最新的八级(上)数学竞赛练习题(含答案)
- 格式:doc
- 大小:257.00 KB
- 文档页数:5
八年级上数学竞赛练习题含答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。
八年级上学期数学竞赛试题(含答案)题号 一 二 三 四 五 得分 得分一、选择题(每题3分,共42分)将唯一正确答案的代号字母填在下面的表格内: 题号 1 2 345 6 7 8 9 10 11 12 13 14 答案1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称的图形有2.已知三角形两边长分别为3和5,则第三边a 的取值范围是 A .53<<a B .83<<a C .52<<a D .82<<a 3.下列运算错误的是 A .333532a a a -=B .633a a a ÷=C .325()()()a b b a a b --=-D .236m n m n +⨯=4. 一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为 A .8 B .9 C .10 D .125. 计算45(210)(410)-⨯⨯⨯的正确结果是A. 20210-⨯B. 9210⨯C. 9810⨯D. 9810-⨯ 6.下列各式由左边到右边的变形中,是分解因式的为A B C DA .ay ax y x a +=+)(B .4)4(442+-=+-x x x xC .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+-7. 若321()44m n x y x y x ÷=,则,m n 的值分别是A.6,1m n ==B.5,1m n ==C.5,0m n ==D.6,0m n ==8.下列分式运算中正确的是 A. a acb bc= B.x y y x x y x y --=+- C.321x y x xy x +=+ D. 0.33100.20.525a b a ba b a b++=++9.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是A. AB =AD ,AC =AEB. AB =AD ,BC =DEC. AC =AE ,BC =DED. 以上都不对10.在平面直角坐标系中,已知点(,3)A m 与点(4,)B n 关于y 轴对称,那么2015()m n + 的值为A .1-B .1C .20157-D .2015711.如果214x x c ++是一个完全平方式,那么常数c 的值可以是 A .49 B .169 C .49±D .169±12.对于任何整数a ,多项式2(35)4a +-都能第9题图A.被9整除B.被a 整除C.被1a +整除D.被1a -整除13.如图,在直角ABC △中,90C =∠,30B =∠,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若3AC =,1CE =,则△DBE 的周长为 A .13+ B .23+C .231+D .33+14. 如图为杨辉三角系数表,它的作用是指导读者按规律写出形如()n a b +(其中 n 为正整数)展开式的系数,例如:(a +b )=a +b ,(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,那么6()a b +展开式中前四项系数分别为A .1,5,6,8B .1,5,6,10C .1,6,15,18D .1,6,15,20二、填空题:(每题3分,共15分)答案直接填在题中横线上. 15. 计算:()2323x x ⋅-= .16. 分解因式:(1)(3)4x x -++=___________. 17.若分式2244x x x --+的值为0,则x 的值为 .18. 如图,在△ABC 中,AB =6,BC =8,∠B =60°,将第18题图第13题图E DCBA△ABC沿射线BC 的方向平移2个单位后,得到△'''A B C ,连 接'A C ,则△''A B C 的周长为________.19. 新定义一种运算:22@()()a b a b a b =+--,下面给出关于这种运算的几个结论:①1@(2)8-=-;②@@a b b a =;③若@0a b =,则a 一定为0;④若0a b +=,那么2(@)(@)8a a b b a +=.其中正确结论的序号是 . 三、开动脑筋,你一定能做对!(本大题共3小题,共19分)20. (本题共6分)如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F ,若AC =BD , AB =ED ,BC =BE ,求证:∠ACB =12∠AFB .21.(本题共7分)先化简再求值:已知y x A +=2,y x B -=2,求代数式22()(2)A B x y --的值,其中1x =-,2y =.F E DCBA第20题图22.