可确定答案.(2)先假设小艇与轮船在某处相遇,根据余弦定理可得到(vt)2=202+(30t)2﹣2•20•30t•cos(90°﹣30°),再由t的范围可求得v的最小值.(3)根据(2)中v与t的关系式,设然后代入关系式整理成400u2﹣600u+900﹣v2=0,将问题等价于方程有两个不等正根的问题,进而得解.【解答】解:(1)设相遇时小艇的航行距离为S海里,则S===故当t=时,,v=即小艇以30海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在某处相遇由题意可得:(vt)2=202+(30t)2﹣2•20•30t•cos(90°﹣30°)化简得:=400由于0<t,即所以当时,v取得最小值10即小艇航行速度的最小值为10海里/小时(3)由(2)知:,设(u>0)于是400u2﹣600u+900﹣v2=0①小艇总能有两种不同的航行方向与轮船相遇,等价于方程①应有两个不等正根,即,解得15<v<30所以,v 的取值范围是(15,30)【点评】本题主要考查解三角形、二次函数等基础知识,考查推理论证能力,抽象概括能力、运算求解能力、应用意识,考查函数与方程思想、数形结合思想、化归思想.22.(14分)(2010•福建)中小学生的视力状况受到全社会的广泛关注,某市有关部门对全市3万名高中生的视力状况进行一次抽样调查统计,所得到的有关数据绘制成频率分布直方图,如图,从左至右五个小组的频率之比依次是2:4:9:7:3,第五小组的频数是36.(1)本次调查共抽测了300 名学生;(2)本次调查抽测的数据的中位数应在第三小组;(3)如果视力在4.9﹣5.1(含4.9、5.1)均属正常,那么全市高中生视力正常的约有8400 人.【考点】频率分布直方图.【专题】图表型.【分析】(1)先求出每一份有多少人,36÷3=12(人),然后求出总人数12×(2+4+9+7+3)=300(人);(2)根据中位数的定义,第150和第151个同学视力的平均数是这组数据的中位数,通过计算落在第三小组;(3)先算出300人中视力正常的有多少人,再计算全市高中生视力正常的约有多少人.【解答】解:(1)36÷=300(名)答:本次调查共抽测了300名学生.(2)中位数在第三小组;∵这300个数据的中位数是从小到大排列后的第150和第151个数的平均数,而第150和第151个数位于第三小组∴中位数在第三小组.(3)∵视力在4.9﹣5.1范围内的人有84人,×30000=8400(人)答:全市高中生视力正常的约有8400人.故答案为:300;三;8400.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.。
福建省高考考试说明(文科数学)根据普通高等学校对文科学生数学素养的要求,按照既保证与全国普通高校招生统一考试的要求基本一致,又有利于福建省实施普通高中数学新课程的原则,参照教育部制订的《普通高中数学课程标准(实验)》、《普通高等学校招生全国统一考试考试大纲(课程标准实验版)》和省教育厅颁布的《福建省普通高中新课程选修Ⅰ课程开设指导意见(试行)》、《福建省普通高中新课程教学要求(数学)》,结合福建省普通高中数学教学实际,确定福建省高考文科数学考试内容为《普通高中数学课程标准(实验)》必修课程和选修课程系列1的内容。
1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系;②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
(2)集合间的基本关系:①理解集合之间包含与相等的含义,能识别给定集合的子集;②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用韦恩(Venn)图表达集合的关系及运算。
2.函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义。
⑤会运用函数图象理解和研究函数的性质。
(2)指数函数①了解指数函数模型的实际背景。
②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。
④知道指数函数是一类重要的函数模型。
(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
福建省高考各学科试卷命题说明2010年福建省高考各学科试卷命题说明_ 其他政策文件解读_ 福建省教育厅2010年是我省进入高中新课程后的第二届高考,为了有利于高校招生,有利于中学实施素质教育,体现高中新课程的理念,命题组遵循教育部《考试大纲》和我省《考试说明》的要求,并结合普通高中教学实际进行命题。
