最新高三数学第一轮复习训练题- 排列、组合与二项式定理(含答案)
- 格式:doc
- 大小:228.00 KB
- 文档页数:8
排列、组合、二项式定理一、基础知识要记牢(1)分类计数原理:完成一件事情有n类方法,只需用其中一种就能完成这件事.(2)分步计数原理:完成一件事情共分n个步骤,必须经过这n个步骤才能完成.缺少任何一步不能完成这件事.二、经典例题领悟好[例1] (2013·山东高考)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252C.261 D.279[解析] 0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).[答案] B解决此类问题的关键(1)在应用分类计数原理和分步计数原理时,一般先分类再分步,每一步当中又可能用到分类计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.三、预测押题不能少1.一个盒子里有3个分别标有号码1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有( )A.12种 B.15种C.17种 D.19种解析:选D 取3次球,共有3×3×3=27种取法,其中最大值不是3的取法有2×2×2=8种,故有27-8=19种取法.一、基础知识要记牢区分某一问题是排列还是组合问题,关键看选出的元素与顺序是否有关.排列问题与选取元素的顺序有关,组合问题与选取元素的顺序无关.二、经典例题领悟好[例2] (1)(2013·陕西宝鸡)从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A.85 B.56C.49 D.28(2)(2013·浙江高考)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).[解析] (1)因为丙没有入选相当于从9人中选3人,共有选法C39=84种,甲、乙都没入选相当于从7人中选3人,共有选法C37=35种,所以满足条件的选法种数是84-35=49.(2)①当C在第一或第六位时,有A55=120(种)排法;②当C在第二或第五位时,有A24A33=72(种)排法;③当C 在第三或第四位时,有A 22A 33+A 23A 33=48(种)排法. 所以共有2×(120+72+48)=480(种)排法. [答案] (1)C (2)480解排列组合综合应用题的解题流程三、预测押题不能少2.(1)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( ) A .12种 B .18种 C .24种 D .48种解析:选C 将甲、乙捆绑,与除丙、丁外的另外一架飞机进行全排列,有A 22·A 22种排法.而后将丙、丁进行插空,有3个空,有A 23种排法,故共有A 22·A 22·A 23=24种排法.(2)有4名同学参加唱歌、跳舞、下棋三项比赛,每项比赛至少有1人参加,每名同学只参加一项比赛,另外甲同学不能参加跳舞比赛,则不同的参赛方式的种数为________(用数字作答).解析:依题意,当甲1人一组时,共有C 12C 23A 22=12种不同的参赛方式;当甲和另1人一组时,共有C 13A 12A 22=12种不同的参赛方式,所以共有24种不同的参赛方式. 答案:24一、基础知识要记牢 (1)通项与二项式系数:T r +1=C r n a n -r b r(r =0,1,2,…,n ),其中C r n 叫做二项式系数. (2)各二项式系数之和: ①C 0n +C 1n +C 2n +…+C n n =2n . ②C 1n +C 3n +…=C 0n +C 2n +…=2n -1. 二、经典例题领悟好[例3] (1)(2013·全国新课标Ⅱ)已知(1+ɑx )·(1+x )5的展开式中x 2的系数为5,则ɑ=( )A .-4B .-3C .-2D .-1(2)(2013·大同调研)⎝ ⎛⎭⎪⎫x -2x 210的展开式中的常数项是( )A .360B .180C .90D .45(3)(2013·安徽高考)若⎝⎛⎭⎪⎪⎫x +a 3x 8的展开式中,x 4的系数为7,则实数a =________.[解析] (1)(1+x )5中含有x 与x 2的项为T 2=C 15x =5x ,T 3=C 25x 2=10x 2,∴x 2的系数为10+5a =5,∴a =-1. (2)∵T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫-2x 2r =C r 10(-2)r x 1052r-,∴10-5r 2=0,∴r =2,∴常数项为C 210(-2)2=180.(3)含x 4的项为C 38x 5⎝ ⎛⎭⎪⎪⎫a 3x 3=C 38a 3x 4,∴C 38a 3=7,∴a =12.[答案] (1)D (2)B (3)12解决此类问题关键要掌握的五个方面(1)T r +1表示二项展开式中的任意项,只要n 与r 确定,该项就随之确定; (2)T r +1是展开式中的第r +1项,而不是第r 项; (3)公式中a ,b 的指数和为n ,a ,b 不能颠倒位置; (4)要将通项中的系数和字母分离开,以便于解决问题;(5)对二项式(a -b )n展开式的通项公式要特别注意符号问题. 三、预测押题不能少3.(1)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为( ) A .1或-3 B .-1或3 C .1 D .-3解析:选A 令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9;令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9.所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.(2)⎝ ⎛⎭⎪⎪⎫2x +13x n 的展开式中各项系数之和为729,则该展开式中x 2的系数为________. 解析:依题意得3n=729,n =6.二项式⎝ ⎛⎭⎪⎪⎫2x +13x 6的展开式的通项是T r +1=C r 6·(2x )6-r ·⎝ ⎛⎭⎪⎪⎫13x r=C r 6·26-r·x 6-4r 3.令6-4r 3=2,得r =3.因此,在该二项式的展开式中x 2的系数是C 36·26-3=160.答案:160二项式定理是高考热点内容,主要考查二项式的通项公式、二项式系数、二项式指定项(特定项)等知识,近年与函数、不等式、数列等知识交汇,让二项式定理问题在命题中有了“生机”.一、经典例题领悟好[例] (2013·陕西高考)设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .15[解析] ∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,∴当x >0时,f (x )=-x <0,∴f [f (x )]=f (-x )=⎝ ⎛⎭⎪⎫-x +1x 6=⎝ ⎛⎭⎪⎫x -1x 6.∴展开式中常数项为C 36(x )3⎝⎛⎭⎪⎫-1x 3=-C 36=-20.[答案] A以分段函数和复合函数的形式出现考查二项式定理的应用,凸显函数的主导作用,以复合函数的复合过程为切入点,再次使用不同区间上的表达式,再使问题化为二项展开式的问题,体现转化化归和特殊化思想在知识交汇处的具体应用. 二、预测押题不能少(1)已知f (x )=(ax +2)6,f ′(x )是f (x )的导数,若f ′(x )的展开式中x 的系数大于f (x )的展开式中x 的系数,则a 的取值范围是( )A .(-∞,0)∪⎝ ⎛⎭⎪⎫25,+∞ B.⎝ ⎛⎭⎪⎫0,25C.⎝ ⎛⎭⎪⎫25,+∞ D .(-∞,0)∪⎝ ⎛⎭⎪⎫52,+∞解析:选 A f (x )的展开式中x 的系数是C 5625a 6-5=192a .f ′(x )=6(ax +2)5(ax +2)′=6a (ax +2)5,f ′(x )的展开式中x 的系数是6a C 4524a 5-4=480a 2.依题意得480a 2>192a ,解得a >25或a <0.(2)已知a =20π⎰(sin 2x 2-12)d x ,则⎝⎛⎭⎪⎫ax +12ax 9的展开式中,关于x 的一次项的系数为( ) A .-6316B.6316C .-638D.638解析:选A a =20π⎰⎝ ⎛⎭⎪⎫sin 2x 2-12d x =20π⎰1-cos x 2-12d x =20π⎰⎝ ⎛⎭⎪⎫-cos x 2d x =-12.