(本题共6分)如图所示,ABC △中,110BAC ∠=︒,点D,E,F 分别在线段AB 、BC 、AC 上,且BD =BE ,CE =CF ,求DEF ∠的度数.四、认真思考,你一定能成功!(本大题共2小题,共21分)23.(12分)如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:(1)由图观察易知A (0,4)关于直线l 的对称点A '的坐标为(4,0),请在图中分别 标明B(5,2) 、C(-2,3) 关于直线l 的对称第22题图FEDCBA点B'、C'的位置,并写出他们的坐标:B'、C';归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点(,)P a b关于第一、三象限的角平分线l的对称点P'的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-2)、E(-1,-3),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.(要有必要的画图说明,并保留作图痕迹)24.(本题共9分)设kxy=,是否存在实数k,使得代数式5x?若能,请求出所有满足条件的k的值;----能化简为2()(2)3(2)x y x y x x y若不能,请说明理由.五、相信自己,加油呀!(本大题共2小题,共23分)25. (11分)已知:△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图1,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)如图2,若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?如果是,请写出证明过程;如果不是,请说明理由.26.(本题12分)阅读材料: 分解因式:223x x +-解:原式=22113x x ++-- =2(21)4x x ++-=2(1)4x +- =(12)(12)x x +++-=(3)(1)x x +-此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题: (1)分解因式: 2243m mn n -+;(2)无论m 取何值,代数式232015m m -+总有一个最小值,请你尝试用配FE DCBA方法求出它的最小值.八年级数学试题参考答案及评分建议15. 518x 16. 2(1)x + 17. 2x =- 18. 18 19.①②④三、解答题(共63分)20. (本题共6分)证明:∵AC =BD , AB =ED ,BC =BE , ∴△ABC ≌△DEB ,……………………………………………2分 ∴∠ACB=∠EBD,…………………………………………………3分 ∵∠AFB 是△BFC 的外角,∴∠AFB=∠ACB+∠EBD , ∴∠AFB=2∠ACB ,即∠ACB =12∠AFB.…………………………………………………6分 21.(本题共7分)解:原式=8(2)xy x y -=22816x y xy -…………………………… 5 分当1,2x y =-=时,原式=16+64=80. ……………………………… 7 分 22.(本题共6分)解:不妨设∠B=x ,∠C =y ,则在△BDE 中,∵BD =BE ,∴∠B ED =12(180°-x ),同理在在△CEF中,∵CE =CF ,∴∠CEF =12(180°-y ),………………2分 因为∠B ED +∠DEF +∠CEF =180°,FEDCBA∴∠DEF =180°-(∠B ED +∠CEF )=180°-11(180)(180)22x y ⎡⎤-+-⎢⎥⎣⎦=1()2x y +……………………………4分 又∵110BAC ∠=︒,∴18011070x y +=︒-︒=︒,故∠DEF =170352⨯︒=︒.………6分 23.(本题共9分)解:能.……………………………………………………………1分假设存在实数k ,因为()(2)3(2)x y x y x x y ----=224x y -+,………………3分将kx y =代入,原式=224()x kx -+=22(4)k x -,………………………………5分∵22(4)k x -=25x ,∴245k -=,………………………………………………7分29k =,得3k =±.……………………………………………………………………9分24.(12分) 解:(1)由图可知,'(2,5)B ,'(3,2)C -;…………………………4分(2)由(1)可知,关于直线l 对称的点'(,)P b a ;……………………………………7分(3)作出点E 关于直线l 对称点F ,连接FD ,则QF =QE ,故EQ +QD =FQ +QD =FD.