4项目四材料力学基本知识
- 格式:pptx
- 大小:2.38 MB
- 文档页数:32
材料力学中的基本知识与原理材料力学是研究材料在外力作用下的变形和破坏行为的学科。
它是工程学的重要基础学科,对于工程设计、材料选择和结构分析都有着重要的指导作用。
在材料力学中,有一些基本的知识和原理是必须要了解和掌握的。
1. 应力与应变应力是指单位面积上的力,通常用符号σ表示。
应变是指物体在外力作用下发生的形变,通常用符号ε表示。
应力与应变之间的关系可以通过应力-应变曲线来描述。
在弹性阶段,应力与应变呈线性关系,即胡克定律。
而在超过材料弹性极限后,应力与应变的关系将变得非线性,并可能导致材料的破坏。
2. 弹性模量与刚度弹性模量是材料在弹性阶段应力与应变之间的比值,通常用符号E表示。
刚度是指材料对于外力的抵抗能力,刚度越大,材料越难发生形变。
弹性模量与刚度有着密切的关系,弹性模量越大,材料的刚度也越大。
3. 断裂与破坏断裂和破坏是材料力学中重要的研究内容。
断裂是指材料在外力作用下发生的断裂现象,通常分为脆性断裂和韧性断裂两种。
脆性断裂是指材料在弹性阶段后突然发生断裂,韧性断裂是指材料在外力作用下逐渐发生断裂。
破坏是指材料在外力作用下失去原有的功能和性能。
4. 强度与韧性强度是指材料抵抗外力破坏的能力,通常用抗拉强度、抗压强度等来表示。
韧性是指材料吸收能量的能力,通常用断裂韧性来表示。
强度和韧性是材料力学中两个重要的性能指标,不同的工程应用需要不同的强度和韧性。
5. 疲劳与寿命材料在长期循环加载下可能会出现疲劳现象,即在应力远低于材料的抗拉强度的情况下,材料会因为循环加载而逐渐疲劳积累,最终导致破坏。
疲劳寿命是指材料在特定应力循环下能够承受的次数。
疲劳与寿命是材料力学中需要重点研究和考虑的问题,对于工程设计和结构安全有着重要的影响。
6. 材料的选择与设计在工程设计中,材料的选择是一个关键的问题。
不同的工程应用需要不同的材料,需要考虑到材料的力学性能、耐久性、经济性等因素。
材料力学为工程设计提供了重要的指导原则,帮助工程师选择合适的材料并进行合理的设计。
材料力学基础知识点整理引言本文旨在整理材料力学的基础知识点,帮助读者更好地理解和掌握这一领域的基本概念和原理。
1. 应力和应变- 应力:应力是物体内部的力与物体横截面积的比值,描述了单位面积内的力的大小和方向。
- 应变:应变是物体在受到外力作用下产生的形变或变形量,描述了物体形变程度的量度。
2. 弹性力学- 弹性材料:弹性材料受到外力作用后可以恢复原来形状和大小的材料。
- 弹性常数:描述了材料的弹性性质,包括弹性模量、剪切模量和泊松比等。
- 弹性变形:弹性变形是指材料在受到外力作用下产生的可恢复的形变。
- 胡克定律:弹性力学中的基本定律,描述了弹性材料应力与应变之间的线性关系。
3. 塑性力学- 塑性材料:塑性材料在受到外力作用后会发生不可逆的形变和破坏。
- 屈服点:塑性材料受到应力作用达到一定值时开始发生可观察的塑性变形的应力值。
- 塑性变形:塑性变形是指材料在受到外力作用下产生的不可恢复的形变。
- 塑性流动:塑性材料在受到应力作用下发生塑性变形的过程。
4. 破裂力学- 破裂点:材料在受到应力作用下失效的应力值,也是材料破裂的起始点。
- 断裂韧性:材料抵御破裂的能力,即材料在受到应力作用下能吸收的能量大小。
- 破裂模式:根据材料破裂的形式和特征进行分类,如脆性破裂和韧性破裂等。
5. 疲劳力学- 疲劳现象:材料在循环加载下产生的疲劳破坏现象,即反复加载引起的损伤和破裂。
- 疲劳寿命:材料在特定加载条件下能够承受的循环次数或应力循环次数。
- 疲劳强度:材料在特定寿命下能够承受的最大应力。
结论本文对材料力学基础知识点进行了整理和概述,包括应力和应变、弹性力学、塑性力学、破裂力学和疲劳力学等内容。
希望这些知识点能够帮助读者建立对材料力学基础的扎实理解,为进一步学习和研究提供基础。
