塑性变形诱导非晶合金晶化动力学研究
- 格式:doc
- 大小:12.12 KB
- 文档页数:2
非晶合金的制备和特性研究随着现代工业的不断发展,材料科学也在逐步引领着时代的步伐。
而在材料科学领域中,非晶合金凭借其优异的物理性能和具有应用前景的特性,成为了学术研究和工业制造的热门领域。
本文将介绍非晶合金的制备方法、特性研究和未来的应用前景。
一、非晶合金的制备方法1. 高速凝固法高速凝固法是制备非晶合金的一种有效手段。
通过将熔融金属快速冷却,从而防止金属结晶,形成无定形的非晶态。
高速凝固法具有工艺简单、效率高等优势。
其中,管式和轮子式高速凝固技术是目前应用较为广泛的两种方法。
管式高速凝固法可制备厚度较小的非晶薄片,而轮子式高速凝固法能够制备较厚的非晶合金条。
2. 熔融淬火法熔融淬火法是非晶合金制备中的常用方法。
将金属预先熔化,然后快速冷却至室温,形成非晶态。
与高速凝固法相比,熔融淬火法的工艺更为简单,并能够得到较大的非晶样品。
3. 溅射法溅射法是利用离子束轰击金属靶材表面将材料溅射到基体表面的技术。
通过这种方法,可以制备出质量较高、纯度较高的非晶合金膜。
此外,溅射法还适用于制备非晶纳米粒子和非晶微粒,有望应用于新型储能材料和磁性材料的研究。
二、非晶合金的特性研究1. 物理性能非晶合金因其无定形的结构特征,具有独特的物理性能,如高硬度、高强度、良好的耐腐蚀性和磁性能等,被广泛应用于制造电子元器件、汽车零配件、航空装备等。
2. 热力学性质非晶合金的热力学特性是其性能研究的重点之一。
在非晶合金的制备过程中,熔点较高、过冷度较大的元素分别对非晶态形成和稳定性能有着重要影响。
因此,热力学特性的探究,有助于设计出优良的非晶合金体系。
3. 电子结构电子结构是非晶合金特性的基础,深入研究非晶合金的电子结构,有助于揭示非晶态形成机制和物理性能的源头。
当前,X射线吸收谱和X射线荧光光谱是非晶合金电子结构研究的主要手段。
三、非晶合金的未来应用前景不仅具有上述优越的特性和表现,非晶合金还具备良好的生物相容性和形状记忆效应等,这使其在日益发展的生物医学领域、能源存储领域和机器人领域等具有广阔的应用前景。
非晶合金研究现状及应用发展综述摘要:本文综述了块体非晶合金材料研究发展的历史和现状。
介绍了主要的非晶合金体系发展状况,并从块体非晶合金材料形成的成分与结构条件、热力学条件和动力学条件等方面阐述了块体非晶合金形成和稳定存在的机制。
较全面地列出并介绍了目前块体非晶合金材料的制备方法及其特色,并总结了非晶合金的性能特征和应用现状。
关键词:非晶合金;性能;应用;制备方法0 引言非晶态合金是指不具有长程有序但短程有序的金属合金,又由于其具有金属合金的一些特性,故它们也被称为玻璃态合金或者非结晶合金,属于非晶态材料中新兴的分支【1】。
与晶态合金相比,非晶合金具备许多优异性能,如高硬度、高强度、高电阻、耐蚀及耐磨等。
块体非晶合金材料的迅速发展,为材料科研工作者和工业界研究开发高性能的功能材料和结构材料提供了十分重要的机会和巨大的开拓空间。
1.非晶合金的结构综述非晶态合金的结构自从20世纪60年代发现首个Au-Si非晶态合金以来【2】,非晶态合金的原子结构就是人们关注的焦点,提出了多种非晶态合金结构模型,主要有:硬球无规密堆模型、微晶模型、连续无规网格模型、FCC/HCP密堆团簇堆积模型。