……………………………………………………12分25. (11分)证明:(1)连结AD , ∵AB AC =,∠BAC =90°,D 为BC 的中点,∴AD ⊥ BC ,BD =AD ,∴∠B =∠DAC =45°又BE =AF ,∴△BDE ≌△ADF (SAS )∴ED =FD ,∠BDE =∠ADF∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90°∴△DEF 为等腰直角三角形 …………………………… 5分(2)若E ,F 分别是AB ,CA 延长线上的点,如图所示.连结AD ∵AB =AC ,∠BAC =90°, D 为BC 的中点,∴AD =BD ,AD ⊥BC ∴∠DAC =∠ABD =45°,∴∠DAF =∠DBE =135°,又AF =BE ,∴△DAF ≌△DBE (SAS ),∴FD =ED ,∠FDA =∠EDB , ∴∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90°,∴△DEF 仍为等腰直角三角形.…………………………………………………11分26.(本题12分)解:(1)222224344m mn n m mn n n -+=-+- …………1分22(2)m n n =-- ………………………………3分 (3)()m n m n =--;………………………………6分(2)232015m m -+222333()()201522m m =-+-+…………………………7分 2233()()201522m =--+233()201224m =-+,………………………………8分 ∵23()02m -≥,∴2333()20122012244m -+≥,…………………………11分 即代数式232015m m -+的最小值为320124.…………………………………12分(备注:在解答题中,考生若用其它解法,应参照本评分标准给分)。
一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。
12. 下列分数中,最简分数是______。
13. 下列数中,能被5整除的是______。
14. 下列方程中,方程的解为x=3的是______。
15. 下列数中,平方根是正数的是______。
16. 下列代数式中,合并同类项后的结果为5x的是______。
17. 下列函数中,函数值为0的x值有______。
18. 下列数中,是合数的是______。
19. 下列图形中,面积最小的是______。
20. 若a=2,b=4,则a×b的值为______。
三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。
八年级上数学竞赛练习题含答案Newly compiled on November 23, 2020八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。
90y 千米()x 时()31.51O 八年级上学期数学竞赛试题 (共100分,时间:60分钟) 一、选择题(本题共10小题,每小题4分,共40分) 1. 判断下列几组数据中,可以作为直角三角形的三条边的是( ) A.6,15,17 B. 7,12,15 C. 13,15,20 D. 7,24,25 2. 平方根等于它本身的数是 ( ) A. 0 B. 1,0 C. 0, 1 ,-1 D. 0, -1 3. 下列式子正确的是 ( ) A.9)9(2-=- B.525±= C.1)1(33-=- D.2)2(2-=- 4. 点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于y 轴的对称点2P 的坐标是( ) A.(-4,-8) B.(4,8) C.(-4,8) D.(4,-8) 5. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n (厘米)与燃烧时间 t(时)的函数关系的图象是 ( ) A B C D 6. 若点(m ,n)在函数y =2x +1的图象上,则2m -n 的值是( ) A .2 B .-2 C .1 D .-1 7.设面积为3的正方形的边长为x ,那么关于x 的说法正确的是( ) A .x 是有理数 B .x ±=3 C .x 不存在 D .x 取1和2之间的实数 8. 在平面直角坐标系中,将五边形的各顶点的横坐标都减5,纵坐标保持不变,那么该五边 形( ) A.横向向右平移5个单位 B.横向向左平移5个单位 C.纵向向上平移5个单位 D.纵向向下平移5个单位 9.若2x+5y+4z=6,3x+y-7z=-4,则x+y-z 的值为( ) A.-1 B.0 C.1 D.4 10. 已知03132=+++x x ,则2015321x x x x +++++ 的值为( ) A.0 B.1 C.-1 D.2015 二、填空题:(本题共6个小题,每小题5分,共30分。
