高考物理讲义必修二第14讲:动能定理(教师版)
- 格式:doc
- 大小:6.42 MB
- 文档页数:14
第七章机械能守恒定律7.动能和动能定理知识点1 动能物体由于运动而具有的能量叫动能。
表达式Ek=mv2,动能是状态量,单位是焦耳。
动能也是标量。
一般式中速度v为物体相对地面的运动速度,根据公式可知,动能恒大于或等于零。
知识点2 动能定理物体的动能变化是由合外力做的功决定的,反映这一规律的定理叫动能定理,其表达式为W=Ek2-Ek1。
当合外力对物体做正功时,物体的动能将增加,说明合外力是物体运动的动力;当合外力对物体做负功时,物体的动能将减小,说明合外力是物体运动的阻力;如果合外力对物体不做功(例如匀速圆周运动的向心力),物体的动能就不变化。
动能定理指出了物体动能变化的决定因素,因此计算物体的动能变化时,必须从合外力做功的角度来思考,尤其是在计算变力做功时,一般都选用动能定理处理。
知识点3 动能定理的应用动能定理揭示了合外力对物体做功与物体动能的变化之间的定量关系和因果联系。
动能定理既适用于恒力做功,也适用于变力做功,既适用于直线运动,也适用于曲线运动。
考点1 动能的概念【例1】关于动能,下列说法正确的是( )A.公式Ek=mv2中的速度v一般是物体相对于地面的速度B.动能的大小由物体的质量和速率决定,与物体运动的方向无关C.物体以相同的速率向东和向西运动,动能的大小相等但方向不同D.物体以相同的速率做匀速直线运动和曲线运动,其动能不同答案:A、B点拨:动能是标量,与速度的大小有关,而与速度的方向无关。
公式中的速度一般是相对于地面的速度。
易错警示:掌握动能是标量,只有大小而无方向。
动能的大小由质量和运动的速率决定,而与速度的方向无关。
物体速度变化,物体的动能不一定变化。
而动能变化,则速度一定变化。
考点2 动能定理【例2】一辆汽车以v1=6 m/s的速度沿水平路面行驶时,急刹车后能滑行l 1=3.6 m,如果以v2=8 m/s的速度行驶,在同样路面上急刹车后滑行的距离l2应为( )A.6.4 mB.5.6 mC.7.2 mD.10.8 m答案:A点拨:急刹车后,汽车只受摩擦阻力的作用,且两种情况下摩擦力大小是相同的,汽车的末速度皆为零。
知识结构导图核心素养目标物理观念:动能和动能变化量的概念.科学思维:应用牛顿第二定律结合运动学公式推导动能定理表达式.科学探究:体会通过实例探究动能瞬时性和相对性的思想方科学态度与责任:物体做正功、负功的意义和动能定理在实际中的应用.知识点一动能的表达式阅读教材第84~85页“动能的表达式1.定义:在物理学中用“12m v 2”这个量表示物体的动能(kinetic energy),用符号E k 表示.2.表达式:E k =________既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功;既适用于单个物体,也适用于多个物体;既适用于一个过程,也适用于多个过程.知识点二动能定理阅读教材第85~86页“动能定理”部分.1.表达式:(1)W=E k2-E k1.(2)W=________________.2.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.这个结论叫作动能定理(theorem of kinetic energy).3.动能定理的应用(1)动能定理不涉及物体在运动过程中的________和________,因此用动能定理处理问题比较简单.(2)外力做的功可正可负.如果外力做正功,物体的动能________;外力做负功,物体的动能________.【思考辨析】判断正误,正确的画“√”,错误的画“×”.(1)两个物体中,速度大的动能也大.()(2)某物体的速度加倍,它的动能也加倍.()(3)合外力做功不等于零,物体的动能一定变化.()(4)物体的速度发生变化,合外力做功一定不等于零.()(5)物体的动能增加,合外力做正功.()要点一动能、动能定理的理解2018年5月甲所示.歼15战机是我国自主研发的第一款舰载战机,已经实“辽宁舰”正在起飞的歼15战机.战机起飞时,合力做什么功?速度怎么变化?动能战机着舰时,阻拦索对战机做什么功?战机的动能1.对动能的理解(1)相对性:选取不同的参考系,物体的速度不同,同,一般以地面为参考系.(2)状态量:动能是表征物体运动状态的物理量,动状态(或某一时刻的速度2动能定理的理解=ΔE k中的W为外力对物体做的总功.的关系:合力做功是引起物体动能变化的原因.①合力对物体做正功,即W>0,ΔE k>0,表明物体的动能增②合力对物体做负功,即W<0,ΔE k<0,表明物体的动能减③如果合力对物体不做功,则动能不变.合外力做的功引起动能的变化应用动能定理涉及“一个过程”和“两个状态”,个过程”是指做功过程,应明确该过程合力所做的总功;状态”是指初、末两个状态物体的动能.