1.非晶合金的性能及应用非晶合金与普通钢铁材料相比,有相当突出的高强度、高韧性和高耐磨性。
根据这些特点利用非晶态材料和其它材料可以制备成优良的复合材料,也可以单独制成高强度耐磨器件。
在日常生活中接触的非晶态材料已有很多,如用非晶态合金制做的高耐磨音频视频磁头在高档录音、录相机中的广泛使用;把块体非晶合金应用于高尔夫球击球拍头和微型齿轮中;采用非晶丝复合强化的高尔夫球杆、钓鱼杆已经面市。
非晶合金材料已广泛用于轻、重工业、军工和航空航天业,在材料表面、特殊部件和结构零件等方面也都得较广泛的应用。
2.1部分应用场景(1)非晶态的力分布传感器非晶态合金因无结晶结构,故不存在晶界这样一些局部显示机械强度小的地方,所以具有高强度、高硬度的特性;原子是无序超密结构,所以电阻率高,使之制成器件工作时铁损小;无磁晶各向异性,对外部磁场变化敏感,所以检测磁变化灵敏度高:由于不存在结晶缺陷、晶界,所以耐蚀性好。
镁合金塑性变形机理研究进展镁合金作为一种轻质、高强度的金属材料,在航空、汽车、电子等领域得到了广泛应用。
然而,镁合金的塑性变形机理仍存在诸多不足,制约了其进一步的应用和发展。
本文旨在综述镁合金塑性变形机理的研究进展,以期为相关领域的研究提供参考。
镁合金塑性变形机理是指在一定应力条件下,镁合金内部结构发生的一系列变化,主要包括晶粒细化、位错滑移、孪生等。
这些变形机制的相互协调与竞争,决定了镁合金在不同应力条件下的塑性变形行为。
研究镁合金塑性变形机理有助于揭示材料内在的力学性能和优化其应用。
近年来,国内外研究者针对镁合金塑性变形机理开展了大量研究工作,主要集中在以下几个方面:(1)通过合金元素调控,改善镁合金的力学性能;(2)研究镁合金在不同应力条件下的塑性变形行为;(3)探索镁合金在塑性变形过程中的组织演化规律。
尽管取得了一定的研究成果,但仍存在以下问题有待解决:镁合金中合金元素的作用机制仍需进一步明确;镁合金在不同应力条件下的塑性变形行为尚需深入探讨;镁合金塑性变形过程中的组织演化规律需加强研究。
本文采用文献综述和实验研究相结合的方法,对镁合金塑性变形机理进行了深入研究。
介绍了镁合金塑性变形的基本特点;接着,综述了国内外的研究现状,指出了存在的主要问题;总结了本文的研究成果及未来研究方向。
在本文的研究过程中,我们通过设计和实施一系列实验,深入探讨了镁合金在不同应力条件下的塑性变形行为及其影响因素。
具体来说,我们采用单轴拉伸、压缩和弯曲等实验手段,观察了镁合金在不同应力状态下的变形特点,利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)等手段,详细研究了镁合金在塑性变形过程中的组织演化规律,如晶粒尺寸、位错密度、孪生等的变化。
通过对比和分析实验数据,我们发现:(1)镁合金在单轴拉伸和压缩条件下,其塑性变形行为存在明显的差异。
在单轴拉伸条件下,镁合金主要表现为均匀变形,而在压缩条件下,则出现局部区域的不均匀变形。
非晶合金的晶化机理分析1. 前言非晶合金是一种新型材料,因具有优良的磁、力学、腐蚀、耐磨、导热等性能,在电力、航空、航天、汽车、医疗等领域得到了广泛的应用。
但非晶合金由于其结构的特殊性质,相对于晶态合金来说更加容易发生晶化行为。