材料力学的基本知识与积累材料力学是研究材料在受力下的力学性能和变形行为的学科,是工程学中的重要基础学科之一。
它涉及到材料的强度、刚度、韧性、疲劳寿命等方面的问题,对于工程设计和材料选择具有重要的指导意义。
一、材料的力学性能材料的力学性能是指材料在受力下表现出的各种力学特性。
其中,强度是指材料在受力下能够承受的最大应力值,是衡量材料抗拉、抗压能力的指标。
刚度是指材料在受力下的变形程度,是衡量材料抗变形能力的指标。
韧性是指材料在受力下的断裂性能,是衡量材料抗断裂能力的指标。
疲劳寿命是指材料在长期受到交变应力作用下的寿命,是衡量材料抗疲劳性能的指标。
二、材料的力学行为材料在受力下的变形行为可以分为弹性变形和塑性变形两种。
弹性变形是指材料在受力下发生的可恢复的变形,即当外力作用消失时,材料能够恢复到原来的形状。
塑性变形是指材料在受力下发生的不可恢复的变形,即当外力作用消失时,材料无法完全恢复到原来的形状。
材料的弹性模量是衡量材料抗变形能力的指标,塑性变形的程度则取决于材料的屈服强度。
三、材料的屈服与断裂材料的屈服是指材料在受力下发生的从弹性变形到塑性变形的转变。
当材料受到的应力超过其屈服强度时,材料开始发生塑性变形。
而材料的断裂是指材料在受力下发生的从塑性变形到断裂的转变。
当材料受到的应力超过其抗拉强度时,材料发生断裂。
因此,对于工程设计和材料选择来说,需要考虑材料的屈服强度和抗拉强度,以保证材料的安全可靠性。
四、材料的疲劳寿命材料的疲劳寿命是指材料在长期受到交变应力作用下的寿命。
疲劳寿命的长短取决于材料的疲劳强度和疲劳寿命曲线。
疲劳强度是指材料在一定的应力水平下能够承受的循环应力次数,疲劳寿命曲线则是描述材料在不同应力水平下的疲劳寿命的函数关系。
对于工程设计来说,需要选择具有较长疲劳寿命的材料,以保证工程结构的使用寿命。
五、材料力学的积累材料力学的积累是指通过实验和理论研究,对材料的力学性能和变形行为进行总结和归纳的过程。
材料⼒学概念及基础知识⼀、基本概念1 材料⼒学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的⽭盾。
2 强度:构件抵抗破坏的能⼒。
3 刚度:构件抵抗变形的能⼒。
4 稳定性:构件保持初始直线平衡形式的能⼒。
5 连续均匀假设:构件内均匀地充满物质。
6 各项同性假设:各个⽅向⼒学性质相同。
7 内⼒:以某个截⾯为分界,构件⼀部分与另⼀部分的相互作⽤⼒。
8 截⾯法:计算内⼒的⽅法,共四个步骤:截、留、代、平。
9 应⼒:在某⾯积上,内⼒分布的集度(或单位⾯积的内⼒值)、单位Pa。
10 正应⼒:垂直于截⾯的应⼒(σ)11 剪应⼒:平⾏于截⾯的应⼒( )12 弹性变形:去掉外⼒后,能够恢复的那部分变形。
13 塑性变形:去掉外⼒后,不能够恢复的那部分变形。
14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。
⼆、拉压变形15 当外⼒的作⽤线与构件轴线重合时产⽣拉压变形。
16 轴⼒:拉压变形时产⽣的内⼒。
17 计算某个截⾯上轴⼒的⽅法是:某个截⾯上轴⼒的⼤⼩等于该截⾯的⼀侧各个轴向外⼒的代数和,其中离开该截⾯的外⼒取正。
18 画轴⼒图的步骤是:①画⽔平线,为X轴,代表各截⾯位置;②以外⼒的作⽤点为界,将轴线分段;③计算各段上的轴⼒;④在⽔平线上画出对应的轴⼒值。
(包括正负和单位)19 平⾯假设:变形后横截⾯仍保持在⼀个平⾯上。
20 拉(压)时横截⾯的应⼒是正应⼒,σ=N/A21 斜截⾯上的正应⼒:σα=σcos2α22 斜截⾯上的切应⼒:α=σSin2α/223 胡克定律:杆件的变形时与其轴⼒和长度成正⽐,与其截⾯⾯积成反⽐,计算式△L=NL/EA(适⽤范围σ≤σp)24 胡克定律的微观表达式是σ=Eε。
25 弹性模量(E)代表材料抵抗变形的能⼒(单位Pa)。
