TFT LCD液晶显示器的驱动原理(三).simple
- 格式:doc
- 大小:48.00 KB
- 文档页数:5
tft lcd工作原理
TFT(薄膜晶体管)LCD(液晶显示器)是一种基于薄膜晶体
管技术的液晶显示器。
其工作原理如下:
1. 像素结构:TFT LCD由一系列的像素组成,每个像素都包
含了红、绿、蓝三个基色的液晶单元和一个薄膜晶体管。
液晶单元根据电压的变化来控制光的透过程度,从而实现颜色的显示。
薄膜晶体管则负责控制电流的开关。
每个像素中的液晶单元和薄膜晶体管都被附着在透明的玻璃基板上。
2. 薄膜晶体管的作用:薄膜晶体管是TFT LCD的核心部件,
它负责控制电流的开关。
当电流通过薄膜晶体管时,它会改变液晶单元的电场,从而改变其透光性质。
薄膜晶体管的开关控制是通过将其上的栅极电压调高或调低来实现的,进而控制液晶单元的透光程度。
3. 光的透过过程:当液晶单元处于关闭状态时,它不能透过光,显示为黑色。
当液晶单元处于开启状态时,根据电场的变化,液晶分子会重新排列,使光线通过透射,显示为不同的颜色和亮度。
4. 控制信号:为了控制TFT LCD的每个像素,需要向每个像
素提供控制信号。
这些控制信号是通过一些线路和电路驱动器传递的,以确保每个像素都能准确显示所需的颜色和亮度。
总结来说,TFT LCD的工作原理是通过控制薄膜晶体管来调
节液晶单元的透光性质,从而显示不同的颜色和亮度。
通过像
素的排列和控制信号的传递,TFT LCD可以呈现出清晰、亮丽的图像。
TFT_LCD液晶显示器的驱动原理详解TFT液晶显示器是一种广泛应用于电子产品中的显示技术,它具有亮度高、色彩鲜艳、对比度高等特点。
其驱动原理涉及到液晶分子的操控和信号的产生,下面将详细介绍TFT_LCD液晶显示器的驱动原理。
TFT液晶显示器的基本构造是将两块玻璃基板之间夹上一层液晶材料并加上一层透明导电材料形成液晶屏幕。
液晶是一种具有各向异性的有机材料,其分子有两种排列方式:平行排列和垂直排列。
平行排列时液晶分子可以使光线通过,垂直排列时则阻止光线通过。
这种液晶分子的特性决定了TFT液晶显示器的驱动原理。
TFT液晶显示器的显示过程是通过将电信号施加到液晶分子上来实现的。
在TFT液晶显示器中,每个像素都有一个薄膜晶体管(TFT)作为驱动器,这个晶体管可以控制液晶分子的排列方式。
当电压施加到晶体管上时,晶体管会打开,液晶分子垂直排列,使得背光通过液晶层后被过滤器颜色选择,从而显示对应的颜色。
当电压不再施加到晶体管上时,晶体管关闭,液晶分子平行排列,背光被完全阻挡,形成黑色。
为了产生详细的图像,TFT液晶显示器采用了阵列式的组织结构。
在每个像素之间有三个基色滤光片,分别为红色、绿色和蓝色。
液晶层上的每个像素都与一个TFT晶体管和一个电容器相连。
当电压施加到TFT晶体管上时,电容器会积蓄电荷,触发液晶分子的排列,从而控制对应像素的颜色。
在驱动原理的实现过程中,TFT液晶显示器需要一个控制器来产生电信号。
控制器通过一个复杂的算法,将输入的图像数据转化为适合TFT液晶显示器的电信号,以实现图像的显示。
控制器还负责对TFT晶体管进行驱动,为每个像素提供适当的电压。
另外,TFT液晶显示器还需要背光模块来提供光源。
背光模块通常使用冷阴极荧光灯(CCFL)或者白色LED来产生光线。
背光通过液晶分子的排列方式来调节光的透过程度,从而形成不同的颜色。
为了提供更好的显示效果,在TFT液晶显示器中还需要增加背光的亮度和对比度的调节功能。
TFT LCD液晶顯示器的驅動原理(一)謝崇凱前兩期針對液晶的特性與TFT LCD本身結構介紹了有關液晶顯示器操作的基本原理。
這次將針對TFT LCD的整體系統面,也就是對其驅動原理來做介紹,而其驅動原理仍然因為一些架構上差異的關係而有所不同。
首先將介紹由於Cs(storage capacitor)儲存電容架構不同,所形成不同驅動系統架構的原理。