此时二项式的展开式的通项为T r +1=C r 9⎝ ⎛⎭⎪⎫-12x 9-r ⎝ ⎛⎭⎪⎫-1x r =C r 9⎝ ⎛⎭⎪⎫-129-r (-1)r x 9-2r.令9-2r =1,得r =4,所以关于x 的一次项的系数为C 49⎝ ⎛⎭⎪⎫-129-4·(-1)4=-6316.1.(2013·河南开封模拟)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( ) A .4种 B .10种 C .18种 D .20种解析:选B 分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 24=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 14=4种方法.所以不同的赠送方法共有6+4=10(种).2.(2013·辽宁高考)使⎝ ⎛⎭⎪⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7解析:选B 由二项式定理得,T r +1=C rn(3x )n -r⎝ ⎛⎭⎪⎫1x x r =C r n 3n -r x52n r-,令n -52r =0,当r =2时,n =5,此时n 最小.3.(2013·四川高考)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( ) A .9 B .10 C .18 D .20解析:选C lg a -lg b =lg a b ,lg a b 有多少个不同值,只要看a b不同值的个数,所以共有A 25-2=20-2=18个不同值.4.(2013·成都模拟)二项式⎝ ⎛⎭⎪⎫x +2x 2n 的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( ) A .180 B .90 C .45 D .360解析:选A 因为⎝ ⎛⎭⎪⎫x +2x 2n 的展开式中只有第六项的二项式系数最大,所以n =10.T r +1=C r 10·(x )10-r·⎝ ⎛⎭⎪⎫2x 2r =2r C r 10·x 552r -,令5-52r =0,则r =2,T 3=4C 210=180.5.(2013·深圳市调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( ) A .18个 B .15个 C .12个 D .9个解析:选B 依题意,这个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数分别为400、040、004;由3、1、0组成6个数分别为310、301、130、103、013、031;由2、2、0组成3个数分别为220、202、022;由2、1、1组成3个数分别为211、121、112.共计:3+6+3+3=15个.6.在⎝⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有( ) A .3项 B .4项C .5项D .6项解析:选C T r +1=C r24·()x 24-r·⎝ ⎛⎭⎪⎪⎫13x r =C r 24·x 5126r-,且0≤r ≤24,r ∈N ,所以当r =0,6,12,18,24时,x 的幂指数是整数.7.将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有1个小球,且每个盒子中的小球个数都不相同,则共有不同的放法( ) A .15种 B .18种 C .19种 D .21种解析:选B 对这3个盒子中所放的小球的个数情况进行分类计数:第一类,这3个盒子中所放的小球的个数是1,2,6,此类放法有A 33=6种;第二类,这3个盒子中所放的小球的个数是1,3,5,此类放法有A 33=6种;第三类,这3个盒子中所放的小球的个数是2,3,4,此类放法有A 33=6种.因此满足题意的放法共有6+6+6=18种.8.(2013·天津河西模拟)已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=( )A .-180B .180C .45D .-45解析:选B 因为(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,所以[2-(1-x )]10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,∴a 8=C 81022(-1)8=180.9.现有4名教师参加说课比赛,共有4道备选题目,若每位教师从中有放回地随机选出一道题目进行说课,其中恰有一道题目没有被这4位教师选中的情况有( ) A .288种 B .144种 C .72种 D .36种解析:选B 首先选择题目,从4道题目中选出3道,选法有C 34种;其次将获得同一道题目的2位教师选出,选法有C 24种;最后将选出的3道题目分配给3组教师,分配方式有A 33种.由分步乘法计数原理,知满足题意的情况共有C 34C 24A 33=144(种). 10.若(1-2x )2 013=a 0+a 1x +…+a 2 013x2 013(x ∈R ),则a 12+a 222+…+a 2 01322 013的值为( )A .2B .0C .-1D .-2解析:选C 令x =0,则a 0=1;令x =12,则a 0+a 12+a 222+…+a 2 01322 013=0.∴a 12+a 222+…+a 2 01322 013=-1.11.(2013·张家界模拟)在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一步或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有( )A .34种B .48种C .96种D .144种解析:选C 本题是一个分步计数问题.由题意知程序A 只能出现在第一步或最后一步,∴从第一个位置和最后一个位置中选一个位置把A 排列,有A 12=2种结果.∵程序B 和C 在实施时必须相邻,∴把B 和C 看作一个元素,同除A 外的3个元素排列,注意B 和C 之间还有一个排列,共有A 44A 22=48种结果.根据分步计数原理知共有2×48=96种结果.12.(2013·全国新课标Ⅰ)设m 为正整数,(x +y )2m展开式的二项式系数的最大值为a ,(x+y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( ) A .5 B .6 C.7 D.8解析:选B 根据二项式系数的性质知:(x +y )2m 的二项式系数最大有一项,C m 2m =a ,(x +y )2m+1的二项式系数最大有两项,C m 2m +1=C m +12m +1=b .又13a =7b ,所以13C m 2m =7C m2m +1,将各选项中m 的取值逐个代入验证,知m =6满足等式.13.已知集合A ={x |x =a 0+a 1×3+a 2×32+a 3×33},其中a k ∈{0,1,2}(k =0,1,2,3),且a 3≠0,则A 中所有元素之和等于( ) A .3 240 B .3 120 C .2 997 D .2 889解析:选D 可利用排除法,若a 3也可以取0,则a 0,a 1,a 2,a 3都可取0,1,2,根据分步乘法计数原理,可知这样的数共有3×3×3×3=81(个),显然0,1,2这3个数字每个数字要重复27次,故这些元素的和为27×(3+3×3+3×32+3×33)=27×120=3 240;当a 3=0时,a 0,a 1,a 2可取0,1,2,根据分步乘法计数原理,可知这样的数共有3×3×3=27(个),而0,1,2这3个数字每个数字要重复9次,故这些元素的和为9×(3+3×3+3×32)=9×39=351.所以集合A 中所有元素的和为3 240-351=2 889.14.(2013·郑州预测)在二项式⎝⎛⎭⎪⎪⎫x +12·4x n 的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A.16B.14C.13D.512解析:选D 注意到二项式⎝⎛⎭⎪⎪⎫x +12·4x n 的展开式的通项是T r +1=C rn ·(x )n -r ·⎝⎛⎭⎪⎪⎫12·4x r =C rn·2-r·x234n r-.依题意有C 0n +C 2n ·2-2=2C 1n ·2-1=n ,即n 2-9n +8=0,(n -1)(n -8)=0(n ≥2),因此n =8 .