因此,对非晶合金晶化机理的研究具有重要意义。
2. 非晶合金的晶化非晶合金是由一种或几种金属元素与非金属元素在一定温度范围内经过快速冷却得到的无定形材料结构。
(Men '大羽弦小学子')晶化现象是指非晶态合金发生长程有序的过程,由于此过程与材料的性能和应用密切相关,因而引起了广泛的研究。
一般来说,非晶合金通过淬火、挤压、冷轧或退火等方式处理后,由于加工过程或外部温度的影响,存在着晶化倾向。
而非晶合金晶化时的机理包括初基元晶粒生成、晶粒长大和合并以及形成晶格序列等过程。
3. 非晶合金晶化机理分析3.1初基元晶粒生成在非晶合金的晶化过程中,初基元晶粒的生成是晶化机理的第一步。
初基元晶粒的生成主要取决于非晶合金材料内在复杂的局部势能坑与外界条件的复杂耦合关系。
在初基元晶粒生成的过程中,影响因素主要有:工艺状态、沉淀体、微缺陷、外加应力等。
3.2晶粒长大和合并在非晶合金的晶化过程中,晶粒的长大和合并是晶化机理的第二步。
非晶合金晶化时晶粒的尺寸和体积呈指数级增长,晶粒尺寸和晶粒间距逐步增大影响晶化时间和晶粒尺寸的增长速率。
而一旦晶粒的尺寸增加到一定大小,晶粒之间就会出现晶粒合并,从而导致晶粒的细粒化阶段结束。
3.3形成晶格序列在非晶合金晶化的第三个阶段,会形成晶格序列。
晶格序列在非晶合金晶化过程中会形成各种尺寸和形状的结晶体,这种结晶体通常存在于非晶合金的表面,晶化趋势强,而晶化峰桥形态多是由于给定的扰动引起的。
4. 结论非晶合金是一种具有特殊结构和特殊性能的新型材料,在现代产业中有着广泛的应用前景和市场价值。
在制备过程中,非晶合金往往伴随着晶化的现象,而晶化机理的研究正是对非晶合金制备过程中晶化现象的剖析和解释。
非晶合金的热处理和性质研究一、引言非晶合金又称为非晶态金属、非晶质合金、非晶态合金等,是一种不具有规则晶体结构的固态金属材料。
与传统晶体金属不同,非晶合金具有极佳的塑性、热稳定性、硬度、强度和耐腐蚀性能,在磁性、电学及光学方面也有独特性质。
而研究非晶合金的热处理和性质,具有重要的工业应用和学术意义。
二、非晶合金热处理方法1. 熔化法熔化法是将合金材料加热至液态,然后急速冷却到室温。
熔化法分为单一熔炼和多元系统熔炼,单一熔炼适用于制备有单一主要元素的非晶合金,多元系统熔炼则适用于复杂合金体系的制备。
2. 溅射法溅射法是将高纯金属靶材放在真空室内,然后通过加热和高能离子轰击使靶材发生溅射,形成非晶合金薄膜。
该方法薄膜制备速度快、成本低,而且可以制备大面积的非晶合金薄膜。
3. 退火法退火是指将高温制得的非晶合金材料在一定的时间内,在高温下保温,让其体系发生晶化,实现由非晶态向晶体的转变。
退火条件和参数对晶化微观结构有很大影响,通过控制不同的退火温度和时间可以制得具有不同微观结构的非晶合金材料。
三、非晶合金性质研究1. 磁性非晶合金具有极好的磁性,在储存、传输、保护信息等方面具有广泛的应用。
研究表明,非晶合金的磁性能与制备工艺和微观结构密切相关。
制备方法中,熔化法制备的非晶合金磁性能优于溅射法制备的;微观结构方面,非晶合金晶粒尺寸越小、分布越均匀、固溶体含量越高,磁性能越好。
2. 电学性质非晶合金的电学性质,在传感器、防磁屏蔽等领域有广泛的应用。
非晶合金的电学性质受化学成分、制备工艺和组织结构影响。