Cs(storage capacitor)儲存電容的架構一般最常見的儲存電容架構有兩種,分別是Cs on gate與Cs on common這兩種。
顧名思義,兩者的主要差別在於儲存電容是利用gate走線或是common走線來完成。
在上一期文章中曾提到,儲存電容主要是為了讓充好電的電壓能保持到下一次更新畫面的時候之用,所以必須像在CMOS的製程之中,利用不同層的走線來形成平行板電容。
而在TFT LCD的製程中,則是利用顯示電極與gate走線或common走線所形成的平行板電容,來製作出儲存電容Cs。
<center><img src="/album/43/69/51466943/431163.jpg" border=0></center>如果圖不清楚,請看/album/43/69/51466943/431163.jpg圖1就是這兩種儲存電容架構,圖中可以很明顯地知道,Cs on gate由於不必像Cs on common需要增加一條額外的common走線,所以其開口率(Aperture ratio)比較大。
而開口率的大小是影響面板的亮度與設計的重要因素,所以現今面板的設計大多使用Cs on gate的方式。
但是由於Cs on gate方式的儲存電容是由下一條的gate走線與顯示電極之間形成的(請見圖2中Cs on gate與Cs on common的等效電路),<center><img src="/album/43/69/51466943/431250.jpg" border=0></center>而gate走線就是接到每一個TFT的gate端的走線,主要是作為gate driver送出信號來打開TFT,好讓TFT對顯示電極作充放電的動作。
tft lcd 工作原理
TFT LCD(薄膜晶体管液晶显示器)是一种常见的显示技术,广泛应用于电子设备中,例如平板电脑、智能手机和电视等。
下面是TFT LCD的工作原理:
1. 液晶层:TFT LCD最关键的部分是液晶层,液晶层由液晶
分子组成,液晶分子可以通过电场的作用改变其在空间中的排列方式。
2. 背光源:TFT LCD需要一个背光源,通常采用LED(Light Emitting Diode)作为背光源。
背光源会在显示器的后面提供
均匀的光源,通过液晶层透过背光源的光来显示图像。
3. 薄膜晶体管阵列:液晶层的每个像素点都包含一个对应的薄膜晶体管。
这些薄膜晶体管阵列是连接在导线网格上的,用于控制液晶层中液晶分子的排列方式。
4. 驱动电路:TFT LCD中的驱动电路负责控制薄膜晶体管阵列,通过在特定像素点上施加电压,改变液晶分子的排列方式。
这样,液晶层就可以根据不同的电压来控制光的透过程度,从而生成不同的颜色和亮度。
5. 控制器:TFT LCD还包含一个控制器,用于接收来自电子
设备的信号,并将其转化为正确的像素点显示在液晶屏上。
控制器通常采用计算机程序或者芯片实现。
总的来说,TFT LCD的工作原理是通过控制驱动电路中的薄
膜晶体管阵列,在液晶层中施加电场,进而控制液晶分子的排列方式,从而控制光的透过程度,最终显示出图像。
TFT_LCD_驱动原理TFT(薄膜晶体管)液晶显示屏是一种广泛应用于电子产品中的平面显示技术。
TFT液晶显示屏由液晶单元和薄膜晶体管阵列组成,每个像素都由一个液晶单元和一个薄膜晶体管控制。
TFT液晶显示屏的原理是利用液晶的电光效应来实现图像的显示。
液晶是一种介于固体和液体之间的有机化合物,具有光电效应。
通过在液晶材料中施加电场,可以改变液晶的折射率,从而控制光的透射或反射。
液晶的电光效应使得TFT液晶显示屏可以根据电信号来调节每个像素点的亮度和颜色。
TFT液晶显示屏的驱动原理主要包括以下几个步骤:1.数据传输:首先,需要将图像数据从输入设备(如计算机)传输到液晶显示屏的内部电路。
这通常是通过一种标准的视频接口(如HDMI或VGA)来完成的。
2.数据解码与处理:一旦数据传输到液晶显示屏内部,它会被解码和处理,以提取有关每个像素点的亮度和颜色信息。