数学竞赛8年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是无理数?A. √9B. √16C. πD. 1/22. 二元一次方程组 x + y = 5, 2x y = 3 的解是?A. x = 2, y = 3B. x = 3, y = 2C. x = 1, y = 4D. x = 4, y = 13. 函数 y = 2x + 3 的图像是一条直线,它的斜率是?A. 2B. 3C. -2D. -34. 下列哪个图形不是平行四边形?A. 矩形B. 菱形C. 正方形D. 直角三角形5. 下列哪个数是8的立方根?A. 2B. 4C. 6D. 8二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 两个负数相乘的结果是正数。
()3. 0的任何次幂都是0。
()4. 对角线互相垂直的四边形一定是菱形。
()5. 一元二次方程 ax^2 + bx + c = 0 的判别式是 b^2 4ac。
()三、填空题(每题1分,共5分)1. 平方根定义:如果一个数x的________等于a,那么x是a的平方根。
2. 一元二次方程的解公式是:x = [-b ± √(b^2 4ac)] / 2a,这个公式被称为__________。
3. 两个函数如果满足 f(x) = g(x) 对所有x都成立,那么这两个函数是__________。
4. 如果一个三角形的两边之和等于第三边,那么这个三角形是__________。
5. 圆的面积公式是__________。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是等差数列?给出一个等差数列的例子。
3. 解释一下函数的单调性。
4. 什么是相似三角形?相似三角形有哪些性质?5. 如何计算一个圆的周长?五、应用题(每题2分,共10分)1. 解方程:2x 5 = 3x + 2。
2. 计算下列表达式的值:√(27) + √(48) √(125)。
八年级上册数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个表达式的结果是正数?A. \((-3) \times (-2)\)B. \((-3) \times (-3)\)C. \(3 \times (-2)\)D. \((-3) \times 3\)答案:A3. 一个数的平方是16,这个数是:A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 一个三角形的三个内角分别是30°、60°和90°,这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形答案:A5. 一个数的绝对值是5,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C6. 计算下列哪个表达式的结果是0?A. \((-2) + 2\)B. \((-2) \times 2\)C. \((-2) - 2\)D. \((-2) \div 2\)答案:A7. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B8. 一个数除以-1的结果是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:A9. 一个数的倒数是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:B10. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。
答案:±52. 一个数的立方是27,这个数是______。
答案:33. 如果一个三角形的两个内角分别是40°和70°,那么第三个内角是______。
答案:70°4. 一个数的绝对值是7,这个数是______。
答案:±75. 一个数除以-2的结果是-3,这个数是______。
初中数学八年级上数学竞赛试题含答案Newly compiled on November 23, 20200 1 2-1A 八年级(上)数学竞赛试题一、填空题:(40分)1、在ABC Rt ∆中,b a 、为直角边,c 为斜边,若14=+b a ,10=c ,则ABC ∆的面积是 ;2、计算:=⋅27 311 ;3 313÷⨯= ;2 3 2 +-= ; 3、某位老师在讲实数时,画了一个图(如图1),即以数轴的单位长线段为边作一个正方形,然后以0点为圆心,正方形的对角线长为半径画图,交x 轴于一点A ,作这样的图是用来说明 ;42,又出现了一个方格体正向下运动,为了使所有图案消失,你必须按 后 才能拼一个完整图案,从而使图案自动消失(游戏机有此功能)。