今年试卷体现了“以稳为主,稳中有变,稳中求新,平稳推进”的精神,试题凸显新课程理念,注重科学性、公平性,重视基础性主干知识,强调学科能力与素养,关注学科知识与社会、生产、生活的联系。
语文:突出语文素养,关注教学导向(福建省语文学科高考命题组)一、突出能力立意高中新课程强调提升学生的语文素养,而语文素养的核心是思维力。
今年作文题采用了材料作文,这则材料可引发考生从多角度进行思考,有利于突出考查学生的思辨能力和发散性思维。
“思辨能力”是学生作文(特别是议论文)亟待加强的写作能力。
这种命题方式能有效地规避“套作”的现象。
“语言运用”部分,所选材料是我国与欧美国家之间的节日文化的交融,引导学生关注生活、关注文化。
材料可引发考生从多角度进行思考,形成自己的观点;试题要求用150字加以阐述,注重考查思维和表达能力。
文言文阅读部分设置了“内容信息筛选”题,这种题型难度不大,但要求考生从总体上把握文本的内容,根据需要对信息进行筛选和整合,这种“信息阅读”能力(包含论述类文章阅读、科普文章阅读)是信息社会中一种重要的能力。
二、体现选择性和公平性《考试说明》确定了以文学类文本和实用类文本为选考内容。
这样的设置是遵循教育部颁发的《考试大纲》,体现的是高中教育的选择性。
我省今年语文卷的文学类文本为林斤澜的散文《春风》,实用类文本为王庆其的科普文章《“天人合一”的医学模式》,两篇文章内容不同、体裁迥异,分别考查考生的文学素养和科学素养,适应不同学习兴趣考生的选择。
具体设题的考查点、难度值都努力做到平行设置,保证了选考内容的选择性和公平性。
2010年普通高等学校招生全国统一考试福建省理科综合考试说明Ⅰ.命题指导思想普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试。
2010年福建省理科综合试卷应以教育部颁布的《普通高中课程标准(实验)》(物理、化学、生物)、《普通高等学校招生全国统一考试大纲(理科·课程标准实验·2010年版)》,以及福建省教育厅颁布的《福建省普通高中新课程教学要求(试行)》(物理、化学、生物)为指导,以本《考试说明》为依据,并结合我省普通高中新课程教学实际命题。
命题应有利于高校科学公正地选拔人才,有利于推进普通高中实施素质教育。
命题应体现普通高中新课程的基本理念,体现对知识与技能、过程与方法、情感态度与价值观等课程目标的要求,力求稳步推进,适度创新。
命题应遵循以下原则:1.以能力测试为主导,关注学生的发展潜能。
在考查考生的基础知识、基本技能的基础上,注重对学科能力和学科思想、方法应用的考查,重视考查考生的实践能力和创新意识,试题适度体现探究性与开放性。
2.坚持理论联系实际,关注科学与技术、经济、社会的联系,关注学科知识在生产、生活、科技中的应用,关注自然、社会与学科发展相关的热点问题,体现可持续发展要求。
3.关注考生的生活经验、学习特点和认知水平,关注考生的不同学习需求和个性发展潜能。
设置选考内容,不同选考模块试题之间应有相当的难度值,体现公平性。
4.试卷结构合理、规范,试题内容科学、严谨。
试卷应有较高的信度、效度,必要的区分度和适当的难度,试卷命制应保证恰当的阅读量、思维量、答题量。
试题答案科学、准确,评分标准合理、公正。
Ⅱ.考试形式与试卷结构一、答卷方式笔试,闭卷。
试卷和答题卡分卷,选择题答案填涂在答题卡的指定位置上,非选择题答案填写在答题卡的指定位置上。
二、考试时间150分钟。
三、试卷结构卷别第Ⅰ卷第Ⅱ卷试卷题量及分值题型选择题(必考)非选择题必考部分选考部分学科生物化学物理物理化学生物物理化学生物题量5题7题6题4题3题2题卷面2题选答1题卷面2题选答1题卷面1题作答1题卷面总题量32题,考生需作答30题(其中物理共11题、化学共11题、生物共8题)。
2010年福建高考数学试题(文史类)参考答案一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.1.A 2.B 3.D 4.C 5.B 6.C7.B 8.A 9.A 10.B 11.C 12.D二、填空题:本大题考查基础知识和基本运算. 每小题4分,满分16分. 13.1 14.60 15.②③ 16.962三、解答题:本大题共6小题;共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查数列、等差数列、等比数列等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想.满分12分.