比如,铁基非晶合金中添加Co元素可以提高其电阻率、抗磁性能和疲劳寿命;晶化后的非晶合金电阻率明显提高,代表了其内部电子结构的改变。
3. 机械性能非晶合金具有强度高、塑性好、硬度高和弹性模量变化小等优点,常用于制作高强度、高韧性的结构材料。
然而,非晶合金的机械性能与制备工艺、化学成分和微观结构有密切关系。
以Zr、Nb和Cu为原料的非晶合金中,Cu的含量越多,抗拉强度越高、伸长率越低;而组织中纳米晶粒的尺寸、分布和方向对非晶合金的力学性能也有显著影响。
非晶态合金材料的制备及其力学性能研究非晶态合金材料(Amorphous Alloy)是指由金属原子、金属间化合物或金属与非金属元素形成的无定形固体。
这种材料具有优异的力学性能、热稳定性和腐蚀抗性等特点,因此被广泛应用于航天、汽车、电子等领域。
本文将介绍非晶态合金材料的制备方法和力学性能研究。
一、非晶态合金材料的制备方法非晶态合金材料的制备方法主要有快速凝固法、机械合金化法和物理气相沉积法等。
快速凝固法是指将高温熔体通过快速冷却制备非晶态合金。
该方法常用的设备有单轮快速凝固仪、多轮快速凝固仪和线性凝固仪等。
通过这些设备,可以制备出具有不同组成和形状的非晶态合金。
机械合金化法是指将粉末状的金属材料在高能球磨机中进行反复摩擦和冲击,使其发生塑性变形和固态反应,从而形成非晶态合金。
该方法适用于制备微米级别的非晶态合金,具有操作简单、设备成本低等优点。
物理气相沉积法是指将高温的原料气体通过离子束或电子束加热,形成高能原子簇,在衬底上沉积并形成非晶态合金。
该方法可制备出具有较大平面尺寸和均匀厚度的非晶态合金薄膜,适用于微电子器件等领域。
二、非晶态合金材料力学性能研究非晶态合金材料的力学性能是其在工程应用中的重要特性,主要包括弹性模量、屈服强度、延展性等。
弹性模量是指材料在力学应变范围内,对应力变化的敏感度。
非晶态合金材料的弹性模量通常较高,这意味着其具有良好的耐磨损性和抗变形能力。
屈服强度是指材料的抗拉强度达到临界值时所承受的最大应力。
非晶态合金材料的屈服强度通常较高,甚至可超过传统多晶金属材料的强度水平。
这是由于其无定形结构使得位错无法在晶间滑移,因此其内部形成的应力场比多晶材料更均匀。
延展性是指材料在受力时的变形能力。
非晶态合金材料通常具有较小的延展性,这是由其无定形结构所决定的。
但是,可以通过合适的改性和处理方式,提高其塑性和延展性。
非晶态合金材料的力学性能在工程应用中具有重要意义。
研究其力学性能不仅可以为其工程应用提供理论指导,而且还可促进新型非晶态合金材料的发展和应用。
非晶材料超塑性研究进展1.引言20世纪90年代美国和日本科学家开始制备出大块非晶合金,经过世界上许多科学家的努力,相继开发出如Fe,Co,Zr,Ni,Mg,Pd,Ti,Cu,Nd,La等多种大块非晶合金材料系列,而且所获得的非晶合金尺寸和临界冷却速度也更具有实用意义。
与晶态合金相比,非晶合金在强度、硬度、冲击断裂性能以及耐腐蚀性等方面更具明显的优势。
非晶态合金在结构上具有长程无序、短程有序和各向同性的特点, 其原子在空间排列上不具有周期性和平移性, 不存在晶态合金所特有的各种晶体缺陷。
与相同或相似成分的晶态合金相比, 非晶态合金往往具有优异的力学性能、化学性能和电磁性能。