26 应变:变形量与原长度的⽐值ε=△L/L(⽆单位),表⽰变形的程度。
27 泊松⽐(横向变形与轴向变形之⽐)µ=∣ε1/ε∣28 钢(塑)材拉伸试验的四个过程:⽐例阶段、屈服阶段、强化阶段、劲缩阶段。
材料力学必备知识点1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。
2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。
3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。
4、 低碳钢:含碳量在0.3%以下的碳素钢。
5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。
>5%的材料称为塑性材料: <5%的材料称为脆性材料8、 失效:断裂和出现塑性变形统称为失效9、 应变能:弹性固体在外力作用下,因变形而储存的能量10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。
12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力13、三种形式的梁:简支梁、外伸梁、悬臂梁14、组合变形:由两种或两种以上基本变形组合的变形15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。
16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。
17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。
18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。
材料力学主要知识点一、基本概念1、构件正常工作的要求:强度、刚度、稳定性。
2、可变形固体的两个基本假设:连续性假设、均匀性假设。
另外对于常用工程材料(如钢材),还有各向同性假设。
3、什么是应力、正应力、切应力、线应变、切应变。
杆件截面上的分布内力集度,称为应力。
应力的法向分量σ称为正应力,切向分量τ称为切应力。
杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。
4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。
5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。
6、强度理论及其相当应力(详见材料力学ⅠP229)。
7、截面几何性质A 、截面的静矩及形心①对x 轴静矩⎰=A x ydA S ,对y 轴静矩⎰=Ay xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。
B 、极惯性矩、惯性矩、惯性积、惯性半径① 极惯性矩:⎰=A P dA I 2ρ② 对x 轴惯性矩:⎰=A x dA y I 2,对y 轴惯性矩:⎰=A y dA x I 2 ③ 惯性积:⎰=Axy xydA I ④ 惯性半径:A I i x x =,A I i y y =。
C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b为y c 距y 轴距离。
② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离,b 为截面形心距y 轴距离。
二、杆件变形的基本形式1、轴向拉伸或轴向压缩:A 、应力公式 AF =σ B 、杆件伸长量EA F N l l =∆,E 为弹性模量。
C 、应变公式E σε=D 、对于偏心拉压时,通常将荷载转换为轴心受力与偏心矩进行叠加。