∵二项式⎝⎛⎭⎪⎪⎫x +12·4x 8的展开式的通项是T r +1=C r8·2-r ·x 344r -,其展开式中的有理项共有3项,所求的概率等于A 66·A 37A 99=512.15.(2013·长春模拟)用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数字夹在两个奇数字之间的四位数的个数为________.解析:A 22·C 12·A 22=8个. 答案:816.(2013·长沙模拟)⎝⎛⎭⎪⎫x 2+1x2-22的展开式中常数项是________.解析:∵⎝⎛⎭⎪⎫x 2+1x2-22=⎝ ⎛⎭⎪⎫x -1x 4,∴T r +1=C r 4x4-r⎝ ⎛⎭⎪⎫-1x r =C r 4(-1)r x 4-2r , 令4-2r =0,解得r =2,∴常数项为C 24(-1)2=6. 答案:6 17.(2013·湖北八校联考)航空母舰“辽宁舰”将进行一次编队配置科学实验,要求2艘攻击型核潜艇一前一后,2艘驱逐舰和2艘护卫舰分列左、右,同侧不能都是同种舰艇,则舰艇分配方案的方法数为________.解析:先将2艘驱逐舰和2艘护卫舰平均分成两组,再排,有C 12A 22A 22A 22种方法,然后排2艘攻击型核潜艇,有A 22种方法,故舰艇分配方案的方法数为C 12A 22A 22A 22A 22=32. 答案:3218.(2013·浙江名校联考)二项式(4x -2-x )6(x ∈R )展开式中的常数项是________.解析:∵(4x -2-x )6的展开式的通项为T r +1=C r 6(4x )6-r (-2-x )r =(-1)r C r 62(12-3r )x,若T r +1为常数项,则r =4,T 5=15. 答案:1519.(2013·银川模拟)若(2x -3)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=________.解析:原等式两边求导得5(2x -3)4·(2x -3)′=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4,令上式中x =1,得a 1+2a 2+3a 3+4a 4+5a 5=10. 答案:1020.(2013·滨州模拟)如图所示,用五种不同的颜色分别给A ,B ,C ,D 四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种.解析:按区域分四步:第一步A 区域有5种颜色可选; 第二步B 区域有4种颜色可选; 第三步C 区域有3种颜色可选;第四步由于D 区域可以重复使用区域A 中已有过的颜色,故也有3种颜色可选. 由分步计数原理知,共有5×4×3×3=180(种)涂色方法. 答案:180。
素质能力检测(4)一、填空题(每小题5分,共30分)1.(2004年东北三校模拟题)已知下图的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能.在这25种可能中,电路从P 到Q 接通的情况有A.30种B.10种C.24种D.16种 解析:五个开关全闭合有1种情况能使电路接通;四个开关闭合有5种情况能使电路接通;三个开关闭合有8种情况能使电路接通;两个开关闭合有2种情况能使电路接通.所以共有1+5+8+2=16种情况能使电路接通.答案:D2.(2004年湖北八校模拟题)有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有A.240种B.192种C.96种D.48种解析:我们可以这样排,首先将乙、丙绑定为一个位置,排法有A 55A 22种,然后将甲站在中间位置,但此时有不符合条件的,即当乙、丙在中间位置时,甲再插入中间,应去掉,共有A 44·A 22种,则符合条件的站法有A 55·A 22-A 44·A 22=192种,选B.答案:B3.(理)在(1+x )3+(1+x )4+…+(1+x )2004的展开式中x 3的系数等于 A.C 42004B.C 42005C.2C 32004D.2C 32005解析:含x 3的系数为C 33+C 34+C 35+…+C 32004=C 42005.故选B.答案:B (文)在(2x -x 2)5的展开式中x 1的系数等于 A.10B.-10C.20D.-20解析:本题考查二项式定理,(a +b )n 中第r +1项T 1+r =C r n ·a r ·bn -r, 则T 1+r =C r5(2x )r ·(x2-)5-r =C r 5·2-r ·(-2)5-r ·x 2r -5. 由题知2r -5=-1,则r =2,则x 1的系数为C 25·2-2·(-2)5-2=C 25×41×(-8)=-20,故选D.答案:D4.如下图,A 、B 、C 、D 为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同的建桥方案共有A.8种B.12种C.16种D.20种 解法一:桥梁的建设有两大类:(1)A 、B 、C 、D 四岛之间依次建桥,如AB 、BC 、CD 一种方案,AC 、CD 、DB 一种方案等.其建造方案共有m 1=2A 44=12(种).(2)四岛中的某一岛与其他三岛之间建桥,如AB 、AC 、AD 等其建造方案共有m 2=C 14=4(种). 由分类计数原理可知N =m 1+m 2=16(种).解法二:把四个岛看成三棱锥的四个顶点,四棱锥有6条棱,从中选3条把A 、B 、C 、D 连起来,有C 36种方法,其中共面时不合题意,则共有C 36-4=16(种).答案:C5.登山运动员10人,平均分为两组,其中熟悉道路的4人,每组都需要2人,那么不同的分配方法种数是A.30B.60C.120D.240解析:先将4个熟悉道路的人平均分成两组有222224A C C .再将余下的6人中分成两组有C 36·C 33.故有21C 24·C 36=60(种). 答案:B6.(2004年北京东城区模拟题)某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位、个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0,千位、百位上都能取0.这样设计出来的密码共有A.90个B.99个C.100个D.112个解析:由于千位、百位确定下来后十位、个位就随之确定,则只考虑千位、百位即可,千位、百位各有10种选择,所以有10×10种=100种.故选C. 答案:C二、填空题(每小题4分,共16分)7.从1,3,5中任取2个数字,从0,2,4,6中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有_____________个.(用数字作答)解析:能被5整除的四位数的个位数只能是5或0, ∴必须从1,3,5中选取5或从0,2,4,6中选取0.(1)选取0不选取5,能被5整除的四位数有C 13·C 22·A 33=36(个); (2)选取5不选取0,能被5整除的四位数有C 12C 23·A 33=36(个).(3)同时选取0和5,能被5整除的四位数有C13C12(A33+A12A22)=60(个).∴其中能被5整除的四位数共有132个.答案:1328.有A、B、C、D、E五位学生参加网页设计比赛,决出了第一到第五的名次.A、B两位学生去问成绩,教师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名.请你分析一下,这五位学生的名次排列共有_____________种不同的可能.(用数字作答)解法一:A不是第一名有A44种.A不是第一名,B不是第三名有A33种.符合要求的有A44-A33=18种.解法二:第一名有3种,第二名有3种,第三名有1种,第四名有2种,第五名有1种,则完成这件事有3×3×1×2×1=18种.答案:189.若(1-2x)2004=a0+a1x+a2x2+…+a2004x2004(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2004)=_____________.(用数字作答)解析:在(1-2x)2004=a0+a1x+a2x2+…+a2004x2004中令x=1,得a0+a1+a2+…+a2004=(1-2)2004=1,又a0=1,∴a1+a2+…+a2004=0.∴(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2004)=2004.答案:200410.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒子内放一个球,恰好有2个球的标号与其所在盒子的标号不一致的放入方法种数为_____________.