题型一对动能的理解【例1】多选)关于动能,下列说法中正确的是如图所示,质量为m的小车在水平恒力处由静止开始运动至高为之间的水平距离为x.小车克服重力所做的功是mghm v2.合力对小车做的功是12m v2+mgh.推力对小车做的功是12m v2+mgh.阻力对小车做的功是12点睛:①合力做功一定等于物体动能的变化量,力情况无关.②求某个不易判断对应位移的力做的功时,或力是变力时,可以根据动能定理求解.某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定.小于拉力所做的功.等于克服摩擦力所做的功.大于克服摩擦力所做的功要点二动能定理的应用应用动能定理求变力做功的质点在半径为,由静止开始自边缘上的A点滑下,到达最低点重力加速度为g点的过程中,摩擦力对其所做的功为(B.12-2mg)用动能定理解决多过程问题如图所示,一质量为2kg的铅球从离地面H=2m高处自由下落,陷入沙坑h=2cm深处,求沙子对铅球的平均阻力.(g取10m/s2)点拨:对于多过程问题,可以将复杂的过程分割成几个子过程,分析各个子过程遵循的规律,可以对全程或分段使用动能定理,但要注意对全程使用动能定理时,需要弄清楚每个过程哪些力做了功,不是所有力都一直在做功.题型三用动能定理解图像类问题【例5】从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h在3m以内时,物体上升、下落过程中动能E k随h的变化如图所示.重力加速度取10m/s2.该物体的质量为()A.2kg B.1.5kgC.1kg D.0.5kg点拨:注意动能定理表达式中是合外力做功,题目中明确指出物体除受重力外,还受到一大小不变的外力,当物体上升时,外力的方向与重力方向相同;当物体下落时,外力的方向与重力方向相反.练3如图所示,ABCD是一个固定盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,BC水平,长度d=0.50 m,盆边缘的高度为h=0.30m.在A处放一个质量为m的小物块(未画出)并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的位置到B的距离为()A.0.50m B.0.25m C.0.10m D.0点睛:物体在某些运动中,运动过程具有重复性,描述物体运动的物理量有些是变化的,利用牛顿运动定律及运动学公式不容易求解,而应用动能定理时不用考虑过程中的具体细节,只需知道初、末状态,可以简化求解过程.练4帆船即利用风力前进的船.帆船起源于荷兰,古代的荷兰地势很低,所以开凿了很多运河,人们普遍使用小帆船运输或捕鱼.到了13世纪,威尼斯开始定期举行帆船运动比赛,当时比赛船只没有统一的规格和级别,1900年第2届奥运会将帆船运动开始列为比赛项目.在某次帆船运动比赛中,质量为500 kg的帆船,在风力和水的阻力共同作用下做直线运动的vt图像如图所示.下列表述正确的是()A.在0~1s内,合外力对帆船做了1000J的功B.在0~2s内,合外力对帆船做了250J的负功内,合外力始终对帆船做正功)2016年8月颗量子科学实验卫星“墨子号”,它的质量为,此时它的动能是多少?×103m/s631×(7.6×v v排球运动员正在做垫球训练,略,则击球后,球从某位置离开手竖直向上运动,再下落回到该.重力先做正功后做负功.重力做的总功不为零.空气阻力做的总功小于球的动能变化.甲的动能增加量一定等于乙的动能减少量复兴号动车在世界上首次实现速度成为我国高铁自主创新的又一重大标志性成果.,以恒定功率P在平直轨道上运动,经达到该功率下的最大速度v m,设动车行驶过程所受到的阻保持不变.动车在时间t内().做匀加速直线运动F v mm v2m-1m v202的滑雪运动员,在一段可以看成平直斜面当运动员以初速度为零从比经斜坡底端B点无能量损失,点,g取10m/s2,则:(1)若AB段摩擦不计,求运动员达到B点时速度的大小;(2)若BC段的位移为s=10m,动摩擦因数为μ1=0.4,求AB 段克服摩擦力做的功;(3)在(2)的基础上,若斜面倾角为θ=45°,求AB段的动摩擦因数μ2.6.[新题型]情境:2018年11月11日,在百度世界大会上,百度与一汽共同宣布:L4级别完全自动化无人驾驶乘用车将批量生产.有关资料检测表明,当无人驾驶车正以20m/s的速度在平直公路上行驶时,遇到紧急情况需立即刹车(忽略无人驾驶汽车反应时间).设该车刹车时产生的加速度大小为8m/s2.问题:将上述运动简化为匀减速直线运动,直到汽车停下.已知无人驾驶汽车质量为1.8t.求:在此过程中该无人驾驶汽车(1)动能如何变化?(2)前进的距离x是多少?。
