A
能.过点A作AE⊥BC于点E,
则S菱形ABCD=底×高
B
D
=BC·AE.
E
C 思考 前面我们已经学习了菱形的对角线互相垂直, 那么能否利用对角线来计算菱形ABCD的面积呢?
问题2 如图,四边形ABCD是菱形,对角线AC,BD 交于点O,试用对角线表示出菱形ABCD的面积.
解:∵四边形ABCD是菱形,
证明:连接AC. ∵四边形ABCD是菱形, ∴AC平分∠BAD, 即∠BAC=∠DAC. ∵CE⊥AB,CF⊥AD, ∴∠AEC=∠AFC=90°. 又∵AC=AC, ∴△ACE≌△ACF. ∴AE=AF.
归纳 菱形是轴对称图形,它的两条对角线所在的直线 都是它的对称轴,每条对角线平分一组对角.
例3 如图,E为菱形ABCD边BC上一点,且AB=AE, AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.
A
O
C
∠DAC=∠BAC,∠DCA=∠BCA, D
∠ADB=∠CDB,∠ABD=∠CBD.
证明:(1)∵四边形ABCD是平行四边形,
∴AB = CD,AD = BC(平行四边形的对边相等)
又∵AB=AD,
∴AB = BC = CD =AD.
(2)∵AB = AD,
B
∴△ABD是等腰三角形.
A
O
又∵四边形ABCD是平行四边形,
第十八章 平行四边形
18.2.2 菱 形
第1课时 菱形的性质
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.了解菱形的概念及其与平行四边形的关系. 2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点)