解:(Ⅰ)由S n+1 -S n =(13)n + 1得111()3n n a ++= (n ∈N *); 又113a =,故1()3n n a =(n ∈N *) 从而11[1()]1133[1()]12313n n n s ⨯-==--(n ∈N *). (Ⅱ)由(Ⅰ)可得113S =,249S =,31327S =. 从而由S 1,t (S 1+ S 2),3(S 2+ S 3)成等差数列可得:1413143()2()392739t +⨯+=⨯+,解得t=2. 18.本小题主要考查概率、平面向量等基础知识,考查运算求解能力、应用意识,考查化归与转化思想、必然与或然思想.满分12分.解:(Ⅰ)有序数组(m,n )的吧所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.(Ⅱ)由()m m n a a b ⊥-得221m m n o -+-=,即2(1)n m =-.由于,m n ∈{1,2,3,4},故事件A 包含的基本条件为(2,1)和(3,4),共2个.又基本事件的总数为16,故所求的概率21()168P A ==. 19.本小题主要考查直线、抛物线等基础知识,考查推理论证能力、运算求解能力,考查函数方程思想、数形结合思想、化归与转化思想、分类与整合思想。
2010年福建省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)4.(5分)(2010•福建)i是虚数单位,等于()5.(5分)(2010•福建)设x,y∈R且,则z=x+2y的最小值等于()7.(5分)(2010•福建)函数的零点个数为()8.(5分)(2010•福建)若向量=(x,3)(x∈R),则“x=4”是“|a|=5”的()10.(5分)(2010•福建)将函数f(x)=sin(ωx+φ)的图象向左平移个单位.若所得图象与原图象重合,则11.(5分)(2010•福建)若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则则S={1};②若m=﹣,则≤n≤1;③若n=,则﹣≤m≤0.其中正确命题的个数是()13.(4分)(2010•福建)若双曲线﹣=1(b>0)的渐近线方程式为y=,则b等于_________.14.(4分)(2010•福建)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于_________.15.(4分)(2010•福建)对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集,给出平面上4个点集的图形如下(阴影区域及其边界):其中为凸集的是_________(写出所有凸集相应图形的序号).16.(4分)(2010•福建)观察下列等式:①cos2α=2cos2α﹣1;②cos4α=8cos4α﹣8cos2α+1;③cos6α=32cos6α﹣48cos4α+18cos2α﹣1;④cos8α=128cos8α﹣256cos6α+160cos4α﹣32cos2α+1;⑤cos10α=mcos10α﹣1280cos8α+1120cos6α+ncos4α+pcos2α﹣1;可以推测,m﹣n+p=_________.三、解答题(共6小题,满分74分)17.(12分)(2010•福建)数列{a n}中,a1=,前n项和S n满足S n+1﹣S n=()n+1(n∈)N*.(Ⅰ)求数列{a n}的通项公式a n以及前n项和S n;(Ⅱ)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.18.(12分)(2010•福建)设平面向量=(m,1),=(2,n),其中m,n∈{1,2,3,4}.(Ⅰ)请列出有序数组(m,n)的所有可能结果;(Ⅱ)记“使得m⊥(m﹣n)成立的(m,n)”为事件A,求事件A发生的概率.19.(12分)(2010•福建)已知抛物线C:y2=2px(p>0)过点A(1,﹣2).(I)求抛物线C的方程,并求其准线方程;(II)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由.20.(12分)(2010•福建)已知集合U={1,2,3,4,5,6},A={2,3,4},B={4,5,6},则A∩(C U B)=_________.21.(12分)(2010•福建)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;(Ⅲ)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.22.(14分)(2010•福建)中小学生的视力状况受到全社会的广泛关注,某市有关部门对全市3万名高中生的视力状况进行一次抽样调查统计,所得到的有关数据绘制成频率分布直方图,如图,从左至右五个小组的频率之比依次是2:4:9:7:3,第五小组的频数是36.