5、如图3,=∠+∠+∠+∠+∠+∠F E D C B A ;6、图4是一住宅小区的长方形花坛图样,阴影部分是草地,空地是四块同样的菱形,则草地与空地的面积之比为 ;(6)7、如图5,一块白色的正方形木板,边长是cm 18,上面横竖各有两根木条(阴影部分),宽都是cm 2,则白色部分面积是 2cm ;8、如图6,一块正方形地板由全等的正方形瓷砖铺成,这地板上的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是 ; 二、选择题:(30分)9、CD 是ABC Rt ∆斜边AB 上的高,若2=AB ,1:3:=BC AC ,则CD 为( )A 、51B 、52 C 、53D 、5410、如图,长方形ABCD 中,3=AB ,4=BC ,若将该矩形折叠,使C 点与A 点重合,则折痕EF 的长为( )A 、B 、3.75C 、D 、 11、如果a a -=-1 1 ,则a 的取值范围是( )A 、1=aB 、10<<aC 、0≥aD 、10≤≤a 12、若2 2 -+-x x 有意义,则x 的取值为( )A 、2>xB 、2<xC 、2≤xD 、2=x13、如上中图所示,一块边长为cm 10的正方形木板ABCD ,在水平桌面上绕点D 按顺时针方向转到D C B A ''''的位置时,顶点B 从开始到结束所经过的路径为( ) A 、cm 20 B 、cm 220 C 、cm 10π D 、cm 25π14、如上右图所示,设ABCD 边上任意一点,设CMB ∆的面积为2S ,CDM ∆的面积为S ,AMD ∆的面积为1S ,则有( )A 、21S S S +=B 、21S S S +> C 、21S S S +< D 、不能确定 三、画图题:(12分)15、如图,历史上最有名的军师诸葛亮,率精骑兵与司马懿对阵,诸葛亮一挥羽扇,军阵瞬时由左图变为右图,其实只移动了其中的3骑而己,请问如何移动(在图形上画出来即可)16、有一等腰梯形纸片,其上底和腰长都是a ,下底的长是a 2,你能将它剪成形状、大小完全一样的四块吗若能,请画出图形。
八年级上数学竞赛题一、选择题(每题3分,共30分)1. 若a + b = 3,ab = 2,则a^2+b^2的值为()- A. 5.- B. 6.- C. 7.- D. 8.- 解析:根据完全平方公式(a + b)^2=a^2+2ab + b^2,已知a + b = 3,ab = 2,则a^2+b^2=(a + b)^2-2ab=3^2-2×2 = 9 - 4=5,所以答案是A。
2. 已知x+(1)/(x)=3,则x^2+(1)/(x^2)的值为()- A. 7.- B. 9.- C. 11.- D. 13.- 解析:对x+(1)/(x)=3两边平方,(x+(1)/(x))^2=x^2+2+(1)/(x^2) = 9,所以x^2+(1)/(x^2)=9 - 2=7,答案是A。
3. 一个三角形的三条边长分别为a、b、c,且(a - b)(b - c)(c - a)=0,则这个三角形一定是()- A. 等腰三角形。
- B. 等边三角形。
- C. 直角三角形。
- D. 等腰直角三角形。
- 解析:因为(a - b)(b - c)(c - a)=0,所以a - b = 0或b - c = 0或c - a = 0,即a = b或b = c或c=a,至少有两边相等,所以这个三角形一定是等腰三角形,答案是A。
4. 若x^m=3,x^n=2,则x^m - n的值为()- A. (3)/(2)- B. (2)/(3)- C. 1.- D. 5.- 解析:根据同底数幂的除法法则x^m - n=frac{x^m}{x^n},已知x^m=3,x^n=2,所以x^m - n=(3)/(2),答案是A。
5. 已知2^m=a,32^n=b,则2^3m + 10n的值为()- A. a^3b^2- B. a^3+b^2- C. a^3b- D. 3a + 10b- 解析:因为32^n=(2^5)^n=2^5n=b,2^m=a,则2^3m+10n=2^3m×2^10n=(2^m)^3×(2^5n)^2=a^3b^2,答案是A。
八年级(上)数学竞赛题
一、选择题
1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <y
z+x ,则x 、y 、z 三个数的大小关系是( )
A 、z<x<y
B 、y<z<x
C 、x<y<z
D 、z<y<x
2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个
B 、4个
C 、5个
D 、无数个
3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680
B 、720
C 、745
D 、760
4、如果不等式组⎩⎨
⎧<-≥-0
80
9b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b
的有序数对(a 、b )共有( )
A.17个
B.64个
C.72个
D.81个
5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A 到G ,再顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关后,则开着的灯是( )
A 、A.C.E.G
B 、 A.C.F