动能和动能定理知识点:动能和动能定理一、动能的表达式 1.表达式:E k =12m v 2.2.单位:与功的单位相同,国际单位为焦耳,符号为J.3.标矢性:动能是标量,只有大小,没有方向. 二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W =12m v 22-12m v 12.如果物体受到几个力的共同作用,W 即为合力做的功,它等于各个力做功的代数和.3.适用范围:动能定理是物体在恒力作用下,并且做直线运动的情况下得到的,当物体受到变力作用,并且做曲线运动时,可以采用把整个过程分成许多小段,也能得到动能定理.技巧点拨一、动能 1.对动能的理解(1)动能是标量,没有负值,与物体的速度方向无关.(2)动能是状态量,具有瞬时性,与物体的运动状态(或某一时刻的速度)相对应.(3)动能具有相对性,选取不同的参考系,物体的速度不同,动能也不同,一般以地面为参考系. 2.动能变化量ΔE kΔE k =12m v 22-12m v 12,若ΔE k >0,则表示物体的动能增加,若ΔE k <0,则表示物体的动能减少.二、动能定理的理解和应用 对动能定理的理解1.表达式:W =E k2-E k1=12m v 22-12m v 12(1)E k2=12m v 22表示这个过程的末动能;E k1=12m v 12表示这个过程的初动能.(2)W 表示这个过程中合力做的功,它等于各力做功的代数和.2.物理意义:动能定理指出了合外力对物体所做的总功与物体动能变化之间的关系,即若合外力做正功,物体的动能增加,若合外力做负功,物体的动能减小,做了多少功,动能就变化多少.3.实质:动能定理从能量变化的角度反映了力改变运动的状态时,在空间上的累积效果. 总结提升应用动能定理解题的一般步骤:(1)选取研究对象(通常是单个物体),明确它的运动过程.(2)对研究对象进行受力分析,明确各力做功的情况,求出外力做功的代数和. (3)明确物体在初、末状态的动能E k1、E k2.(4)列出动能定理的方程W =E k2-E k1,结合其他必要的辅助方程求解并验算.例题精练1.(江苏模拟)如图所示,质量为m 的小车在水平恒力F 推动下,从山坡(粗糙)底部A 处由静止起运动至高为h 的坡顶B ,获得速度为v ,A 、B 之间的水平距离为s ,重力加速度为g 下列说法正确的是( )A .小车重力所做的功是mghB .推力对小车做的功是mv 2+mghC .合外力对小车做的功是mv 2+mghD .阻力对小车做的功是mv 2+mgh ﹣Fs2.(肥城市模拟)排球是我国体育项目中的传统强项。
动能定理和机械能守恒定律的应用(答案在最后)一、动能定理与牛顿运动定律的比较1.动能定理与牛顿第二定律的比较规律动能定理牛顿第二定律内容合力做的功等于物体动能的变化加速度与合外力成正比,与物体的质量成反比表达式W合=ΔE k=12mv22-12mv21,标量形式,无分量形式,涉及F、l、m、v、W、E k、ΔE kF合=ma,矢量形式,有分量形式,F x=ma x,F y=ma y研究对象单个物体单个物体或系统(中学阶段,限于只有一个物体有加速度或整体有相同的加速度)特点某个过程中,合力的功和动能变化的因果、数值关系某一时刻,合力与加速度的因果、数值关系2.规律的选择原则(1)解决物体在恒力作用下的直线运动问题,可以用牛顿第二定律结合运动学公式求解,也可以用动能定理求解.(2)对非匀变速直线运动,动能定理仍然适用,而牛顿运动定律不能运用.【典例1】如图所示,A、B间是一个风洞,水平地板AB 延伸至C点,通过半径r=0.28 m的光滑圆弧CD与足够长的光滑斜面DE连接.质量m=2 kg且可看成质点的滑块在风洞中受到水平向右的恒定风力F=20 N,滑块与地板AC间的动摩擦因数μ=0.2.已知x AB=1 m,x BC=0.5 m,g取10 m/s2.如果将滑块在风洞中A点由静止释放,求:(1)滑块第一次经过B点的速度大小.(2)滑块第一次经过圆弧上C点时对地板的压力大小.[拓展1]在[典例1]中滑块在斜面轨道上能够上升的最大高度是多少?[拓展2]在[典例1]中滑块整个运动过程中在A、C间运动的总路程为多少?练1如图是检验某种防护罩承受冲击能力的装置,M为半径R =1.6 m、固定于竖直平面内的光滑半圆弧轨道,A、B分别是轨道的最低点和最高点,N为防护罩,它是一个竖直固定的14圆弧,其半径r=45 5 m,圆心位于B点.在A处放置水平向左的弹簧枪,可向M轨道发射速度不同的质量均为m=0.01 kg的小钢珠,弹簧枪可将弹性势能完全转化为小钢珠的动能.假设某次发射的小钢珠沿轨道恰好能经过B点,g取10 m/s2.求:(1)小钢珠在B点的速度大小;(2)发射该钢珠前,弹簧的弹性势能E p.练2如图所示,小球从竖直放置的四分之一光滑圆弧轨道abc的b点由静止开始沿轨道下滑,从c点水平飞出,下落到倾角为30°的斜面上的d点.已知小球的质量为m,圆弧轨道的半径为R,b点和圆心O的连线与水平方向的夹角为30°,重力加速度取g.求:(1)小球到c点时所受轨道支持力的大小;(2)小球从圆弧轨道c点水平飞出落到斜面d点时的动能;(3)某同学认为,无论小球以多大速度从c点水平飞出,落到斜面时的速度方向都相同.