(1)本次调查共抽测了_________名学生;(2)本次调查抽测的数据的中位数应在第_________小组;(3)如果视力在4.9﹣5.1(含4.9、5.1)均属正常,那么全市高中生视力正常的约有_________人.2010年福建省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)=∴底面积为=24.(5分)(2010•福建)i是虚数单位,等于()解:5.(5分)(2010•福建)设x,y∈R且,则z=x+2y的最小值等于()根据已知的约束条件解:约束条件7.(5分)(2010•福建)函数的零点个数为()8.(5分)(2010•福建)若向量=(x,3)(x∈R),则“x=4”是“|a|=5”的()得|||=5所以其中位数为=91.5平均数为(10.(5分)(2010•福建)将函数f(x)=sin(ωx+φ)的图象向左平移个单位.若所得图象与原图象重合,则)的图象向左平移个单位.若所得图象与原图象重合,说明是函数)的图象向左平移个单位.若所得图象与原图象重合,所以=本题考查三角函数的周期、图象变换等基础知识,11.(5分)(2010•福建)若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的关系式,表示出向量,根据数量积的运算将,则有,解得,因为,所以==时,12.(5分)(2010•福建)设非空集合S={x|m≤x≤n}满足:当x∈S时,有x则S={1};②若m=﹣,则≤n≤1;③若n=,则﹣≤m≤0.其中正确命题的个数是()②则若,最后解出不等式,根据解出的结果与四个命题的结论对照,即可﹣∈则解之可得,则解之可得﹣13.(4分)(2010•福建)若双曲线﹣=1(b>0)的渐近线方程式为y=,则b等于1.±y=14.(4分)(2010•福建)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据解得所以前三组数据的频率分别是,故前三组数据的频数之和等于=27的凸集,给出平面上4个点集的图形如下(阴影区域及其边界):其中为凸集的是②③(写出所有凸集相①cos2α=2cos2α﹣1;②cos4α=8cos4α﹣8cos2α+1;③cos6α=32cos6α﹣48cos4α+18cos2α﹣1;④cos8α=128cos8α﹣256cos6α+160cos4α﹣32cos2α+1;⑤cos10α=mcos10α﹣1280cos8α+1120cos6α+ncos4α+pcos2α﹣1;17.(12分)(2010•福建)数列{a n}中,a1=,前n项和S n满足S n+1﹣S n=()n+1(n∈)N*.(Ⅰ)求数列{a n}的通项公式a n以及前n项和S n;)得,故(从而(Ⅱ)由(Ⅰ)可得,,解得18.(12分)(2010•福建)设平面向量=(m,1),=(2,n),其中m,n∈{1,2,3,4}.(Ⅰ)请列出有序数组(m,n)的所有可能结果;(Ⅱ)记“使得m⊥(m﹣n)成立的(m,n)”为事件A,求事件A发生的概率.m⊥(m﹣)=19.(12分)(2010•福建)已知抛物线C:y=2px(p>0)过点A(1,﹣2).(I)求抛物线C的方程,并求其准线方程;(II)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由.得﹣=,求得20.(12分)(2010•福建)已知集合U={1,2,3,4,5,6},A={2,3,4},B={4,5,6},则A∩(C U B)={2,位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;(Ⅲ)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,S=的关系式,设S==t=时,30化简得:=400t,即所以当10海里)知:,设,解得15,力状况进行一次抽样调查统计,所得到的有关数据绘制成频率分布直方图,如图,从左至右五个小组的频率之比依次是2:4:9:7:3,第五小组的频数是36.(1)本次调查共抽测了300名学生;(2)本次调查抽测的数据的中位数应在第三小组;÷×。
2010年高考福建数学试题(文史类解析)第I 卷(选择题 共60分)一、选择题:本大题共12小题。