这些信息通常以数字方式存储在显示屏的内部存储器中。
3.电压调节:在液晶显示屏中,每个像素是由一个液晶单元和一个薄膜晶体管组成。
薄膜晶体管通过控制液晶单元的电场来调节每个像素的亮度和颜色。
为了控制液晶单元的电场,需要施加不同电压信号到每个像素点上。
这些电压信号由驱动电路产生,并通过薄膜晶体管传递到液晶单元。
4.像素刷新:一旦电压信号被传递到液晶单元,液晶单元将会根据电场的变化来调节光的传输或反射,从而实现每个像素的亮度和颜色调节。
整个屏幕的像素都将按照这种方式进行刷新,以显示出完整的图像。
5.控制信号发生器:控制信号发生器是液晶显示屏的一个重要组成部分,用于生成各种控制信号,如行扫描和场扫描信号,以及重新刷新图像的同步信号。
这些控制信号保证了像素的正确驱动和图像的稳定显示。
总结起来,TFT液晶显示屏的驱动原理涉及数据传输、数据解码与处理、电压调节、像素刷新和控制信号发生器等多个步骤。
通过控制电压信号和液晶单元的电场变化,TFT液晶显示屏能够实现图像的显示,并且具有色彩鲜艳、高对比度和快速响应等优点,因此在各种电子产品中得到广泛应用。
TFT LCD液晶显示器的驱动原理(三)上次跟大家介绍液晶显示器的二阶驱动原理,以及因为feed through电压所造成的影响。
为了解决这些现象,于是有了三阶驱动甚至于四阶驱动的设计。
接下来我们先针对三阶驱动的原理作介绍。
三阶驱动的原理(Three level addressing method)二阶驱动的原理中,虽然有各种不同的feed through电压,但是影响最大的仍是经由Cgd所产生的feed through电压。
也因此在二阶驱动时需要调整common电压,以改进灰阶品质。
但是由于Clc并非是一个固定的参数,让调整common电压以便改进影像品质目的不易达成。
因此便有了三阶驱动的设计,期望在不必变动common电压的情形下,将feed through电压给补偿回来。
三阶驱动的基本原理是这样的,利用经由Cs的feed through电压,来补偿经由Cgd 所产生的feed though电压。
也就是因为需要利用Cs来补偿,所以三阶驱动的方法只能使用在面板架构为Cs on gate的方式。
图1就是三阶驱动gate driver电压的波形,从这个三阶驱动的波形中我们可以知道,三阶驱动波形跟二阶驱动不一样的是,它的gate driver驱动波形之中,会有三种不一样的电压。
当gate driver关闭时,会将电压拉到最低的电压,等到下一条的gater driver走线也关闭后,再将电压拉回。
而这个拉回的电压,就是为了去补偿下一条线的feed through电压。
也就是说,每一条gate driver走线关闭时,经由Cgd所产生的feed through电压,是由上一条走线将电压拉回时,经由Cs所产生的feed through电压来补偿的。
既然是经由拉回的电压来补偿,那拉回电压的大小要如何计算呢? 上次我们有提到feed through电压的计算方式,我们可以依照上次的公式来计算所需的电压:经Cgd的Feed through电压= (Vg_high – Vg_low) * Cgd / (Cgd + Clc + Cs) ; Vg_high 与Vg_low分别为gate driver走线打开与关闭的电压。
tft lcd 栅极驱动原理TFT LCD栅极驱动原理TFT LCD(Thin Film Transistor Liquid Crystal Display)是一种采用薄膜晶体管驱动的液晶显示技术。
在TFT LCD中,栅极驱动是其中一种常见的驱动方式。
本文将介绍TFT LCD栅极驱动原理及其工作过程。
一、TFT LCD基本原理TFT LCD由若干个像素点组成,每个像素点由液晶分子和薄膜晶体管构成。
液晶分子通过改变其排列方式来控制光的透过程度,从而实现图像显示。
薄膜晶体管则充当信号开关,负责控制液晶分子的状态。