C 、 B.D.F
D 、C.E.G 6、已知1
3x x
-
=,那么多项式3275x x x --+的值是( ) A .11 B .9 C .7 D .5 7、线段1
2
y x a =-
+(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为( )
A .6
B .8
C .9
D .10
8、已知四边形ABCD 为任意凸四边形,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,
用S 、P 分别表示四边形ABCD 的面积和周长;S 1、P 1分别表示四边形EFGH 的面积和周长.设K =
S S 1,K 1 = P
P 1
,则下面关于K 、K 1的说法正确的是( ). A .K 、K 1均为常值 B .K 为常值,K 1不为常值 C .K 不为常值,K 1为常值 D .K 、K 1均不为常值 二、填空题
1、如图,△ABC 是一个等边三角形,它绕着点P 旋转,可以与等边
△ABD 重合,则这样的点P 有_______个。
2、如图,现有棱长为a 的8个正方体堆成一个棱长为2a 的正方体,
它的主视图、俯视图、左视图均为一个边长为2a 的正方形,现如果要求从图中上面4个正方体中拿去2个,而三个视图的形状仍不改变,那么拿去的2个正方体的编号应为__________。
3、一个周长约为5厘米的圆形硬币,从周长为20厘米的四边形的边界上某点出发,转动一圈后回到原出发点。
在这个过程中,圆心将画下一条封闭的曲线,这条曲线的长度是___________厘米。
4、有一个特别的计算器,只有蓝、红、黄三个键。
蓝键为“输入/删除”键(按它一下可输入一个数,再按它一下则将显示屏上的数删除)。
每按一下红键,则显示幕上的数变为原来的2倍;每按一下黄键,则显示屏的数的末位数自动消失。
现在先按蓝键输入21,要求:(1)操作过程只能按红键和黄键;(2)按键次数不超过6次;(3)最后输出的数是3。
请设计一个符合要求的操作程序: ;
5、恰有28个连续自然数的算术平方根的整数部分相同(其小数部分不等于零),那么这个相同的整数是______________。
6、如图,△ABC 中,∠A=30°以BE 为边,将此三角形对折,其次,又以BA 为边,再一次对折,C 点落在BE 上,此时∠CDB =82°,则原三角形的∠B =____________度。
D B
A
A B
C
D
7、若a 为正有理数,在-a 与a 之间(不包括-a 和a )恰有2007个整数,则a 的取值范围为_____________. 8、已知正整数a .b 满足134<b a <22
7
,则当b 最小时,a +b 的值为_____. 三、解答题:
1、某公园门票价格,对达到一定人数的团队,按团体票优惠,现有A 、B 、C 三个旅游团共72人,如果各团单独购票,门票依次为360元、、384元、480元;如果三个团合起来购票,总共可少花72元. ⑴这三个旅游团各有多少人?
⑵在下面填写一种票价方案,使其与上述购票情况相符:
2、如图,已知梯形ABCD 中,AD ∥BC ,CA 平分∠BCD ,AD =12,BC =22,CE =10, (1)试说明: AB =DE; (2)求CD 的长。
E
D
C
B
A
3、如图,D 为等腰△ABC 底边BC 的中点,E 、F 分别为AC 及其延长线上的点.又已知∠EDF = 90°,ED = DF = 1,AD = 5.求线段BC 的长.
F
E
D
C B A
参考答案
一、选择题:
ADCC BCAB 二、填空题:
1、3;
2、A 、C 或B 、D ;
3、25;
4、21-2-4-8-16-32-3或21-42-4-8-16-32-3或21-42-84-168-336-33-3;
5、14;
6、78;
7、1003<a≤1004;
8、21(分数为5/16); 三、解答题: 1、解:
(1)360+384+480-72=1152(元),1152÷72=16(元/人),即团体票是每人16元。
因为16不能整除360,所以A 团未达到优惠人数,若三个团都未达到优惠人数, 则三个团的人数比为360︰384︰480=15︰16︰20,即三个团的人数分别为
725115⨯、725116⨯、7251
20
⨯,均不是整数,不可能, 所以B 、C 两团至少有一个团本来就已达到优惠人数,这有两种可能:①只有C 团达到;②B 、C 两团都达到.
对于①,可得C 团人数为480÷16=30(人),A 、B 两团共有42人,A 团人数为4231
15
⨯,B 团人数为
4231
16
⨯,不是整数,不可能;所以必是②成立,即C 团有30人,B 团有24人,A 团有18人. (2)
2、先由AD 平行且等于BE 得到四边形ABED 为平行四边形,因此AB=DE ,再由角平分线得等腰,从而AD=CD=12;
3、作DG ⊥AC 于G ,得△ABD 与△ADG 为相似变换,又DG=1/2EF=22
1
,由勾股定理得AG=22
7,从而BD=75,BC=710;。