(用数字作答)解析:分两步:第一步,先取8个球,分别放入球的标号与盒子的标号相同的盒子里有C810种放法.第二步,再将余下的2个球放入盒子里的放法有1种.由分步计数原理得C810=45.答案:45三、解答题(本大题共4小题,共54分)11.(12分)中央电视台“正大综艺”节目的现场观众来自四个单位,分别在图中4个区域内坐定.有4种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两个区域的颜色不同,不相邻区域颜色相同与否则不受限制,那么不同的着装方法有多少种?分析:显然,相对位置(比如Ⅰ,Ⅲ)的服装颜色可以相同,也可以不同,因为它们不相邻,但它们服装颜色是否相同对另两个区域(Ⅱ,Ⅳ)的服装颜色的影响是不同的,所以考虑以此为分类讨论的标准.解法一:若每个区域服装颜色不相同,则有C14·C13·C12·1=24种;若Ⅰ、Ⅲ或Ⅱ、Ⅳ同色,另两区域不同色,则有2C 14×3×2=48种;若Ⅰ、Ⅲ与Ⅱ、Ⅳ分别同色,则有C 24· A 22=12种.故共有24+48+12=84种.解法二:Ⅰ有4种可能,Ⅱ有3种可能,Ⅲ可与Ⅰ相同或不同,故共有4×3×3+4×3×2×2=84种方法.12.(14分)(理)某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?解:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,可以考虑按此分类. 出牌的方法可分为以下几类:(1)5张牌全部分开出,有A 55种方法;(2)2张2一起出,3张A 一起出,有A 25种方法; (3)2张2一起出,3张A 分开出,有A 45种方法; (4)2张2一起出,3张A 两次出,有C 23A 35种方法;(5)2张2分开出,3张A 一起出,有A 35种方法;(6)2张2分开出,3张A 分两次出,有C 23A 45种方法.因此,共有不同的出牌方法A 55+A 25+A 45+C 23A 35+ A 35+C 23A 45=860种.(文)抛物线方程y =ax 2+bx +c 的各项系数a 、b 、c ∈{-2,-1,0,1,2,3,4},且a 、b 、c 两两不等.(1)过原点的抛物线有多少条?(2)过原点且顶点在第一象限的抛物线有多少条? 解:(1)抛物线过原点,则c =0.从-2,-1,1,2,3,4中任取2个数作为a 、b ,有A 26=30条.(2)∵顶点在第一象限,∴.00.0444,0222><∴⎪⎪⎩⎪⎪⎨⎧>-=->-b a a b ab ac ab且 ∴C 13·C 13·C 11=9.∴过原点且顶点在第一象限的抛物线有9条.13.(14分)7名学生站成一排,下列情况各有多少种不同排法? (1)甲、乙必须排在一起; (2)甲不在排头,乙不在排尾;(3)甲、乙、丙互不相邻; (4)甲、乙之间必须隔一人.解:(1)(整体排列法)先将甲、乙看作一个人,有A 66种排法,然后甲、乙换位,所以不同的排法有A 22·A 66=1440种.(2)(间接法)甲在排头或乙在排尾的排法共2A 66种,其中都包含甲在排头且乙在排尾的情形,故有不同的排法A 77-2A 66+A 55=3720种.(3)(插空法)把甲、乙、丙插入其余4个元素产生的5个空,有A 44·A 35=1440种.(4)先从其余5人中选1人有5种选法,放在甲、乙之间,将三人看作一个有A 55种,然后甲、乙换位有A 22种,共有5A 55A 22=1200种方法.评述:解决“相邻”问题一般用整体法,解决不相邻问题一般用插空法,解决某些元素在某些位置用定位法,解决某些元素不在某些位置一般用间接法.14.(14分)已知(1+3x )n 的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项及二项式系数最大的项.解:末三项的二项式系数分别为C 2-n n 、C 1-n n 、C nn , 由题设,得C 2-n n +C 1-n n +C n n =121,即C 2n +C 1n +1=121,∴n 2+n -240=0.∴n =15(n =-16舍去).∵T 1+r =C r 15(3x )r =C r 15·3r x r ,设T 1+r 项与T r 项的系数分别为t 1+r 与t r ,则t 1+r =C r153r ,t r =C 115-r ·31-r ,令rr t t 1+>1, 即1115153C 3C --⋅⋅r r r r =rr )115(3+-⨯ >1,解得r <12.也就是说,当r 取小于12的自然数时,都有t r <t 1+r ,即第12项以前的各项,前面一项的系数都比后面一项的系数小.又当r =12时,t 1+r =t r ,即t 13=t 12,∴展开式中系数最大的项是T 12=C 1115·311·x 11,T 13=C 1215·312·x 12,当n=15时,二项式系数最大的是第8、9项,分别为C715·37·x7与C715·38·x8.评述:本题考查二项式系数的性质、二项式定理、二项式系数与项的系数以及运算能力.注意二项展开式中,项的系数与项的二项式系数是两个不同的概念,前者由指数、底数二者决定,而后者只与二项式次数有关,一般地,项的系数不具备二项式系数的性质,不能混用.在(a+b)n的展开式中,系数最大的项是中间项;但当a、b的系数不是1时,最大系数值的项的位置就不一定在中间,需要利用通项公式,根据系数值的增减性具体讨论而定.。
山东省届高三数学理一轮复习专题突破训练排列组合二项式定理一、二项式定理、(年山东省高考)若()的展开式中的系数是—,则实数.、(年山东省高考)若的展开式中项的系数为,则的最小值为。
、(泰安市届高三二模)在二项式的展开式中,所有二项式系数的和是,则展开式中各项系数的和为. . . .、(德州市届高三二模)在()()…()(∈,≥)的展开式中,的系数为,则的系数为()....、(威海市届高三二模)在二项式(﹣)的展开式中,偶数项的二项式系数之和为,则展开式中的系数为.、(潍坊市届高三二模)()(﹣)的展开式中,的系数为.、(德州市届高三上学期期末)已知,则....、(济南市届高三上学期期末)二项式的展开式中的系数为,则、(胶州市届高三上学期期末)则的展开式的常数项为.、(临沂市届高三上学期期末)若多项式,则.、(威海市届高三上学期期末)若展开式中含的项的系数为,则的值为.、(潍坊市届高三上学期期末)的二项展开式中的系数为(用数字表示).、(青岛市高三月模拟)在二项式的展开式中,常数项等于(用数字作答);、(日照市高三月模拟)的展开式中,含次数最高的项的系数是(用数字作答).、(泰安市高三月模拟)设二项式的展开式中的系数为,常数项为,若,则▲.、(烟台市高三月模拟)已知,则二项式的展开式中的系数为、(淄博市高三月模拟)二项式的展开式中的系数为,则.、(济南市高三月模拟)二项式展开式中的常数项为.二、排列组合、(年山东省高考)观察下列各式:……照此规律,当时,… .、(东营市、潍坊市届高三下学期第三次模拟)在一次抽奖活动中,张奖券中有一、二、三等奖各张,其余张无奖.甲、乙、丙、丁四名顾客每人从中随机抽取张,则不同的获奖情况有()。
排列、组合和二项式定理测试卷、选择题(本大题共12小题,每小题5分,共60分,每个小题只有一个选项)1•甲班有四个小组,每组成部分10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为( ) 9.已知(xa)8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是()xA . 28B . 38C . 1 或 38D . 1 或 2810 .某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有(3D . C 8 种每4人,每人每天最多值一班,则开幕式当天不同的排班种数为二、填空题(本大题共4小题,每小题4分,共16分)13 .不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一 起,则不同的排法种数共有 ______________________ .14 . (x 2)10(x 2 1)的展开式中x 10的系数为 ___________ .(用数字作答)3 4 511.设(1 x) (1 x) (1 x) L (1 x)50a 0 a 1x L50a 5°x ,则a 3的值是(A . C 50B .C 51C . C ;13D . 2C 5012 .北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班, A . 18 B .72 C.36D3.展开式的第7项是( )282856 A 一6B —一6C一6aaa4.用二项式定理计算9.985,精确到 1的近似值为()D 86( ) .14456-6aD . 990055. 不同的五种商品在货架上排成一排,则不同的排法种数共有(A . 12 种B . _ 2 6. 若(3 x —)n 展开式中含 xA .第8项 其中甲、乙两种必须排在一起,丙、 丁两种不能排在一起,7.从4名男生和同的选法共有 A 140 种 )20种C . 24 种 48种3x 的项是第 3名女生中选出 8项,则展开式中含 C .第10项1 1的项是(xD .第11项4人参加某个座谈会,( B 34种若这4人中必须既有男生又有女生,则不C 35种D 120 种3A . C 11 种124 4 C 14C 12C 8C U C 142CA 80B 84C 852. 6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 C . A . 99000B . 9900299004124 4 C 14 C 12C 8若c n C;C:Cn 1=32,则n= _________ 。