二、栅极驱动原理在TFT LCD中,栅极驱动是控制薄膜晶体管开关状态的关键。
栅极驱动通过一组栅极信号来控制液晶分子的排列方式,从而改变光的透过程度。
具体来说,栅极驱动将栅极信号转换成薄膜晶体管的控制信号,通过对薄膜晶体管的开关控制来实现像素点的亮灭。
三、栅极驱动工作过程栅极驱动的工作过程可以分为以下几个步骤:1. 输入信号处理:栅极驱动器接收来自图像处理器的输入信号,对信号进行处理和解码,以获取控制液晶分子排列的相关信息。
2. 信号放大:经过处理后的信号被放大,以提供足够的电压和电流来驱动液晶分子的排列变化。
3. 信号转换:放大后的信号被转换成适合薄膜晶体管控制的格式。
通常情况下,液晶显示器使用的是NMOS(n型金属氧化物半导体)或PMOS(p型金属氧化物半导体)薄膜晶体管。
4. 栅极信号输出:转换后的信号通过栅极驱动器输出到对应的栅极线上。
每个栅极线都与一组像素点相连,栅极信号会同时作用于这组像素点的薄膜晶体管。
5. 液晶分子排列控制:栅极信号作用于薄膜晶体管后,通过改变晶体管的导通状态,控制液晶分子的排列方式。
不同的排列方式会导致光的透过程度发生变化,从而实现图像的显示。
6. 图像刷新:栅极驱动器按照一定的刷新频率不断重复上述过程,以保持图像的稳定显示。
TFT LCD栅极驱动原理的核心是通过控制薄膜晶体管的开关状态来控制液晶分子的排列方式,从而实现图像的显示。
TFT LCD液晶显示器的驱动原理(三)谢崇凯上次跟大家介绍液晶显示器的二阶驱动原理,以及因为feed through电压所造成的影响. 为了解决这些现象, 于是有了三阶驱动甚至于四阶驱动的设计. 接下来我们先针对三阶驱动的原理作介绍.三阶驱动的原理(Three level addressing method)二阶驱动的原理中, 虽然有各种不同的feed through电压, 但是影响最大的仍是经由Cgd所产生的feed through电压. 也因此在二阶驱动时需要调整common电压, 以改进灰阶品质. 但是由于Clc并非是一个固定的参数, 让调整common电压以便改进影像品质目的不易达成. 因此便有了三阶驱动的设计, 期望在不必变动common电压的情形下, 将feed through电压给补偿回来.三阶驱动的基本原理是这样的, 利用经由Cs的feed through电压, 来补偿经由Cgd所产生的feed though电压. 也就是因为需要利用Cs来补偿, 所以三阶驱动的方法只能使用在面板架构为Cs on gate的方式. 图1就是三阶驱动gate driver电压的波形, 从这个三阶驱动的波形中我们可以知道, 三阶驱动波形跟二阶驱动不一样的是, 它的gate driver驱动波形之中, 会有三种不一样的电压. 当gate driver 关闭时, 会将电压拉到最低的电压, 等到下一条的gater driver走线也关闭后,再将电压拉回. 而这个拉回的电压, 就是为了去补偿下一条线的feed through电压. 也就是说, 每一条gate driver走线关闭时, 经由Cgd所产生的feed through电压, 是由上一条走线将电压拉回时,经由Cs所产生的feed through电压来补偿的. 既然是经由拉回的电压来补偿, 那拉回电压的大小要如何计算呢? 上次我们有提到feed through电压的计算方式, 我们可以依照上次的公式来计算所需的电压:经Cgd的Feed through电压= (Vg_high – Vg_low) * Cgd / (Cgd + Clc + Cs) ;Vg_high与Vg_low分别为gate driver走线打开与关闭的电压.经Cs的Feed through电压= (Vp2 – Vp1) * Cs / (Cgd + Clc + Cs) ; Vp2与Vp1分别为上一条gate走线拉回前与拉回后的电压.如果需要两者互相抵消, 则经Cgd的Feed through电压需要等于经Cs的Feed through电压. 