你是否同意这一点观点?请通过计算说明理由.二、动能定理与机械能守恒定律的综合应用1.动能定理与机械能守恒定律的比较:动能定理机械能守恒定律研究对象单个物体单个物体或系统条件无只有重力或弹力做功常用公式W合=E k2-E k1ΔE p=-ΔE k2.规律的适用范围:(1)动能定理:恒力做功、变力做功、分段做功、全程做功等均可适用.(2)机械能守恒定律:只有系统内的弹力或重力做功.【典例2】如图甲所示,为2022年北京冬奥会跳台滑雪馆“雪如意”的效果图.如图乙所示为由助滑区、空中飞行区、着陆缓冲区等组成的依山势而建的赛道示意图.运动员保持蹲踞姿势从A点由静止出发沿直线向下加速运动,经过距离A点s =20 m处的P点时,运动员的速度为v1=50.4 km/h.运动员滑到B点时快速后蹬,以v2=90 km/h的速度飞出,经过一段时间的空中飞行,以v3=126 km/h的速度在C点着地.已知BC两点间的高度差h=80 m,运动员的质量m=60 kg,重力加速度g取9.8 m/s2,计算结果均保留两位有效数字.求:(1)A到P过程中运动员的平均加速度大小.(2)以B点为零势能参考点,求到C点时运动员的机械能.(3)从B点起跳后到C点落地前的飞行过程中,运动员克服阻力做的功.练3如图所示,AB是倾角θ为45°的直轨道,CD是半径R=0.4 m的半圆形轨道,它们通过一段曲面BC平滑相接,整个轨道处于竖直平面内且处处光滑.一个质量m=1 kg的物体(可以看作质点)从高H的地方由静止释放,结果它从圆弧最高点D 点水平飞出,垂直斜面击中P点.已知P点与圆弧的圆心O等高,g取10 m/s2.求:(1)物体击中P点前瞬间的速度大小;(2)在C点物体对轨道的压力大小;(3)物体由静止释放时的高度H.练4 质量m =1 kg 的物体,在水平拉力F(拉力大小恒定,方向与物体初速度方向相同)的作用下,沿粗糙水平面运动,经过位移4 m 时,拉力F 停止作用,运动到位移为8 m 时物体停止,运动过程中E k -x 的图线如图所示.g 取10 m /s 2.求:(1)物体的初速度多大?(2)物体和平面间的动摩擦因数为多大? (3)拉力F 的大小? 微专题(七) 动能定理和机械能守恒定律的应用【典例1】 【解析】 (1)从A 点到B 点,由动能定理得:(F -μmg )x AB =12m v 2B -0解得:v B =4 m/s ;(2)从A 点到C 点,由动能定理得:Fx AB -μmg (x AB +x BC )=12m v 2C -0,解得v C =14 m/s ,在C 点,由牛顿第二定律得:F C -mg =m v 2Cr 解得:F C =120 N由牛顿第三定律得:F ′C =F C =120 N。
《动能和动能定理》知识全解【教学目标】1.通过力对物体做功的分析确定功能的表达式,加深对功能关系的理解。
2.能够从功的表达式、牛顿第二定律与运动学公式推导出功能定理。
3.理解功能定理。
能用动能定理解释生产生活中的现象或者解决实际问题。
【内容解析】一、动能1.定义:2.定义式:3.单位:在国际单位制中是焦耳(J)。
4.动能是状态量:对于给定的物体(m一定),某状态下的速度的大小决定了该状态下的动能,动能与速度的方向无关。
5.动能是标量:只有大小,没有方向,且总大于(v≠0时)或等于零(v=0时),不可能小于零(无负值)。
6.动能是相对量(因速度是相对量):参考系不同,速度就不同,所以动能也不同,一般来说都以地面为参考系。
二、动能的变化△E k动能的变化,又称动能的增量,是指一个运动过程中的物体末状态的动能E k2(对应于速度v2)与初状态的动能E k1(对应于速度v1)之差。
三、动能定理(1)推导过程(略)(2)内容:合力所做的功等于物体动能的变化(增量)。
(3)表达式(略)(4)理解:①物理意义:动能定理实际上是一个质点的功能关系,揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功对应着物体动能的变化,变化的大小由做功的多少来决定。
动能定理是力学的一条重要规律,它不仅贯穿于这一章的教材,而且贯穿于以后的学习内容中,是物理学习的重点。
②动能定理虽然是在物体受恒力作用,沿直线做匀加速直线运动的情况下推导出来的,但是对于外力是变力或物体做曲线运动,动能定理都成立,要对动能定理适用条件(不论外力是否为恒力,也不论物体是否做直线运动,动能定理都成立)有清楚的认识。
③动能定理提供了一种计算变力做功的简便方法。
功的计算公式W=FS cosα只能求恒力做的功,不能求变力的功,而由于动能定理提供了一个物体的动能变化△E k与合外力对物体所做功具有等量代换关系,因此已知(或求出)物体的动能变化△E k,就可以间接求得变力做功。