每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}A=x|1x 3≤≤,{}B=x|x>2,则A B ⋂等于( )A .{}x|2<x 3≤B .{}x|x 1≥C .{}x|2x<3≤D .{}x|x>2【答案】A【解析】A B ⋂={}x|1x 3≤≤⋂{}x|x>2={}x|2<x 3≤,故选A . 【命题意图】本题考查集合的交运算,属容易题.2.计算12sin 22.5-的结果等于( )A .12B.2 C.3 D.2 【答案】B【解析】原式=2cos 45=,故选B . 【命题意图】本题三角变换中的二倍角公式,考查特殊角的三角函数值.3.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( )A B .2 C .D .6【答案】D【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为244⨯=3216⨯⨯=,选D . 【命题意图】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力。
4.i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1 D .-1 【答案】C【解析】41i ()1-i+=244(1i)[]=i =12+,故选C . 【命题意图】本题考查复数的基本运算,考查同学们的计算能力.5。
若x ,y ∈R ,且⎪⎩⎪⎨⎧≥≥+-≥,,032,1x y y x x ,则z=x+2y 的最小值等于 ( )A.2 B .3 C.5 D.96 . 阅读右图所示的程序框图,运行相应的程序,输出的i 值等于( )A.2B.3 C .4 D.57.函数2x +2x-3,x 0x)=-2+ln x,x>0f ⎧≤⎨⎩(的零点个数为 ( )A .3B .2C .1D .0【答案】B【解析】当0x ≤时,令2230x x +-=解得3x =-;当0x >时,令2ln 0x -+=解得100x =,所以已知函数有两个零点,选C 。
2010年福建省高考文科综合考试说明(文科·课程标准实验版)2010年普通高等学校招生全国统一考试福建省文科综合考试说明(文科·课程标准实验版)Ⅰ.命题指导思想与原则(一)指导思想普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。
高考应具有较高的信度、效度,必要的区分度和适当的难度。
高考文科综合试卷必须依据高考性质和普通高中新课程的要求,在考查考生对所学相关课程的基础知识、基本技能的掌握程度的基础上,注重考查考生运用所学知识分析解决实际问题的能力,全面反映知识与技能、过程与方法、情感态度与价值观的课程目标。
(二)命题原则高考文科综合能力测试命题必须根据高校选拔新生的需要和普通高中深入实施新课程、推进素质教育的要求进行,并遵循以下原则:1.思想性:反映加强思想道德教育、民族精神教育和科学的世界观、人生观、价值观教育的要求,促进考生形成正确的情感、态度、价值观。
2.科学性:符合考试说明的要求,做到试卷结构合理、规范;试题内容科学、严谨,文字材料简洁、明确,参考答案合理、准确,评分标准客观、公正;试题的难度要求适当,思考量、阅读量和书写量适中,具有较高的信度、效度和一定的区分度;在注重基础的同时,突出学科思想方法,关注考生的发展潜力。
3.时代性:在考试内容选择、试题形式设计和答题要求确定上,既体现学科特点,重点考查考生运用所学知识分析解决实际问题的能力,又反映时代特征,关注社会热点,关注社会生产、科技发展的状况,关注人类面临的重大问题。
4.人文性:落实素质教育要求,关注考生全面、和谐、健康的发展;关注优秀民族文化成果,重视考生人文素养和人文精神考核;尊重考生的学习特点和认知水平,贴近考生。
5.实践性:加强与社会实践和实际生活的联系,适当探索试题的开放性与探究性,考查考生的实践能力和创新精神,引导考生提高参与社会实际生活的能力。
6.选择性:根据普通高中新课程遵循共同基础与多样选择相统一的原则,尊重考生学习需求和发展方向的差异,设置选修模块的选答题,鼓励和促进考生个性化发展。
2010年福建省高考考试说明(文科数学)Ⅰ. 命题指导思想普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试。
2010年福建省高考数学(文科)的命题应以教育部颁布的《普通高中数学课程标准(实验)》、《2010年普通高等学校招生全国统一考试大纲(课程标准实验版·文科数学)》、《福建省普通高中新课程教学要求(数学)》为指导,以《2010年普通高等学校招生全国统一考试福建省数学考试说明》(文科课程标准实验版)为依据,并结合福建省普通高中数学教学的实际进行。
命题应有利于高校科学公正地选拔人才,有利于推进普通高中新课程,实施素质教育。