专题20 排列组合、二项式定理测试题满分150分 时间120分钟一、选择题(本大题共12小题,每题5分,共60分) 1.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 42.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A .30种B .36种C .60种D .72种4.已知(x +2)15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,则a 13的值为( ) A .945 B .-945 C .1 024 D .-1 0245.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .168C .144D .1006.若⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A .360B .180C .90D .457.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( ) A .232 B .252 C .472 D .4848.若(1-2x )2 016=a 0+a 1x +a 2x 2+…+a 2 016 x 2 016,则a 12+a 222+…+a 2 01622 016的值为( ) A .2 B .0 C .-1 D .-29.某校开设A 类课3门,B 类课5门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有( )A .15种B .30种C .45种D .90种10.某宾馆安排A ,B ,C ,D ,E 五人入住3个房间,每个房间至少住1人,且A ,B 不能住同一房间,则不同的安排方法有( )A .24种B .48种C .96种D .114种11.若n⎛⎫的展开式中的二项式系数之和为64,则该展开式中3y 的系数是( ) A .15 B .15- C .20 D .20-12.在(x -2)2 006的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S =( ) A .23 008 B .-23 008 C .23 009 D .-23 009 二、填空题(本大题共4小题,每题5分,共20分)13.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有 . 14.若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.15.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有__________种(用数字作答).16.若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则函数f (x )=a 2x 2+a 1x +a 0的单调递减区间是________.三、解答题(本大题共6小题,共70分)17.要从7个班中选10人参加数学竞赛,每班至少1人,共有多少种不同的选法?18.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中选6人上艇,平均分配在两舷上划浆,有多少种不同的选法?19、在二项式n的展开式中,前三项系数的绝对值成等差数列.(1)求展开式中的常数项;(2)求展开式中各项的系数和.20(1)求展开式中各项的系数和;(2)求展开式中的有理项.21.从1到9这九个数字中取三个偶数和四个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个? (4)在(1)中任意两个偶数都不相邻的七位数有几个?22、已知()(23)n f x x =-展开式的二项式系数和为512,且2012(23)(1)(1)n x a a x a x -=+-+-(1)n n a x ++-L .(1)求2a 的值; (2)求123n a a a a ++++L 的值.专题20 排列组合、二项式定理测试题参考答案一、选择题1.解析:选A 二项式的通项为T r +1=C r 6x 6-r i r,由6-r =4,得r =2. 故T 3=C 26x 4i 2=-15x 2.故选A.2.解析:选D 从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数的取法分为三类:第一类是取四个偶数,即C 44=1种方法;第二类是取两个奇数,两个偶数,即C 25C 24=60种方法;第三类是取四个奇数,即C 45=5,故有5+60+1=66种方法.学_科网3.解析:选A 甲、乙两人从4门课程中各选修2门有C 24C 24=36种选法,甲、乙所选的课程中完全相同的选法有6种,则甲、乙所选的课程中至少有1门不相同的选法共有36-6=30种.4.解析:选B 由(x +2)15=[3-(1-x )]15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,得a 13=C 1315×32×(-1)13=-943. 5.解析:选D 先安排小品类节目和相声类节目,然后让歌舞类节目去插空.(1)小品1,相声,小品2.有A 22A 34=48; (2)小品1,小品2,相声.有A 22C 13A 23=36; (3)相声,小品1,小品2.有A 22C 13A 23=34.共有48+36+36=100种. 6.解析:选B 依题意知n =10, ∴T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎫2x 2r =C r 102r·x 5-52r , 令5-52r =0,得r =2,∴常数项为C 21022=180.7..解析:选C 由题意,不考虑特殊情况,共有C 316种取法,其中每一种卡片各取3张,有4C 34种取法,取出2张红色卡片有C 24·C 112种取法,故所求的取法共有C 316-4C 34-C 24·C 112=560-16-72=472种,选C.8.解析:选C 当x =0时,左边=1,右边=a 0,∴a 0=1. 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01622 016, ∴0=1+a 12+a 222+…+a 2 01622 016.即a 12+a 222+…+a 2 01622 016=-1.9.解析:可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有C 13C 25种不同的选法;②A 类选修课选2门,B 类选修课选1门,有C 23C 15种不同的选法.∴根据分类计数原理知不同的选法共有C 13C 25+C 23C 15=30+15=45(种).答案:C10解析:5个人住三个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C 35A 33=60(种),A ,B 住同一房间有C 13A 33=18(种),故有60-18=42(种);当为(2,2,1)时,有C 25C 23A 22·A 33=90种,A ,B 住同一房间有C 23A 33=18(种),故有90-18=72(种).