动能定理__________________________________________________________________________________ __________________________________________________________________________________1.理解动能定理的分析过程。
2.学会运用动量定理 功能关系解决综合性问题。
动能定理1.动能定理:___________________________________,21k k k W E E E =-=∆. (1)动能定理的表达式是标量式.(2)动能定理中的初末速度1v 、2v 是相对同一参考系的速度.(3)动能定理可以应用于单一物体,也可以用于能够看成单一物体的物体系.(4)动能定理适用于物体的直线运动、曲线运动、恒力做功、变力做功.力可以是各种性质的力,既可以同时作用,也可以分段作用,只要求出在作用过程中各力做功的多少和正负即可,这些正是应用动能定理解题的优越性所在.(5)若物体的运动过程包含几个不同过程,那么可以分段应用动能定理,也可把全过程作为一个整体来处理.(6)动能定理中的力包含了物体所受到的所有外力,包含了所有性质的力. 若对一个整体使用动能定理,一定要分清哪些力是内力,哪些力是外力.(7)一个物体的动能变化k E ∆与合外力对物体所做功W 具有等量代换关系,据此可以计算变力做功. 2.功能关系(1)功是能量转化的量度,做功的过程就是能量转化的过程,做了多少功,就有多少能量发生了变化,不同形式的能的变化对应着不同力的功.例如,动能的变化要用合力的功(所有力做功的代数和)来量度,重力势能的变化要用重力的功来量度,电势能的变化要用电场力的功来量度,机械能的变化要用除重力之外的力的功来量度,等等. (2)常见的几种功能关系①一个物体的动能变化k E 与合外力对物体所做的功W 有等量代换关系,这种等量代换关系为计算变力做功提供了一种简便的方法.②重力做功大小与重力势能改变量相等. 重力做正功,重力势能________;重力做负功,重力势能________.③弹力做功大小与弹性势能改变量相等. 弹力做正功,弹性势能________;弹力做负功,弹性势能________.④重力和弹力之外的力对物体做的功等于物体机械能的变化.⑤摩擦力做功与能量转化. 静摩擦力做功过程中,只有机械能的相互转移,没有机械能转化为其它形式的能;一对滑动摩擦力所做的总功是系统由于摩擦力做功而损失的机械能.类型一:功能关系例1.如图所示,质量为m 的物块与转台之间的动摩擦因数为μ,物体与转轴相距R ,物块随转台由静止开始转动,当转速增加到某值时,物块即将在转台上滑动,此时转台已开始做匀速运动,在这一过程中,摩擦力对物体做的功为A .0B .2πμmgRC .2μmgRD .μmgR /2解析: 当物块随转台匀速运动时,μmg =m Rv 2知,21mv 2=21μmgR .由动能定理知:摩擦力F f 的功W f =21mv 2-0=21μmgR .答案: D类型二:运用动能定理解决圆周运动问题例2.如图所示,在一个光滑水平面的中心开一个小孔O ,穿一根细绳,在其一端系一小球,另一端用力F 向下拉着,使小球在水平面上以半径r 做匀速圆周运动,现慢慢增大拉力,使小球运动半径逐渐减小,当拉力由F 变为8F 时,小球运动半径由r 变成2r ,在此过程中,拉力对小球做的功为A .0B .FrC .4.5FrD .1.5Fr解析: 由向心力公式得F =rv m 21①8F =r v m 2122②由动能定理得W =21222121mv mv③由①②③求得W =1.5Fr 答案: D类型三:动能定理平抛结合问题例3.(2014·福建卷Ⅰ)图为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面上的D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)若游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R)解析: (1)游客从B 点做平抛运动,有2R =v B t ① R =12gt 2②由①②式得v B =2gR ③ 从A 到B ,根据动能定理,有mg (H -R )+W f =12mv 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12mv 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR⑦N =0⑧cos θ=h R⑨由⑥⑦⑧⑨式解得h =23R .⑩答案:(1)2gR -(mgH -2mgR ) (2)23R类型四:动能定理例4.某运动员臂长L ,将质量为m 的铅球推出,铅球出手的速度大小为v 0,方向与水平方向成30°角,则该运动员对铅球所做的功是 A .2)(20v gl mB .mgl +21mv 02C . 