液化石油气储罐的系列优化设计
- 格式:pdf
- 大小:501.34 KB
- 文档页数:4
80m3液化石油气储罐设计摘要本文首先介绍了储罐在国内外研究现状和发展趋势,对液化石油气储罐作了简单的介绍。
接着对液化石油气储罐的进行了详细的结构设计,并运用Auto CAD软件绘制了储罐装配图。
本文是关于80m3液化石油气储罐设计,制造中的几个关键技术:球罐选材,结构设计,补强计算及强度校核行了设计。
本文设计的主要内容包括:工艺设计包括设计压力,设计温度,设计储量;结构设计包括筒体与封头的结构设计,接管与接管法兰的设计,人孔,视镜,液面计,压力计,温度计,及安全阀的结构等结构设计,支座结构设计,焊接接头设计;开孔补强计算;强度计算及校核。
关键词:储罐;工艺设计;结构;强度;补强80m3 liquefied petroleum gas storage tank designAbstractThis paper firstly introduces the research status and development trend of tanks at home and abroad, and liquefied petroleum gas tanks are briefly introduced here. Then the liquefied petroleum gas storage tank structure design were studied in detail, and the use of Auto CAD software to draw the tank assembly drawing.This article is about the design of 80m3 of liquefied petroleum gas tank , several key technology in spherical tank manufacturing are: material, structure design, reinforcement calculation and strength check of the line design.The main contents of this paper include: design process design including the design pressure, design temperature, design reserves; structure design including the tube body and head, nozzles and nozzle flange design, manhole, mirror, level gauge, pressure gauge, thermometer, and safety valve structure, structure design, support structure design, welding joint design; opening reinforcement calculation; strength calculation and check. Keywords: tank; process design; structure; strength; reinforcement目录引言 .......................................................................................................................... - 1 - 第1章绪论 .................................................................................................................. - 2 -1.1 卧室储罐的介绍.................................................................................................................. - 2 -1.2 液化石油气贮罐的分类...................................................................................................... - 2 -1.3 液化石油气特点.................................................................................................................. - 2 -1.4 卧式液化石油气贮罐设计的特点...................................................................................... - 2 - 第2章液化石油气的工艺设计及主体材料的选择 .................................................. - 3 -2.1 设计温度.............................................................................................................................. - 3 -2.2 设计压力.............................................................................................................................. - 3 -2.3 设计储量.............................................................................................................................. - 3 -2.4 焊接接头系数...................................................................................................................... - 3 -2.5 主体材料的选择.................................................................................................................. - 3 - 第3章液化石油气结构设计 .................................................................................... - 4 -3.1 