根据分类计数原理共有42+72=114(种),故选D. 答案:D11. 【答案】A 【解析】由题意得264,6nn ==,因此3363622166r r r r r r r T C C x y ---+==,从而333,42r r -==,因此展开式中3y 的系数是426615.C C ==选A. 12. 答案:B 解析:设(x -2)2 006=a 0x 2 006+a 1x 2 005+…+a 2 005x +a 2 006,则当x =2时,有a 0(2)2006+a 1(2)2 005+…+a 2 0052+a 2 006=0①;当x =-2时,有a 0(2)2 006-a 1(2)2 005+…-a 2 0052+a 2 006=23 009②.①-②得2[a 1(2)2 005+…+a 2 005(2)]=-23 009,即2S =-23 009,∴S =-23 006.故选B. 二、填空题 13.【答案】65【解析】分二类:第一类,甲上7楼,有52种;第二类:甲不上7楼,有4×2×5种,52+4×2×5=65.14.解析:T r +1=C r 5·(ax 2)5-r ⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-rx 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2. 答案:-215.解析:把8张奖券分4组有两种方法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A 44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C 23种分法,再分给4人有C 23A 24种分法,∴不同获奖情况种数为A 44+C 23A 24=24+36=60. 答案:6016.解析:∵(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,∴a 0=1,a 1=-C 15=-5,a 2=C 25=10,∴f (x )=10x 2-5x +1=10⎝ ⎛⎭⎪⎫x -142+38,∴函数f (x )的单调递减区间是⎝ ⎛⎦⎥⎤-∞,14.答案:⎝ ⎛⎦⎥⎤-∞,14三、解答题17、解 方法一 共分三类:第一类:一个班出4人,其余6个班各出1人,有C 17种;第二类:有2个班分别出2人,3人,其余5个班各出1人,有A 27种;第三类:有3个班各出2人,其余4个班各出1人,有C 37种,故共有C 17+A 27+C 37=84(种).方法二 将10人看成10个元素,这样元素之间共有9个空(两端不计),从这9个空中任选6个(即这6个18.解 分三类,第一类.2人只划左舷的人全不选,有C 35C 35=100(种);第二类,2人只划左舷的人中只选1人,有C 12C 25C 36=400(种);第三类,2人只划左舷的人全选,有C 22C 15C 37=175(种).所以共有C 35C 35+C 12C 25C 36+C 22C 15C 37=675(种).位置放入隔板,将其分为七部分),有C 69=84(种)放法.故共有84种不同的选法.19.解:展开式的通项为2311()(0,1,22n rr r r n T C x r -+=-=,…,)n由已知:00122111()()()222n n n C C C -,,成等差数列,∴ 121121824n n C C n ⨯=+∴=,(1)5358T = (2)令1x =,各项系数和为125620.【解析】在展开式中,恰好第五项的二项式系数最大,则展开式有9项,∴ 8=n .∴ 中,令1=x(2)通项公式为 ,1,2, (8)整数,即8,5,2=r 时,展开式是有理项,有理项为第3、6、9项,即21.解 (1)分步完成:第一步:在4个偶数中取3个,有C 34种情况. 第二步:在5个奇数中取4个,有C 45种情况. 第三步:3个偶数,4个奇数进行排列,有A 77种情况.所以符合题意的七位数有C 34·C 45·A 77=100 800(个).(2)上述七位数中,三个偶数排在一起的有C 34·C 45·A 55·A 33=14 400(个).(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34·C 45·A 33·A 44·A 22=5760(个). (4)上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空位(包括两端),共有C 34·C 45·A 44·A 35=28 800(个).22.【解析】(1)根据二项式的系数和即为2n ,可得25129n n =⇒=,因此可将()f x 变形为99()(23)[2(1)1]f x x x =-=--,其二项展开式的第1r +为9919(1)2(1)(09)r r r r r T C x r --+=--≤≤,故令7r =,可得727292(1)144a C =-=-;(2)首先令令901,(213)1x a ==⨯-=-,再令令2x =,得901239(223)1a a a a a +++++=⨯-=L ,从而1239012390()2a a a a a a a a a a ++++=+++++-=L L . (1)由二项式系数和为512知,9251229n n ==⇒= 2分,99(23)[2(1)1]x x -=-- ,∴727292(1)144a C =-=- 6分;(2)令901,(213)1x a ==⨯-=-,令2x =,得901239(223)1a a a a a +++++=⨯-=L ,∴1239012390()2a a a a a a a a a a ++++=+++++-=L L 12分.。
·高三数学·单元测试卷(十一)第十一单元 排列组合、二项式定理(时量:120分钟 150分)一、选择题:本大题共18小题,每小题5分,共90分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .10245.如果(n x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是A .6810C xB .510C xC .468C xD .611C x6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有 A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义n x M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为 A .是偶函数而不是奇函数B .是奇函数而不是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有A.24种B.36种C.60种D.66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为A.8 B.9 C.10 D.11 17.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有A.36种B.42种C.50种D.72种18.若1021022 012100210139 ),()()x a a x a x a x a a a a a a =+++⋯+++⋯+-++⋯+则的值为A.0 B.2 C.-1 D.1答题卡二、填空题:本大题共6小题,每小题4分,共24分.把答案填在横线上.19.某电子器件的电路中,在A,B之间有C,D,E,F四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A,B间电路不通,则焊点脱落的不同情况有种.20.设f(x)=x5-5x4+10x3-10x2+5x+1,则f(x)的反函数f-1(x)=.21.正整数a1a2…a n…a2n-2a2n-1称为凹数,如果a1>a2>…a n,且a2n-1>a2n-2>…>a n,其中a i(i=1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a1a2a3(a1≠a3)共有个(用数字作答).22.