所以需拉回的电压为Ve=Vp2-Vp1=(Vg_high – Vg_low) * Cgd / Cs ,而从图1中我们知道Vg_high – Vg_low= Vg + Ve , 所以需拉回的电压Ve= (Vg + Ve) * Cgd / Cs ,也就是Ve= Vg * Cgd / [Cs – Cgd] .从上述的公式推导中, 我们发现虽然Clc会影响feed through电压的大小, 但是藉由三阶驱动的方式, Clc的影响就不见了. 因此当我们在面板制程与gate drvier的打开电压确定之后, 就可以精确的计算出所需要的拉回电压了.图2是三阶驱动的电压分布示意图. 我们可以看到最左边的是由source driver所输出的电压分布, 这是显示电极所充电电压的最原始状况. 而中间的电压分布, 就是显示电极受到经由Cgd的feed through电压影响的变化. 一般二阶驱动就是只有到这里, 所以需要修正common电压的大小, 以便以少灰阶的失真程度. 而三阶驱动藉由Cs的feed through电压影响的情形, 则可以由最右边的电压分布来看出. 在这时候, 只要拿捏好拉回电压Ve的大小, 便可以将原本受到经由Cgd的feed through电压影响的电压分布, 补偿到跟最左边的电压分布一样, 如此一来就不必再去修正common电压的大小了.图3是三阶驱动的电压波形图. 正如先前所说过的, 由于三阶驱动需要利用前一条的gate driver走线来补偿, 所以只能使用于Cs on gate的架构. 而且由于有电压补偿的关系, common电压就不必再做修正了. 在图3中, 属于gate driver电压有两种, 一个是前一条gate driver的电压波形, 用虚线来表示. 而用实线表示的是属于打开我们要讨论的显示电极电压波形的gate driver走线电压. 从此图形我们可以知道, 实线的gate driver走线关闭时, 会经由Cgd产生一个feed through 电压, 而这个向下的电压偏移量, 在前一条gate driver走线的拉回电压经Cs所产生的feed through电压影响后, 便可以让显示电极恢复到原先的电压准位. 而前一条gate driver走线经由Cs的Feed through电压还有另一种状况, 那就是在前一条gate driver走线打开时所产生的feed through电压, 这个电压值虽然很大, 不过由于其影响的时间, 相对于整个frame来说, 相当的短, 因此对显示画面并不会有多大的影响.图四是使用三阶驱动针对gate driver走线电压变动所形成的feed through电压更仔细的显示电极电压波形图. 跟图三不一样的是, 这个图形有考虑到当gate driver走线电压拉回时经由Cgd所造成的feed through电压. 原本拉回电压是为了补偿下一条gate driver走在线的显示电极, 但是它的副作用就是也会对gate driver走线所在位置的显示电极产生影响. 所以拉回电压的设计考量, 并不是一次将所有电压补偿回来, 而是使用两次的feed through电压补偿. 一次是上一条gate driver走线经由Cs的feed through电压来补偿, 一次则藉由显示电极所在位置的gate driver走线,它的拉回电压经由Cgd的feed through电压来补偿.总括来说, 使用三阶驱动的方式比起二阶驱动的方式来说, 可以不用调整common电压就可以克服feed through电压的影响. 而且也可以避免由于Clc的非线性关系所造成的灰阶问题. 不过跟底下要介绍的四阶驱动比较起来, 它仍然需要使用较高输出电压的source driver. 接下来要介绍的四阶驱动, 它在common电压固定不变的状况下, 并不需要使用高电压输出的source driver,就可以达到分别出正负极性电压的结果了.