自1990 年以来, 随着非晶形成理论的发展, 尤其是Inoue 提出了形成大块非晶合金的三条经验准则后, 材料科学工作者突破了制备非晶合金需要极高临界冷却速率的局限, 依靠合金体系各个组元的合理配比而使合金体系具有很强的非晶形成能力,从而改变了传统非晶合金只能以薄片、薄带、细丝、粉末等低维形状出现的状态, 使得大尺寸的非晶合金的制备成为现实。
目前, 人们已经在Mg 基、La 基、Zr 基、Ti 基、Fe 基、Co 基、Ni 基、Cu 基等多个合金系中开发出临界冷却速率小于1000K·s- 1 的大块非晶形成体系。
这些合金系可以用铜模铸造法制备出直径大于1mm 的全非晶制品, 其最大直径可达72mm 左右 , 这使得大块非晶合金成为一类极具应用前景的工程材料。
大块非晶合金在室温下具有非常高的断裂强度、大的弹性极限, 但它的室温塑性很低, 延伸率几乎为零 , 然而, 在过冷液相区间内, 它却具有非常好的超塑性性能, 与常规晶态合金的超塑性变形一样, 呈现大延伸、低应力及易成形等特性。
如Φ115mm 的La2Al2Ni 非晶试样的延伸率可达15000 %。
随着试样断面尺寸的增加, 延伸率也随之增加。
当直径为5mm 时, 延伸率可达到106%。
塑性变形诱导非晶合金晶化动力学研究
本文以Zr-基非晶合金为研究对象,利用X射线衍射仪(XRD)、差示扫描量热仪(DSC)、和高分辨透射电子显微镜(HRTEM)等实验手段,对Zr60Al15Ni25和
Zr65Al7.5Cu12.5Ni10Ag5块状非晶合金轧制塑性变形后的微观结构进行了研究,分析了剪切带附近应力与粘度分布对晶化与团簇化的作用,探讨了非晶合金在塑性变形过程中微观结构变化的动力源,并建立了塑性变形诱导非晶合金晶化与团簇化的动力学模型,主要包括如下结论:在室温轧制过程中,Zr60Al15Ni25与
Zr65Al7.5Ni10Cu12.5Ag5块体非晶合金均获得了高达95%的变形量。
在轧制塑性变形后,上述两种合金内部均产生了大量的剪切带,表明非晶合金在室温轧制过程中发生了非均匀变形。
X射线衍射峰的半高宽(FWHM)、DSC曲线上玻璃转变之前的结构驰豫热随变形量的变化趋势均表明,Zr60Al15Ni25与Zr65Al7.5Ni10Cu12.5Ag5块体非晶合金在室温轧制过程中均发生了原子组态的有序化和无序化之间的双态转变。
变形量较低时,在Zr65Al7.5Cu12.5Ni10Ag5块体非晶合金的剪切带区域出现了少量的二十面体原子团簇。
剪切带内较低的Ag含量以及剪切流变引起的原子定向运动不利于变形过程中I-相的形核与长大。
随着轧制的进行,剪切带及附近区域二十面体原子团簇不断增多,最后形成连续状的有序区,这些有序区在随后的加热过程中作为现成晶核直接长大形成I-相,使得I-相的析出变得容易。
然而,在I-相形成过程中,剪切带区域合金元素尤其是Ag的重组变化,不利于I-相的进一步形核与长大,结果整个I-相的析出过程变得缓慢。
在室温轧制过程中,变形量为80%和95%的Zr60Al15Ni25试样的剪切带周围出现了直径为5 ~
10 nm的纳米晶;粘度的降低加强了原子的扩散能力,多面体原子团簇之间的转变引起原子组态发生变化;剪切带的膨胀作用与基体的限制作用造成剪切带边缘区域受到的压应力是造成晶化相集中于剪切带与基体的过渡区域的原因。