21mv 02D .mgl +mv 02解析: 运动员对铅球的作用力为F ,由动能定理知:W F -mgL sin30°=21mv 02所以W F =21mgL +21mv 02答案: A基础演练1.质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是( )A .mgh ,减少mg (H-h )B .mgh ,增加mg (H+h )C .-mgh ,增加mg (H-h )D .-mgh ,减少mg (H+h )2.物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为( ) A .1:4 B .1:3C .1:2D .1:13.质量为m 的小球用长为L 的轻绳悬于O 点,如图所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在此过程中F 做的功为( )A .FL sin θB .mgL cos θC .mgL (1-cos θ)D .FL tan θ4.如图所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( )A .重力势能和动能之和总保持不变B .重力势能和弹性势能之和总保持不变C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变5.在离地面高为A 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为V ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于 ( )A .mgh 21-mV 221-mv 02B .21-mV 221-mv 02-mghC .mgh+21mv 0221-mV 2D .mgh+21mV 221-mv 026.如图所示,人站在电动扶梯的水平台阶上,与扶梯一起沿斜面加速上升.在这个过程中,人脚所受的静摩擦力 ( )A .等于零,对人不做功;B .水平向左,对人做负功;C .水平向右,对人做正功;D .沿斜面向上,对人作正功.7.一物体静止在升降机的地板上,在升降机匀加速上升的过程中,地板对物体的支持力所做的功等于 ( )A.物体克服重力所做的功B.物体动能的增加量C.物体动能增加量与重力势能增加量之和D.物体动能增加量与重力势能增加量之差8.质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mgh B .物体的机械能减少了54mgh C .物体克服阻力所做的功为51mgh D .物体的重力势能减少了mgh9如图所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少B .重物的重力势能增大C .重物的机械能不变D.重物的机械能减少10.关于机械能是否守恒的叙述,正确的是()A.做匀速直线运动的物体机械能一定守恒B.做变速运动的物体机械能可能守恒C.外力对物体做功为零时,机械能一定守恒D.若只有重力对物体做功,物体的机械能一定守恒巩固提高1.一质量为m的小球,用长为l的轻绳悬挂于O点.小球在水平拉力F作用下,从平衡位置P点很缓慢地移动到Q点,如图所示,则拉力F所做的功为()A.mglcosθB.mgl(1﹣cosθ)C.FlcosθD.Flsinθ2.足球比赛时,某方获得一次罚点球机会,该方一名运动员将质量为m的足球以速度v0猛地踢出,结果足球以速度v撞在球门高h的门梁上而被弹出.现用g表示当地的重力加速度,则此足球在空中飞往门梁的过程中克服空气阻力所做的功应等于()A.mgh+﹣B.C.D.mgh+﹣3.质量为m的物体以初速度v0沿水平面向左开始运动,起始点A与一轻弹簧O端相距s,如图所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为()A.mv02﹣μmg(s+x)B.mv2﹣μmgxC.μmgs D.μmg(s+x)4.在平直的公路上,汽车由静止开始做匀加速运动,当速度达到V m,立即关闭发动机而滑行直到停止,v-t图线如图,汽车的牵引力大小为F1,摩擦力大小为F2,全过程中,牵引力做功为W1,克服摩擦力做功为W 2,则( ) A.F 1:F 2=1:3B. W 1:W 2 =1:3C.W 1:W 2 =1:1D. F 1:F 2 = 4:15.水平传送带匀速运动,速度大小为v ,现将一小工件放到传送带上。
动能定理__________________________________________________________________________________ __________________________________________________________________________________1.理解动能定理的分析过程。
2.学会运用动量定理 功能关系解决综合性问题。