筒体和封头的设计.............................................................................................................. - 4 -3.2 计算压力.............................................................................................................................. - 4 -3.3 圆筒厚度的设计.................................................................................................................. - 5 -3.4 椭圆封头厚度的设计.......................................................................................................... - 5 -3.5 接管、法兰垫片和螺栓的选择.......................................................................................... - 5 -3.6 其他附件的设计.................................................................................................................. - 9 -3.7 鞍座选型和结构设计........................................................................................................ - 10 -3.8 鞍座位置的确定.................................................................................................................- 11 -3.9 焊接结构设计.................................................................................................................... - 12 -3.10 焊后处理.......................................................................................................................... - 13 - 第4章开孔补强设计 ................................................................................................ - 14 -4.1 补强设计方法判别............................................................................................................ - 14 -4.2 有效补强范围.................................................................................................................... - 14 -4.3 有效补强面积.................................................................................................................... - 15 -4.4 接管区焊缝截面积(焊角取6.0mm) .............................................................................. - 15 -4.5补强面积............................................................................................................................... - 15 - 第5章容器强度的校核 ............................................................................................ - 16 -5.1 水压试验校核.................................................................................................................... - 16 -5.2 筒体最小厚度校验............................................................................................................ - 16 -5.3 筒体轴向应力计算与校核................................................................................................ - 16 -5.4 封头最小厚度校验............................................................................................................ - 18 -5.5 封头强度校核.................................................................................................................... - 18 -5.6 筒体和封头切向应力校核................................................................................................ - 18 -5.7 筒体环向应力的计算和校核............................................................................................ - 19 - 结论与展望 .................................................................................................................... - 21 - 致谢 ........................................................................................................................ - 22 - 参考文献 ........................................................................................................................ - 23 -附录A:主要参考文献摘要及题录 ............................................................................. - 24 - 附录B:英文原文及翻译 ............................................................................................. - 26 -插图清单图3-1 椭圆形封头 (4)图3-2 接管分布图 (6)图3-3 鞍座结构图 (11)图3-4 坡口基本形式 (12)表格清单表3-1 标准椭圆形封头尺寸图表 (4)表3–2法兰尺寸表 (6)表3–3 管子尺寸表 (7)表3–4 垫片尺寸表 (7)表3-5 螺栓及垫片 (8)表3-6 水平吊盖带颈对焊法兰人孔尺寸表 (9)表3-7 鞍座支座结构尺寸 (11)引言液化石油气作为一种化工基本原料和新型燃料,已愈来愈受到人们的重视。
第一章 工艺设计参数的确定液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。
取其大致比例如下:表一 组成成分 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 各成分百分比0.012.2549.323.4821.963.791.190.02对于设计温度下各成分的饱和蒸气压力如下:表二,各温度下各组分的饱和蒸气压力 温度,℃ 饱和蒸汽压力,MPa异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 -25 0 1.3 0.2 0.06 0.04 0.025 0.007 0 -20 0 1.38 0.27 0.075 0.048 0.03 0.009 0 0 0 2.355 0.466 0.153 0.102 0.034 0.024 0 20 0 3.721 0.833 0.294 0.205 0.076 0.058 0 5071.7440.670.50.20.160.00111、设计温度根据本设计工艺要求,使用地点为太原市的室外,用途为液化石油气储配站工作温度为-20—48℃,介质为易燃易爆的气体。
从表中我们可以明显看出,温度从50℃降到-25℃时,各种成分的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。
由上述条件选择危险温度为设计温度。
为保证正常工作,对设计温度留一定的富裕量。
所以,取最高设计温度t=50℃,最低设计温度t=﹣25℃。
根据储罐所处环境,最高温度为危险温度,所以选t=50℃为设计温度。
1、设计压力该储罐用于液化石油气储配供气站,因此属于常温压力储存。
工作压力为相应温度下的饱和蒸气压。
因此,不需要设保温层。
根据道尔顿分压定律,我们不难计算出各种温度下液化石油气中各种成分的饱和蒸气分压,如表三:表三,各种成分在相应温度下的饱和蒸气分压温度, ℃饱和蒸气分压, MPa异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戍烷 正戍烷乙烯 -25 0 0.029 0.0946 0.014 0.0088 0.00095 0.000083 0 -20 0 0.031 0.127 0.0176 0.0105 0.00114 0.000109 0 0 0 0.053 0.2204 0.0359 0.0224 0.00129 0.000256 0 20 0 0.084 0.394 0.069 0.045 0.00288 0.00063 0 500 0.158 0.0825 0.1573 0.1098 0.007580.0019 0有上述分压可计算再设计温度t=50℃时,总的高和蒸汽压力P=in i i py ∑81===0.01%×0+2.25%×7+47.3%×1.744+23.48%×0.67+21.96%×0.5+3.79%×0.2+1.19%×0.16+0.02%×0.0011=1.25901 MPa因为:P异丁烷(0.2)<P液化气(1.25901)<P丙烷(1.744)当液化石油气在50℃时的饱和蒸汽压力高于异丁烷在50℃时的饱和蒸汽压力时,若无保冷设施,则取50℃时丙烷的饱和蒸汽压力作为设计压力。
25立方液化石油气储罐一.设计背景该储罐由菏泽锅炉厂有限公司设计,是用来盛装生产用的液化石油气的容器。
设计压力为,温度在-19~52摄氏度范围内,设备空重约为5900Kg,体积为25立方米,属于中压容器。
石油液化气为易燃易爆介质,且有毒,因此选材基本采用Q345R。
此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。
二.总的技术特性:三.储气罐基本构成储气罐是一个承受内压的钢制焊接压力容器。
在规定的使用温度和对应的工作压力下,应保证安全可靠,罐体的基本结构部件应包括人孔、封头、筒体、法兰、支座。
图1储气罐的结构简图筒体本产品的简体是用钢板卷焊成筒节后组焊而成,这时的简体有纵环焊缝。
封头按几何形状不同,有椭圆形封头,球形封头,蝶形封头,锥形封头和平盖等各种形式。
封头和简体组合在一起构成一台容器壳体的主要部分,也是最主要的受压元件之一。
此储气罐选择的是椭圆形封头。
从制造方法分,封头有整体成形和分片成形后组焊成一体的两种。
当封头直径较大,超出生产能力时,多采用分片成形方法制造,分片成形控制难度大,易出现不合格产品。
对整体成形的封头尺寸、形状,虽然易控制但一般需要有大型冲压模具的压力机或大型旋压设备,工艺设备庞大,制造成本高。
从封头成形方式讲,有冷压成形、热压成形和旋压成形。
对于壁厚较薄的封头,一般采用冷压成形。
采用调质钢板制造的封头或封头瓣片,为不破坏钢板调质状态的力学性能,节省模具制造费用,往往采用多点冷压成形法制造。
当封头厚度较大时,均采用热压成形法,即将封头坯料加热至900℃~1000℃。
钢板在高温下冲压产生塑性变形而成形,此时对于有些材料(如正火态钢板),由于改变了原始状态的力学性能,为恢复和改善其力学性能,封头冲压成形后还要做正火、正火+回火或淬火+回火等相应的热处理。
对于直径大且厚度薄的封头,采用旋压成形法制造是最经济最合理的选择。
30M3液化石油气储罐设计液化石油气储罐是一种用于储存和运输液化石油气的设备。
下面是一个关于30M3液化石油气储罐的设计方案,总字数超过1200字。
请注意,这仅仅是一个设计方案的概述,实际的设计需要详细考虑诸如材料选择、结构强度、安全措施等方面的因素。
设计方案概述:1.储罐容量:储罐的容量为30立方米,可以满足一般商业和家用液化石油气需求。