命题应体现《普通高中数学课程标准(实验)》的理念,体现对知识与技能、过程与方法、情感态度与价值观等目标的要求,坚持能力立意,注重考查数学基础知识、基本技能和基本思想,着重考查考生的数学素养和对数学本质的理解水平,以及进入高等学校继续学习的潜能。
命题应遵循以下命题原则:一、贯彻新课程理念,促进素质教育的有效实施命题要立足于《普通高中数学课程标准(实验)》,体现普通高中新课程的理念,准确理解和把握新课程标准的内涵与要求,考查对基础知识、基本技能的掌握程度和运用所学知识分析问题、解决问题的能力。
重视数学素养的考查,关注科学技术和社会经济的发展,注重时代性和实践性,有利于高校科学公正地选拔人才;有利于激发学生学习数学的兴趣,促进素质教育的实施;有利于促进学生学习方式的转变,发挥高考命题对中学数学教学的正确导向作用,扎实推进福建省普通高中新课程的顺利实施。
二、强化基础知识,注重试卷的整体设计考查考生对基础知识的掌握程度,是数学高考的重要目标之一。
对数学基础知识的考查,要求既全面,又突出重点。
对于支撑数学知识体系的主干知识——函数与导数、数列、三角函数、立体几何、解析几何、概率与统计,要占有较大的比例,构成数学试卷的主体。
对数学知识的考查要求全面,但不刻意追求知识点的百分比、知识内容的覆盖面,而是强调试题的综合性,注重学科的内在联系和知识的综合。
高考命题应从学科整体意义的高度去考虑问题,强调知识之间的交叉、渗透和综合,体现综合性,以检验考生是否具备一个有序的网络化的知识体系,并能从中提取相关的信息,有效、灵活地解决问题。
命题应继承和发扬福建省自行命题的成果和经验,在保持整体稳定的前提下,适度创新,注重试题的多样性和选择性。
命题应科学设置探究性和开放性试题,体现对不同层次的考生的选拔。
试卷应具有较高的信度、效度和必要的区分度以及适当的难度。
鉴于福建省新课程教材使用的多样性,命题务必充分体现公平性,试题必须适用于不同版本的教材。
试题可以是取材于教材或课外参考资料中经过实质性改造后的问题,但切忌照搬任何教材或课外参考资料的原题或未经实质性改造过的题目。
所设置的试题,特别是区分学生学习能力的把关试题应当关注解法的多样性,充分尊重学生在学习数学方面的差异,力求使得不同思维方式、思维层次的学生都能得到科学的评价。
整份试卷的设计应合理,注重整体效应。
三、淡化特殊技巧,强调数学思想和方法数学思想和方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中。
因此,对于数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想、方法的理解和掌握程度。
考查时,要从学科整体意义和思想含义上立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度。
一般认为,中学数学基本思想是指渗透在中学数学知识与方法中具有普遍适应性的本质思想。
中学数学涉及的数学思想主要有:函数与方程思想,数形结合思想,分类与整合思想,化归与转化思想,特殊与一般思想,有限与无限思想,或然与必然思想等。
数学基本方法主要有:待定系数法、换元法、配方法、割补法等,数学逻辑方法或思维方法主要有:分析与综合、归纳与演绎、比较与类比、具体与抽象等。
它们是理解、思考、分析与解决数学问题的普通方法,对数学思想和方法的考查要结合数学知识多层次进行。
四、强调能力立意,突出分析和解决问题能力“以能力立意命题”是数学的学科特点和考试目标所决定的。
高考数学科考试的重点是考查运用知识分析问题和解决问题的能力,因此命题中应尽量避免编制刻板、繁难和偏怪的试题,避免编制死记硬背的内容和繁琐计算的试题,力图通过数学科的考试,不仅考查考生数学知识的积累是否达到进入高等学校学习的基本水平,而且要以数学知识为载体,测量考生将知识迁移到不同情境的能力,从而检测考生已有的和潜在的学习能力。
命题应突出能力立意,对知识的考查侧重于理解和应用,力求突破固定的解答模式,要求考生抓住问题的实质,对试题提供的信息进行合理地分检、组合、加工,寻找解决问题的办法。
高考对能力的考查,应以抽象概括能力、推理论证能力为重点,全面考查各种能力,强调综合性、应用性,切合考生实际。
运算求解能力是推理论证能力和运算技能的结合,它包括数的运算、式的运算;包括精算、近似计算与估算。
对考生运算求解能力的考查主要是以含字母的式的运算为主,同时要兼顾对算理和推理论证能力的考查。
空间想象能力是对空间形式的观察、分析、抽象的能力,图形的处理与图形的变换都要注意与推理相结合。
数据处理能力主要是指能对收集到的相关数据,采用适当的方法进行整理、归纳、分析、解决问题。
分析问题和解决问题的能力是上述几种基本数学能力的综合体现,对数学能力的考查要以数学基础知识、数学思想和方法为基础,加强思维品质的考查。