动能定理1.动能定理:作用在物体上的合外力的功等于物体动能的变化,21k k k W E E E =-=∆. (1)动能定理的表达式是标量式.(2)动能定理中的初末速度1v 、2v 是相对同一参考系的速度.(3)动能定理可以应用于单一物体,也可以用于能够看成单一物体的物体系.(4)动能定理适用于物体的直线运动、曲线运动、恒力做功、变力做功.力可以是各种性质的力,既可以同时作用,也可以分段作用,只要求出在作用过程中各力做功的多少和正负即可,这些正是应用动能定理解题的优越性所在.(5)若物体的运动过程包含几个不同过程,那么可以分段应用动能定理,也可把全过程作为一个整体来处理.(6)动能定理中的力包含了物体所受到的所有外力,包含了所有性质的力. 若对一个整体使用动能定理,一定要分清哪些力是内力,哪些力是外力.(7)一个物体的动能变化k E ∆与合外力对物体所做功W 具有等量代换关系,据此可以计算变力做功. 2.功能关系(1)功是能量转化的量度,做功的过程就是能量转化的过程,做了多少功,就有多少能量发生了变化,不同形式的能的变化对应着不同力的功.例如,动能的变化要用合力的功(所有力做功的代数和)来量度,重力势能的变化要用重力的功来量度,电势能的变化要用电场力的功来量度,机械能的变化要用除重力之外的力的功来量度,等等. (2)常见的几种功能关系①一个物体的动能变化k E 与合外力对物体所做的功W 有等量代换关系,这种等量代换关系为计算变力做功提供了一种简便的方法.②重力做功大小与重力势能改变量相等. 重力做正功,重力势能减小;重力做负功,重力势能增大.③弹力做功大小与弹性势能改变量相等. 弹力做正功,弹性势能减小;弹力做负功,弹性势能增大.④重力和弹力之外的力对物体做的功等于物体机械能的变化.⑤摩擦力做功与能量转化. 静摩擦力做功过程中,只有机械能的相互转移,没有机械能转化为其它形式的能;一对滑动摩擦力所做的总功是系统由于摩擦力做功而损失的机械能.类型一:功能关系例1.如图所示,质量为m 的物块与转台之间的动摩擦因数为μ,物体与转轴相距R ,物块随转台由静止开始转动,当转速增加到某值时,物块即将在转台上滑动,此时转台已开始做匀速运动,在这一过程中,摩擦力对物体做的功为 A .0 B .2πμmgR C .2μmgRD .μmgR /2解析: 当物块随转台匀速运动时,μmg =m Rv 2知,21mv 2=21μmgR .由动能定理知:摩擦力F f 的功W f =21mv 2-0=21μmgR .答案: D类型二:运用动能定理解决圆周运动问题例2.如图所示,在一个光滑水平面的中心开一个小孔O ,穿一根细绳,在其一端系一小球,另一端用力F 向下拉着,使小球在水平面上以半径r 做匀速圆周运动,现慢慢增大拉力,使小球运动半径逐渐减小,当拉力由F 变为8F 时,小球运动半径由r 变成2r ,在此过程中,拉力对小球做的功为A .0B .FrC .4.5FrD .1.5Fr解析: 由向心力公式得F =rv m 21①8F =r v m 2122②由动能定理得W =21222121mv mv③由①②③求得W =1.5Fr答案: D类型三:动能定理平抛结合问题例3.(2014·福建卷Ⅰ)图为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面上的D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)若游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R)解析: (1)游客从B 点做平抛运动,有2R =v B t ① R =12gt 2②由①②式得v B =2gR ③ 从A 到B ,根据动能定理,有mg (H -R )+W f =12mv 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12mv 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR⑦N =0⑧cos θ=h R⑨由⑥⑦⑧⑨式解得h =23R .⑩答案:(1)2gR -(mgH -2mgR ) (2)23R类型四:动能定理例4.某运动员臂长L ,将质量为m 的铅球推出,铅球出手的速度大小为v 0,方向与水平方向成30°角,则该运动员对铅球所做的功是 A .2)(20v gl mB .mgl +21mv 02C .21mv 02D .mgl +mv 02解析: 运动员对铅球的作用力为F ,由动能定理知:W F -mgL sin30°=21mv 02所以W F =21mgL +21mv 02答案: A基础演练1.质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是( ) A .mgh ,减少mg (H-h ) B .mgh ,增加mg (H+h ) C .