如果a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,那么a2-a3+a4.23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知(41x+3x2)n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.nn n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案2.B 分三步:33425154545474.C C C C C C ++=3.C 46312.C -= 4.B 分8类:3451001210012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为555561010T C x C x ==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.32003320062006442006(1)[1(1)](1)(1)(1).1(1)x x x x x x C x x+-+-+++=+-+即求中的系数为12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯- 13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0.14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种. 17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周六的排法,共有2212264544242().C C A C A -+=种18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。
排列、组合、二项式定理与概率测试题(理)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、如下图的是2008年奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( ) A. 8种 B. 12种C. 16种D. 20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( ) A .96种 B .180种C .240种 D .280种3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则不同的选排方法共有( )A .12种B .20种C .24种D .48种4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A . 10种 B. 20种 C. 30种 D . 60种5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (mod m )。
已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 的值可以是( )A.2015 B.2011 C.2008 D.20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种C .24种 D .25种7、令1)1(++n n x a 为的展开式中含1-n x项的系数,则数列}1{na 的前n 项和为()A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-329、二项式23nx ⎛⎝*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )A5 B6 C7 D 810、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )A .150种B .147种C .144种D .141种11、两位到旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有() A .1440 B .960 C .720 D .480 12、若x∈A 则x 1∈A,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25二、填空题(每小题4分,共16分,把答案填在题中横线上) 13.四封信投入3个不同的信箱,其不同的投信方法有_________种. 14、在72)2)(1(-+x x 的展开式中x 3的系数是 .15、已知数列{n a }的通项公式为121+=-n n a ,则01n C a +12n C a + +33n C a +n n n C a 1+=16、对于任意正整数,定义“n 的双阶乘n!!”如下:对于n 是偶数时, n!!=n·(n-2)·(n-4)……6×4×2;对于n 是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?18、设m,n∈Z+,m、n≥1,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.(1)求f(x)展开式中x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、n的值,求x7的系数.19、7位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?20、已知1()2nxx的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。
卜人入州八九几市潮王学校专题十三、排列、组合与二项式定理抓住2个高考重点重点1排列与组合1.两个原理的应用假设完成一件事情有n类方法,这n类方法彼此之间是互相HY的,无论哪一类方法中的哪一种方法都能完成这件事情,求完成这件事情的方法种数就用分类加法计数原理;假设完成一件事情要分成n个步骤,各个步骤都是不可或者缺的,依次完成所有的步骤才能完成这件事情,而完成每一个步骤各有假设干种不同的方法,求完成这件事情的方法种数就用分步乘法计数原理.从思想方法的角度看,分类加法计数原理的运用是将问题进展“分类〞考虑,分步乘法计数原理是将问题进展“分步〞考虑,这两种思想方法贯穿于解决这类应用问题的始终.〔1〕在处理详细的应用问题时,首先必须弄清楚是“分类〞还是“分步〞,其次要搞清楚“分类〞和“分步’’的详细HY分别是什么.选择合理、简洁的HY处理问题,可以防止计数的重复或者遗漏.〔2〕对于一些比较复杂的问题,既要运用分类加法计数原理,又要运用分步乘法计数原理时,我们可以恰当地画出示意图或者列出表格,使问题的分析更直观、明晰.2.排列组合应用题〔1〕排列问题常见的限制条件及对策①对于有特殊元素或者特殊位置的排列,一般采用直接法,即先排特殊元素或者特殊位置.②相邻排列问题,通常采用“捆绑〞法,即可以把相邻元素看作一个整体参与其他元素排列.③对于元素不相邻的排列,通常采用“插空〞的方法.④对于元素有顺序限制的排列,可以先不考虑顺序限制进展排列,然后再根据规定顺序的实情求结果.求解有约束条件的排列问题,通常有正向考虑和逆向考虑两种思路.正向考虑时,通过分步、分类设法将问题分解;逆向考虑时,用集合的观点看,就是先从问题涉及的集合在全集中的补集入手,使问题简化.〔2〕组合问题常见的问题及对策①在解组合应用题时,常会遇到“至少〞、“最多〞等词,要仔细审题,理解其含义.②有关几何图形的组合问题,一定要注意图形自身对其构成元素的限制,解决这类问题常用间接法〔或者排除法〕.③分组、分配问题二者是有区别的,前者组与组之间只要元素个数一样,是不可区分的,而后者即使两组元素个数一样,但因元素不同,仍然是可区分的.〔3〕解排列、组合的应用题,要注意四点①仔细审题,判断是组合问题还是排列问题.要按元素的性质分类,按事件发生的过程进展分步..②深化分析,严密周详.注意分清是乘还是加,既不少也不多,辩证思维,多角度分析,全面考虑,积极运用逻辑推理才能,同时尽可能地防止出错.③对于附有条件的比较复杂的排列、组合应用题,要周密分析,设计出合理的方案,把复杂问题分解成假设干简单的根本问题后应用加法原理或者乘法原理来解决.④由于排列、组合问题的结果一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决问题的方案是否完备,有无重复或者遗漏,也可采用多种不同的方案求解,看结果是否一样,在对排列、组合问题分类时,分类HY应统一,否那么易出现遗漏或者重复.[高考常考角度]角度1用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数一共有______个.〔用数字答题〕解析:此题主要考察分步乘法计数原理的应用.因为四位数的每个数位上都有两种可能性,其中四个数字全是2或者3的情况不合题意,所以符合题意的四位数有42214-=个〔间接法〕点评:假设用直接法,分类会很复杂。