四阶驱动的原理(Four level addressing method)图5是四阶驱动gate driver走线的电压基本波形. 我们可以看到负责正极性与负极性的gate driver走线电压是不一样的. 负责负极性的gate driver走线电压在电压关闭时, 会往下拉到一个比一般关闭时的电压更低的准位, 等到下一条走线的电压关闭后, 再将电压拉回到一般关闭电压的准位. 而负责正极性的gate driver走线电压则是在电压关闭时, 电压并没有一口气拉到一般关闭的电压位准,而是等到下一条gate driver走线关闭后, 再将电压下拉到一般关闭的电压准位. 而这两种极性的电压位准总共有: 打开的电压, 关闭的电压, 比关闭电压高的位准, 以及比关闭电压更低的电压, 总共四种. 这是为什么叫做四阶驱动的原因. 从图五来看, 我们会发现, 同样一条gate driver走在线的显示电极, 都必须属于同一种显示的极性, 不是正极性, 就是负极性. 因此采用四阶驱动就只能使用line inversion的显示方式. 不过这样一来, 跟使用dot inversion驱动方式的面板来说, 显示画面的品质变会变的更差, flicker与cross talk的效应会更明显. 这也是为什么四阶驱动很少有人使用的缘故, 虽然它可以使用驱动电压较低的source driver, 但是它的gate driver复杂度升高, 而且画面品质下降,(当然啦, 想要让四阶驱动的面板使用dot inversion并不是不可以, 只是需要更改面板上的TFT薄膜晶体管的配置方式,以及加大显示控制器内的内存大小,来同时储存两条gate driver走在线的所有显示电极的数据, 整个硬件的复杂度会更高, 成本又会加大.) 比较起来倒不如使用line inversion且common电压变动的面板极性显示方式.四阶驱动原理简单的来说, 是利用前一个gate driver走线经由Cs的feed through电压, 在正极性时将显示电极的电压提升到很高的电压, 而在负极性时将显示电极的电压, 下拉到很低的电压, 以便将显示电极的电压分别出给正极性或是负极性的电压位准之用. 如此一来, source driver的驱动电压范围虽然不大, 但是却可以同时给正极性以及负极性的显示电极电压来用. 图6是四阶驱动的电压分布示意图, 图中最左边的是source driver输出电压的范围. 不管是正极性的画面, 或是负极性的画面, 都是使用相同的输出电压范围. 因此使用于四阶驱动的source driver, 其输出电压范围比起一般的source driver要小的多. 而图6中间则是受到gate driver走线关闭时, 经由Cgd的feed through电压影响的显示电极电压范围. 而图6右边则是最后分别出正负极性的显示电压范围. 从图中我们可以知道, 因为受到经过Cgd的feed through电压影响, 若是要将正负极性的电压范围分开的话, 对于正极性的电压范围, 往上提升的电压会比较大, 而其往上提升的电压, 是由上一条gate drive走线电压往上拉经由Cs的feed through电压来形成. 因为其所需的电压比较大, 所以上一条gate driver走在线的拉回电压也会比较大. 而对于负极性的显示电压范围的形成, 也是利用上一条gate driver走在线的电压变化来完成. 跟正极性的显示电极电压不一样的是, 它需要的是下拉的feed through电压, 以便形成负的显示电极电压范围. 它所需要的下拉电压跟正极性的上拉电压比较起来会比较小. 不过对于调整后正负极性的显示电压范围来说, 它们相对于common电压的距离要一样, 这样对于同一个灰阶的正负极性电压, 显示出来的画面才会一致. 从整个图6来说, 我们可以发现, 对于source driver的输出电压, 如同前面所说的, 并不需要有正负两种不同极性的显示范围. 