-mgh ,增加mg (H-h ) D .-mgh ,减少mg (H+h ) 答案:D2.物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为( ) A .1:4 B .1:3C .1:2D .1:1答案:B3.质量为m 的小球用长为L 的轻绳悬于O 点,如图所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在此过程中F 做的功为( ) A .FL sin θ B .mgL cos θC .mgL (1-cos θ)D .FL tan θ 答案:C4.如图所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A .重力势能和动能之和总保持不变 B .重力势能和弹性势能之和总保持不变C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变 答案:D5.在离地面高为A 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为V ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于 ( )A .mgh 21-mV 221-mv 02B .21-mV 221-mv 02-mghC .mgh+21mv 0221-mV 2D .mgh+21mV 221-mv 02 答案:C6.如图所示,人站在电动扶梯的水平台阶上,与扶梯一起沿斜面加速上升.在这个过程中,人脚所受的静摩擦力 ( ) A .等于零,对人不做功; B .水平向左,对人做负功; C .水平向右,对人做正功; D .沿斜面向上,对人作正功. 答案:C7.一物体静止在升降机的地板上,在升降机匀加速上升的过程中,地板对物体的支持力所做的功等于 ( )A.物体克服重力所做的功B.物体动能的增加量C.物体动能增加量与重力势能增加量之和D.物体动能增加量与重力势能增加量之差 答案:C8.质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mgh B .物体的机械能减少了54mgh C .物体克服阻力所做的功为51mgh D .物体的重力势能减少了mgh答案:ACD9如图所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少B .重物的重力势能增大C .重物的机械能不变D.重物的机械能减少答案:AD10.关于机械能是否守恒的叙述,正确的是()A.做匀速直线运动的物体机械能一定守恒B.做变速运动的物体机械能可能守恒C.外力对物体做功为零时,机械能一定守恒D.若只有重力对物体做功,物体的机械能一定守恒答案:BD巩固提高1.一质量为m的小球,用长为l的轻绳悬挂于O点.小球在水平拉力F作用下,从平衡位置P点很缓慢地移动到Q点,如图所示,则拉力F所做的功为()A.mglcosθB.mgl(1﹣cosθ)C.FlcosθD.Flsinθ答案:B2.足球比赛时,某方获得一次罚点球机会,该方一名运动员将质量为m的足球以速度v0猛地踢出,结果足球以速度v撞在球门高h的门梁上而被弹出.现用g表示当地的重力加速度,则此足球在空中飞往门梁的过程中克服空气阻力所做的功应等于()A.mgh+﹣B.C.D.mgh+﹣答案:C3.质量为m的物体以初速度v0沿水平面向左开始运动,起始点A与一轻弹簧O端相距s,如图所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为()A.mv02﹣μmg(s+x)B.mv2﹣μmgxC.μmgs D.μmg(s+x)答案:A4.在平直的公路上,汽车由静止开始做匀加速运动,当速度达到V m,立即关闭发动机而滑行直到停止,v-t图线如图,汽车的牵引力大小为F1,摩擦力大小为F2,全过程中,牵引力做功为W1,克服摩擦力做功为W2,则( )A.F 1:F 2=1:3B. W 1:W 2 =1:3C.W 1:W 2 =1:1D. F 1:F 2 = 4:1 答案:CD5.水平传送带匀速运动,速度大小为v ,现将一小工件放到传送带上。
设工件初速为零,当它在传送带上滑动一段距离后速度达到v 而与传送带保持相对静止。
设工件质量为m ,它与传送带间的滑动摩擦系数为 μ,则在工件相对传送带滑动的过程中 ( ) A .滑摩擦力对工件做的功为mv 2/2 B .工件的机械能增量为mv 2/2C .工件相对于传送带滑动的路程大小为v 2/2μg D .传送带对工件做功为零 答案:ABC6.把质量为3.0kg 的石块,从高30m 的某处,以50./m s 的速度向斜上方抛出,g m s 取102/,不计空气阻力,石块落地时的速率是 ;若石块在运动过程中克服空气阻力做了73.5J 的功,石块落地时的速率又为。