高三第一轮复习训练题数学(十七)(排列、组合与二项式定理)一、 选择题:本大题共12小题;每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 一只青蛙在三角形ABC 的三个顶点之间跳动,若此青蛙从A 点起跳,跳4次后仍回到A 点,则此青蛙不同的跳法的种数是A .4B .5C .6D .7 2.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 A.20种 B.16种 C.12种 D.8种 3. 已知三直线a 、b 、c ,a // b ,c 与a 、b 均异面,三直线外有5点,由这些点和直线可确定平面的个数最多为311113113553335535. 1 B. C. D. A C C C C C C C C C +++4.设集合A={-1、0、1},B={2、3、4、5、6},映射f :A →B ,使得对任意A x ∈,都有()()x xf x f x ++是奇数,这样的映射f 的个数是 A.12 B.50 C.15 D.555. 设集合{}1,2,3,4,5I =。
选择I 的两个非空子集A 和B ,要使B 中最小的数大于A 中最大的数,则不同的选择方法共有A .50种B .49种C .48种D .47种6. 若(1-2x )5的展开式中第二项小于第一项,且不小于第三项,则x 的取值范围是A .x >-110B .x ≥-14C .-14≤x ≤0D .-110<x ≤0 7. 从4台A 型笔记本电脑与5台B 型笔记本电脑中任选3台,其中至少要有A 型和B 型笔记本电脑各一台,则不同的选取方法共有A .140种B .84种C .70种D .35种8. 8名运动员参加男子100米的决赛. 已知运动场有从内到外编号依次为1,2,3,4,5,6,7,8的八条跑道,若指定的3名运动员所在的跑道编号必须是三个连续数字(如:4,5,6),则参加比赛的这8名运动员安排跑道的方式共有A .360种B .4320种C .720种D .2160种 9若nx x ⎪⎪⎭⎫ ⎝⎛+461(n ∈N +)的展开式中含有常数项,则n 必为A.4的倍数B.5的倍数C.6的倍数D.10的倍数10. 将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有A .10种B .20种C .36种D .52种11. 某外商计划在5个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有A .60种B .70种C .80种D .120种12. 已知2nx⎛ ⎝的展开式中第三项与第五项的系数之比为-143,其中2i =-1,则展开式中常数项是(A) 45 (B) 45i (C) -45 (D) -45i二、填空题:本大题共4小题;每小题4分,共16分,把答案填在题中的横线上。
13.若8)2(a x +的展开式中含6x 项的系数是448,则正实数a 的值为 。
14.在(x4+1x)10的展开式中常数项是 (用数字作答)。
15设1<m<10且m ∈N ,若mx x )1(23-的展开式中存在常数项,则m 的值是 ;16.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有_________种。
(用数字作答)。
三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。
17.一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?18.某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中男、女同学各有多少人? 19.二项式15的展开式中:⑴求常数项;⑵有几个有理项;⑶有几个整式项。
20.已知)0,()1()(*212≠∈+++m N n mx m x n n 与的展开式中含x n 项的系数相等,求实数m 的取值范围.21.已知:*,,,1a b R n n N +∈>∈.求证:2n na b +≥()2n a b +22.设数列{}n a 是等比数列,123321-+⋅=m m m A C a ,公比q 是(241x x +)4的展开式中的第二项(按x 的降幂排列) (1) 用x n ,表示通项n a 与前n 项和n S ; (2) 若n nn n n nS C S C S C A +++= 2211,用x n ,表示n A 。
2007-2008学年度南昌市高三第一轮复习训练题数学(十七)参考答案一、选择题:1. B2.C3. A4.B 5B 6. D 7.C 8. B 9. B 10. A 11. D 12. D 二、填空题:13、2 14.、45 15、5 16、2400 三、解答题:17.解:(1)将取出4个球分成三类情况1)取4个红球,没有白球,有44C 种 2)取3个红球1个白球,有3146C C 种;3)取2个红球2个白球,有2246,C C ∴4312244646115C C C C C ++=种 (2)设取x 个红球,y 个白球,则5(04)27(06)x y x x y y +=≤≤⎧⎨+≥≤≤⎩∴23x y =⎧⎨=⎩或32x y =⎧⎨=⎩或41x y =⎧⎨=⎩∴符合题意的取法种数有233241464646C C C C C C ++=186种18. 解:设男生有x 人,则女生有8-x 人,依题意,21383x x C C A -=180,∴(1)2x x -(8-x )·6=180,x 3-9x 2+8x +60=0,x 3-5x 2-(4x 2-20x )-(12x -60)=0,(x -5)(x 2-4x -12)=0,∴x 1=5,x 2=6,x 3=-2(舍)。
19.解:展开式的通项为:Tr +1=(-1)r 1515r r rC -=(-1)r 2r 305615r r Cx-,⑴设T r +1项为常数项,则3056r -=0,得r =6,即常数项为T 7=26615C ; ⑵设T r +1项为有理项,则3056r -=5-56r 为整数,∴r 为6的倍数,又∵0≤r ≤15,∴r 可取0,6,12三个数。
⑶5-56r 为非负整数,得r =0或6,∴有两个整式项。
20解:21211121(),n r n r r r r n x m T T C x m ++-++++=⋅设的展开式通项公式为则21,1n r n r n +-==+令得1121n n n n x C m+++故此展开式中项的系数为 11212:n n n n n n C m C m +++=由题意知111(1),21221n m m n n n +∴==+++为的减函数 1212,,1,,2323n N m n m m *∈∴>==∴<≤又当时12(,]23m 故的取值范围是21. 证明:,,1,0,0,()022na b a b a b R n n N a b +*--∈>∈≥>≥≥不妨设则()()2222n n n na b a b a b a b a b +-+-+=++-故 02224442[()(),()()()()]2()2222222n n n nn nn n n n a b a b a b a b a b a b a b C C C C --++-+--+=++⋅++≥ ∴()22n n na b a b ++≥22.解:⑴∵a 1=3122m m m C A -⋅ ∴ 23321m mm +≥⎧⎨-≥⎩ ∴m=3由421()4x x -的展开式中的同项公式知T 2=2412421()4T C x x x -== ∴1n n a x -= ∴()() =11 11nn n x S x x x⎧⎪=⎨-≠⎪-⎩ ⑵当x =1时,123, 23nn n nn n n S n A C C C nC ==++++又∵1210(1)(2)0n n n n n n n n n A nC n C n C C C --=+-+-+++∴012 2()2nn n n nn n A n C C C C n =++++=⋅∴12n n A n -=⋅ 当x ≠1时,11nn x S x-=-,()()()212121221111111 []11 [21]1n nn n n nn n nn n n n n n nn x x x A C C C x x x C C C xC x C x C xx x---=+++---=+++-+++-=-+-∴()()12 =12(1) 11n n nn n x A x x x-⎧⋅⎪=⎨-+≠⎪-⎩。