材料力学基本概念知识点总结材料力学是研究物质材料的力学性质和行为的学科,是许多工程学科的基础和核心内容之一。
本文将对材料力学的基本概念进行总结,包括应力、应变、弹性、塑性等方面。
一、应力与应变1.1 应力应力是描述物体内部受力情况的物理量。
一般分为法向应力和切应力两个方向,分别表示作用在物体上的垂直和平行于截面的力。
法向应力可进一步分为压应力和拉应力,分别表示作用在物体上的压缩力和拉伸力。
1.2 应变应变是物体在受力作用下发生形变的度量。
一般分为线性应变和剪切应变两类,分别表示物体长度或体积的变化以及物体形状的变化。
线性应变可进一步分为正应变和负应变,分别表示物体拉伸或压缩时的形变情况。
二、弹性与塑性2.1 弹性弹性是材料的一种特性,指材料在受力作用下能够恢复原先形状和大小的能力。
即当外力停止作用时,材料能够完全恢复到初始状态。
弹性按照应力-应变关系可分为线弹性和非线弹性,前者表示应力与应变之间呈线性关系,后者表示应力与应变之间不呈线性关系。
2.2 塑性塑性是材料的另一种特性,指材料在受力作用下会发生形变并保持在一定程度上的能力。
即当外力停止作用时,材料只能部分恢复到初始状态。
塑性按照塑性变形的特点可分为可逆塑性和不可逆塑性,前者表示形变能够通过去应力恢复到初始状态,后者表示形变无法通过去应力完全恢复。
三、应力-应变关系应力-应变关系是描述材料力学行为的重要概念之一。
在材料的弹性范围内,应力与应变之间满足线性比例关系,也就是胡克定律。
根据胡克定律,应力等于弹性模量与应变的乘积。
四、杨氏模量与剪切模量4.1 杨氏模量杨氏模量是衡量材料抵抗线弹性形变的能力,也叫做弹性模量。
杨氏模量越大,材料的刚性越高,抗拉伸和抗压缩的能力越强。
4.2 剪切模量剪切模量是衡量材料抵抗剪切形变的能力,也叫做切变模量。
剪切模量越大,材料的抗剪强度越高,抗剪形变的能力越强。
五、破坏力学破坏力学是研究材料在外力作用下失效的学科。
材料力学的基本知识与原理材料力学是研究材料在外力作用下的力学性能和变形规律的学科。
它是工程领域中至关重要的一门学科,对于材料的设计、制造和使用具有重要的指导意义。
本文将介绍材料力学的基本知识与原理,帮助读者更好地理解材料的力学行为。
一、弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的弹性变形。
弹性变形是指材料在外力作用下,当外力消失时能够恢复到原来的形态。
弹性力学的基本原理是胡克定律,即应力与应变成正比。
胡克定律可以用数学公式表示为:σ = Eε,其中σ为应力,E为杨氏模量,ε为应变。
杨氏模量是材料的一种机械性能指标,代表材料的刚度。
应力和应变的关系可以通过拉伸试验来测定,从而得到材料的杨氏模量。
二、塑性力学塑性力学是研究材料在外力作用下的塑性变形。
塑性变形是指材料在外力作用下,当外力消失时不能完全恢复到原来的形态。
塑性变形主要发生在金属等材料中,而非金属材料如陶瓷和塑料则主要表现为弹性变形。
塑性变形的特点是应力超过一定临界值后,材料开始产生塑性流动。
在塑性流动过程中,材料的内部发生晶格滑移和位错运动,从而导致材料的形态发生变化。
塑性变形的量化指标是屈服强度和延伸率,屈服强度代表材料的抗拉强度,延伸率代表材料的延展性。
三、断裂力学断裂力学是研究材料在外力作用下的断裂行为。
断裂是指材料在外力作用下发生破裂。
断裂行为主要受到应力集中和裂纹的影响。
应力集中是指在材料中存在应力集中的区域,通常是由于几何形状的不均匀性或者外力的集中作用导致的。
裂纹是材料内部的缺陷,它可以是由于材料制造过程中的缺陷或者外力作用导致的。
在外力作用下,裂纹周围的应力集中,从而导致裂纹的扩展。
断裂的量化指标是断裂韧性,它代表材料抵抗断裂的能力。
四、疲劳力学疲劳力学是研究材料在循环加载下的疲劳行为。
疲劳是指材料在循环加载下发生破坏。
循环加载是指材料在外力作用下交替受到拉伸和压缩的加载。