只要利用上一条gate driver走线的电压变化来帮助形成正负极性的两种电压范围即可.至于在显示电极上的电压变化波形, 我们则可以利用图7跟图8来解释其电压变化的原理. 图7是负极性显示电极电压的波形变化, 从图中我们可以知道显示电极电压从source driver充好电后, 会再经过三次的电压变化. 首先是本身gate driver走线电压关闭时, 经由Cgd所产生的feed through电压影响, 由于电压关闭的关系, 会把显示电极的电压往下拉. 其次是上一条gate driver走线下拉时, 经过Cs的feed through电压. 这个电压的影响很重要, 因为它是将电压调整成负极性电压的主要成分, 必须能够将整体的电压调整到所需要的准位. 最后是本身的gate driver走线电压拉回时, 经由Cgd的feed through电压的影响. 由于拉回电压的幅度比较小, 所以整体的影响也比较少. 而图8是正极性显示电极电压的波形变化, 跟负极性的电压变化一样, 它也有三阶段的电压变化. 首先是本身gate driver走线关闭时经由Cgd的feed through电压, 其次是由前一条gate drive走线电压拉回经由Cs的feed through电压, 这电压是扮演将显示电极电压推升到正极性电压范围的最重要角色. 而最后则是本身gate driver走线电压下拉时所产生的feed through电压, 这个电压由于是经由Cgd的关系,而且变化的幅度也不大, 所以影响也比较小.既然这些电压的操作原理,都是藉由feed through电压的影响, 我们就可以利用计算feed through电压的公式, 依照图9的电压定义, 来推导出各阶电压的大小. 其结果如下:属于负极性电压的各个feed through电压:dV1=[Vg+Ve(-)]*Cgd/[Cs+Clc+Cgd]dV2= Ve(+) * Cs /[Cs+Clc+Cgd]dV3= Ve(-) * Cgd /[Cs+Clc+Cgd]属于正极性电压的各个feed through电压:dV4=[Vg-Ve(+)]*Cgd/[Cs+Clc+Cgd]dV5= Ve(-) * Cs /[Cs+Clc+Cgd]dV6= Ve(+) * Cgd/[Cs+Clc+Cgd]在图6中, 我们提到补偿后的正负极性输出电压与common电压的距离应该一致, 所以给正极性显示电压范围用的所有feed through电压总合应该和给所有负极性显示电压范围用的feed through电压总合应该一样. 所以dV1+dV2-dV3应该等于-dV4+dV5-dV6. 合并化简后, 我们可以得到:Ve(-) – Ve(+) = 2Vg * Cgd / Cs也就是说, 只要Ve(-)与Ve(+)的差值, 符合上述公式, 就可以达到四阶驱动的效果了. 而且上述公式也告诉我们一个现象, 那就是公式化简后, 已经没有了Clc的成分存在. 因此它跟三阶驱动一样, 不会受到Clc非线性的影响. 至于Ve(-)及Ve(+)的大小如何决定呢? 我们回过来观察dV1+dV2-dV3与-dV4+dV5-dV6的化简结果:dV1+dV2-dV3 = Vg*Cgd + Ve(+)*Cs = 向下的feed through总量-dV4+dV5-dV6=-Vg*Cgd + Ve(-)*Cs = 向上的feed through总量只要我们依照液晶的特性, 便可得知需要向上或是向下的feed through电压总量需要多少才够(一般是液晶的threshold电压与最大工作电压加起来的一半), 再参考面板设计的参数Vg, Cgd, Cs的大小, 就可以计算出所需的Ve(+)与Ve(-)了. 在数学上来说, 当你把向上与向下的feed through总量, 都设为0时, 就可以得到Ve(+)=-Ve(-), 这时候四阶驱动就变成三阶驱动了. 因此三阶驱动也可以说是四阶驱动的一个特例.参考数据‧交通大学次微米人才培训课程,平面显示器原理讲义。