五、强化应用意识,关注应用能力加强应用意识的培养与考查是时代的需要,是教育改革的需要,同时也是数学科的特点所决定的。
应用性问题主要是考查数学知识的实际应用。
应用题的设计应贴近生活,联系实际,具有强烈的现实意义。
应用问题考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决。
命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要切合福建省中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考生自觉地置身于现实社会的大环境,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识。
六、提倡开放探索,关注创新意识高考作为选拔性考试,应该偏重于能力测验,特别是能力倾向测验,适当考查考生在未来的学习或工作中是否具有创新意识。
因此,高考中可适当设置开放性、探索性试题,考查创新意识和探究精神。
考查创新意识的问题应立足于中学数学,以中学数学的基础知识为基本素材,考查学生创造性地应用知识分析问题、解决问题的能力。
考查创新意识的创新性试题可重点体现在情景、设问等方面。
在设计考查创新意识的试题时,一方面,要积极探索,大胆实践;另一方面,应进一步研究试题的稳定性与创新性的关系,处理好试题创新与试题难度的关系,做到“新题不难、不怪”。
七、体现层次要求,控制试卷难度高考在考试目的、考试性质、考试内容和考试要求方面均不同于数学竞赛和普通高中学生学业基础会考。
高考是要选拔部分合格高中毕业生升入高等院校深造,命题时以知识为基础,多层次、多角度考查各种能力,试卷难度要适中,既要使一般考生都能得到基本分,又要使优秀学生的水平得以充分显现。
根据福建省高考的实际情况,整卷难度值应控制在0.6左右。
试卷中各个试题的难度值一般控制在0.2~0.8之间,整份试卷中各种难度的试题分数的分布也应该适当。
每种题型中都应编拟一些较易试题,使大部分考生能得到一定的基本分;每种题型中也应编拟一些有一定难度的试题,以实现选拔的目的。
Ⅱ. 考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式。
考试时间为120分钟,全卷满分150分,考试不使用计算器。
二、试卷结构考试内容为《普通高中数学课程标准(实验)》的必修课程与选修课程系列1的内容。
试卷包括第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为12个选择题,第Ⅱ卷为非选择题,由4个填空题和6个解答题组成。
选择题共12题,每题5分,共计60分;填空题共4题,每题4分,共计16分;解答题共6题,共计74分。
选择题为四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答题应写出文字说明、演算步骤或推证过程。
试卷应由容易题、中等题和难题组成,难度值在0.7以上的试题为容易题,难度值在0.4~0.7的试题为中等题,难度值在0.4以下的试题为难题,易、中、难试题的比例约为4:4:2,全卷难度值控制在0.6左右。
Ⅳ. 考试内容一、考试内容及要求根据普通高等学校对文科学生数学素养的要求,按照既保证与全国普通高校招生统一考试的要求基本一致,又有利于福建省实施普通高中数学新课程的原则,参照教育部制订的《普通高中数学课程标准(实验)》、《普通高等学校招生全国统一考试考试大纲(课程标准实验版)》和省教育厅颁布的《福建省普通高中新课程选修Ⅰ课程开设指导意见(试行)》、《福建省普通高中新课程教学要求(数学)》,结合福建省普通高中数学教学实际,确定福建省高考文科数学考试内容为《普通高中数学课程标准(实验)》必修课程和选修课程系列1的内容。
1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系。
②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用韦恩(Venn)图表达集合的关系及运算。
2.函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义。
⑤会运用函数图象理解和研究函数的性质。
(2)指数函数①了解指数函数模型的实际背景。
②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。
④知道指数函数是一类重要的函数模型。
(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。