疲劳破坏是一种逐渐发展的过程,通常以裂纹的扩展为主要特征。
材料力学基础材料力学是研究材料在外力作用下的变形、破坏和性能的一门学科。
它是材料科学的重要组成部分,对于材料的设计、制备和应用具有重要的指导意义。
本文将介绍材料力学的基础知识,包括应力、应变、弹性模量、屈服强度等内容。
首先,我们来介绍应力和应变的概念。
应力是单位面积上的力,通常用σ表示,其计算公式为F/A,其中F为受力,A为受力面积。
应变是物体长度相对于初始长度的变化量,通常用ε表示,其计算公式为ΔL/L,其中ΔL为长度变化量,L为初始长度。
应力和应变是描述材料在外力作用下的变形情况的重要物理量。
接下来,我们将介绍材料的弹性模量。
弹性模量是描述材料抵抗变形的能力的物理量,通常用E表示。
对于线弹性材料,弹性模量可以通过应力-应变关系来计算,即E=σ/ε。
弹性模量是衡量材料刚度和变形能力的重要参数,不同材料的弹性模量具有很大差异,对于材料的选择和设计具有重要意义。
除了弹性模量,材料的屈服强度也是一个重要的力学性能参数。
屈服强度是材料在受力过程中开始发生塑性变形的应力值,通常用σy表示。
当材料受到的应力超过屈服强度时,材料会发生塑性变形,这对于材料的加工和使用具有重要的影响。
屈服强度是衡量材料抗拉伸能力的重要指标,对于材料的工程应用具有重要意义。
此外,材料的断裂行为也是材料力学研究的重要内容。
材料的断裂行为通常可以通过拉伸试验来研究,通过拉伸试验可以得到材料的断裂应力和断裂应变。
断裂应力和断裂应变是描述材料断裂性能的重要参数,对于材料的设计和评价具有重要意义。
综上所述,材料力学是研究材料在外力作用下的变形、破坏和性能的重要学科,其基础知识包括应力、应变、弹性模量、屈服强度等内容。
这些基础知识对于材料的设计、制备和应用具有重要的指导意义,是材料科学不可或缺的重要组成部分。
希望本文的介绍能够对读者对材料力学有所了解,并对材料科学的学习和研究有所帮助。
材料力学知识点总结在材料科学领域,材料力学是一个重要的分支,它研究材料的力学性质,包括材料的强度、刚度、韧性等方面。
材料力学的研究可以帮助我们理解和预测材料在不同应力条件下的行为,并为材料的设计和应用提供依据。
本文将对材料力学的一些重要知识点进行总结。
1. 弹性模量弹性模量是材料应力和应变之间的比例系数,描述材料在受力时的变形能力。
其计算公式为:E = σ / ε其中,E表示弹性模量,σ表示应力,ε表示应变。
弹性模量越大,材料的刚度越高,即材料越不容易发生形变。
常见的材料弹性模量有杨氏模量、剪切模量等。
2. 屈服强度屈服强度是材料在拉伸过程中发生塑性变形的最大应力。
当材料受到超过屈服强度的应力时,将产生塑性变形。
屈服强度是材料强度的重要指标之一,对于材料的选择和设计具有重要意义。
3. 断裂强度断裂强度是材料在拉伸过程中发生断裂的最大应力。
材料的断裂强度是其极限强度,表示材料能够承受的最大应力。
对于工程结构和材料的可靠性分析,断裂强度是一个关键参数。
4. 韧性韧性是材料抵抗断裂的能力,描述了材料在发生破坏前吸收的能量。
韧性与断裂强度密切相关,通常情况下,韧性较高的材料在承受冲击和动态载荷时表现更好。
韧性可以通过材料的断裂延伸率来评估。
5. 硬度硬度是材料抵抗划痕和压痕的能力,常用来评估材料的耐磨性和耐腐蚀性。
硬度测试可以通过洛氏硬度、巴氏硬度等方法进行测量。
硬度与材料的结晶度、晶粒尺寸、相变和合金化等因素有关。
6. 断裂韧性断裂韧性是材料在发生断裂时的能量吸收能力,同时考虑了材料的强度和韧性。
断裂韧性通常用断裂韧性指标(例如KIC)来评估,该指标描述了材料在存在裂纹的情况下抵抗断裂的能力。
7. 塑性变形塑性变形是材料在应力作用下发生永久性变形的能力。
与弹性变形不同,塑性变形发生后材料不能恢复其原始形状。
塑性变形通常发生在材料的屈服点之后。
8. 蠕变蠕变是材料在长时间暴露于高温和恒定应力下发生的塑性变形。