2.材料选择:储罐主要由碳钢构成,碳钢具有良好的强度和耐蚀性,适用于储存液化石油气的环境。
3.结构设计:储罐采用圆筒形结构,底部为圆锥形,底部设计合理,以便于方便排放液体和气体。
储罐顶部设有适当的进气孔和排气孔,可以实现气体的进出。
4.安全措施:a.储罐设有过压保护装置,可以及时释放过高的压力以防止储罐爆炸。
b.储罐底部设有液位传感器,用于监测液体的高度,以确保不会超过设计容量。
c.储罐设有温度传感器,用于监测储罐内部气体的温度,以防止过高温度引发事故。
d.储罐设有火灾探测器和灭火系统,以应对火灾风险。
5.排放和填充:储罐底部设有排放阀门,用于排放液体和气体。
储罐顶部设有填充阀门,用于向储罐注入液化石油气。
6.运输和安装:储罐设计合理,可以方便地运输和安装。
储罐具有适当的固定装置,以确保在运输和操作过程中的稳定性和安全性。
7.维护和保养:储罐需要定期维护和保养,以确保其正常运行和安全性。
维护包括检查和更换阀门、传感器以及涂层的重新涂覆等。
8.泄漏和环境保护:储罐设有泄漏探测系统和泄漏收集装置,能够及时检测和收集泄漏的液体或气体,以减少对环境的影响。
以上是关于30M3液化石油气储罐设计的一个简要概述。
实际的设计将需要考虑更多细节和具体要求,包括压力容器标准、安全要求和环保法规等。
设计师应该与相关专业人员和当地政府机构合作,并参考现有的规范和标准,以确保储罐的设计符合要求并能够安全地运行。
目录封面 (1)目录 (2)封皮 (3)任务说明 (4)封面 (6)第一章、工艺设计 (7)1.压力容器存储量 (7)2.压力计算 (8)第二章、机械设计 (8)1、结构设计 (8)⑴、筒体和封头的设计 (8)⑵、接管与接管法兰设计 (8)⑶、人孔、补强、液面计及安全阀的设计 (11)⑷、鞍座的设计 (12)⑸、焊接头设计 (14)第三章、强度计算校核 (15)1、内压圆筒校核 (16)2、左封头计算校核 (17)3、右封头计算校核 (18)4、鞍座校核 (19)5、各种接口补强校核 (20)6、各种法兰校核 (21)参考资料 (22)设计感想 (23)中北大学课程设计任务书2009/2010 学年第二学期学院:机械工程与自动化学院专业:过程装备与控制工程学生姓名:学号:课程设计题目:55M3液化石油气储罐设计起迄日期:06 月13 日~06月24日课程设计地点:校内指导教师:系主任:下达任务书日期: 2010年06月13日课程设计任务书1.设计目的:1)使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。
2)掌握查阅、综合分析文献资料的能力,进行设计方法和方案的可行性研究和论证。
3)掌握电算设计计算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。
4)掌握工程图纸的计算机绘图。
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):1.原始数据设计条件表序号项目数值单位备注1 名称液化石油气储罐2 用途液化石油气储配站3 最高工作压力 1.61 MPa 由介质温度确定4 工作温度-20~48 ℃5 公称容积(V g)10/20/25/40/50 M36 工作压力波动情况可不考虑7 装量系数(φV) 0.98 工作介质液化石油气(易燃)9 使用地点室外10 安装与地基要求储罐底壁坡度0.01~0.0211 其它要求管口表公称尺寸连接尺寸标准连接面形式用途或名称g 1-4 DN50 HG20595—97 MFM 液位计接口c DN50 HG20595—97 MFM 放气管b DN50 MFM 人孔n DN50 HG20595—97 MFM 安全阀接口h DN50 HG20595—97 MFM 排污管i DN50 HG20595—97 MFM 液相出口管f DN50 HG20595—97 MFM 液相回流管a DN50 HG20595—97 MFM 液相进口管c DN50 HG20595—97 MFM 气相管d DN50 HG20595—97 MFM 压力表接口e DN50 HG20595—97 MFM 温度计接口课程设计任务书2.设计内容1)设备工艺、结构设计;2)设备强度计算与校核;3)技术条件编制;4)绘制设备总装配图;5)编制设计说明书。
液化石油气储罐毕业设计_目录绪论....................................................................................... ............ (2)第一章设计参数的选择1.1 设计题目....................................................................................... ............ (3)1.2 原始数据....................................................................................... ............ (3)1.3 设计压力....................................................................................... ........ . (3)1.4 设计温第2页(共58页)度....................................................................................... ........ . (3)1.5 主要元件材料的选择....................................................................................... ........... .. (3)第二章容器的结构设计2.1 圆筒厚度的设计....................................................................................... ........... . (4)2.2 封头壁厚的设计....................................................................................... .......... .. (4)2.3 筒体和封头的结构设计....................................................................................... .......... .. (5)2.4 人孔的选第3页(共58页)择....................................................................................... ........ (6)2.5 接管,法兰,垫片和螺栓(柱)............................................................................... .................. (6)2.6 鞍座选型和结构设计....................................................................................... ......... . (9)第三章开孔补强设计3.1 补强方法判别..................................................................................... .......... . (11)3.2 有效补强范围....................................................................................... ........ (11)3.3 有效补强面第4页(共58页)积....................................................................................... ........ (12)3.4 补强面积....................................................................................... ........ .. (12)第四章强度计算4.1 水压试验校核....................................................................................... ........ (13)4.2 圆筒轴向弯矩计算....................................................................................... ........ . (13)4.3 圆筒轴向应力计算并校核.................................................................................... .. . (14)4.4 切向剪应力的计算及校第5页(共58页)核.................................................................................... .. . (15)4.5 圆筒周向应力的计算和校核.................................................................................... .. (16)4.6 鞍座应力计算并校核.................................................................................... .. (18)4.7地震引起的地脚螺栓应力.................................................................................... .. (20)附录:参考文献.............................................................................. ........ (22)第6页(共58页)第7页(共58页)绪论液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安第8页(共58页)全与防火, 还要注意在制造、安装等方面的特点。
100_M3_液化石油气储罐设计100_M3_液化石油气储罐设计一、引言随着现代工业的快速发展,液化石油气的使用越来越广泛。
为了满足工业生产的需求,需要设计一个能够存储100M3液化石油气的储罐。
本设计将遵循相关标准和规定,确保储罐的安全性和可靠性。
二、设计要求1.储罐容量:100M32.储存介质:液化石油气3.设计压力:2.5MPa4.设计温度:-19℃至50℃5.储罐形式:立式圆筒形6.焊接质量:符合AWS D1.1 标准7.防腐措施:内外表面采用防腐涂料保护,并定期进行检测和维护三、储罐材料选择根据液化石油气的性质和设计要求,选用低合金高强度钢(Q345R)作为储罐的主要材料。
这种材料具有较高的强度和韧性,能够满足储罐承载压力和温度的要求。
同时,这种材料具有良好的焊接性能,能够保证焊接质量的稳定性和可靠性。
四、储罐结构设计1.储罐采用立式圆筒形设计,由筒体、封头、支座等部件组成。
筒体采用低合金高强度钢(Q345R)卷制而成,封头采用压制成型,支座采用焊接固定。
2.储罐的进出口管道采用法兰连接,并设置安全阀和压力表等安全附件。
安全阀的作用是在储罐超压时自动开启,释放多余压力,保证储罐的安全。
压力表的作用是实时监测储罐内的压力,确保压力在正常范围内。
3.储罐内部设置防波板,以减少液体的晃动和冲击。
同时,在储罐底部设置排污口,以便定期排放杂质和水分。
4.储罐外部设置保温层,以减少温度变化对储罐内压的影响。
同时,在储罐顶部设置通风口,以便在极端天气条件下保护储罐不受损坏。
五、焊接工艺选择由于液化石油气具有易燃易爆的特性,因此焊接过程中需要采取特殊的工艺和技术,确保焊接质量和安全。
本设计采用自动焊接工艺,使用自动焊机对筒体和封头进行焊接。
这种工艺具有焊接速度快、质量稳定等优点,能够保证焊接接头的强度和密封性。
同时,在焊接过程中采取严格的安全措施,确保焊接作业的安全进行。
六、防腐措施设计为了延长储罐的使用寿命,需要对储罐内外表面进行防腐处理。
液化石油气储罐设计
1.储罐材料选择:
2.结构设计:
3.安全阀和泄压装置:
储罐设计需要考虑到可能发生的过压和过温情况。
为了确保储罐内部压力在可接受范围内,应安装安全阀和泄压装置。
这些装置将会在压力过高或温度过高时自动释放气体。
4.罐体绝热:
由于液化石油气的低温特性,储罐设计需要确保罐体具有良好的绝热特性。
这可以通过采用绝热材料来实现,其中包括内部绝热层、外部绝热层和真空层等。
5.地震设计:
储罐的地震设计是非常重要的,特别是对于经常发生地震的地区。
储罐的结构应具备足够的抗震能力,以确保在地震发生时储罐不会受到严重损坏。
6.罐体检测和监测系统:
储罐应配备完备的检测和监测系统,以实时监测储罐内的压力、温度和液位等参数。
这有助于及时发现潜在的故障,并采取相应的措施进行修复和保养。
7.罐体密封系统:
储罐的密封系统对于防止气体泄漏和液体挥发至关重要。
密封系统应设计为可靠的,并在罐体发生压力变化时能够保持稳定的密封效果。
综上所述,液化石油气储罐设计应综合考虑储罐的材料选择、结构设计、安全阀和泄压装置、罐体绝热、地震设计、检测和监测系统以及罐体密封系统等关键要素。
通过合理的设计和建造,可以确保液化石油气储罐的安全运行,防止事故发生,保护人员和环境的安全。
110立方米液化石油气储罐设计液化石油气(LPG)是一种重要的燃料资源,广泛应用于工业、农业和生活领域。
为了方便储存和运输LPG,110立方米液化石油气储罐成为了一种常见的设备。
本文将探讨110立方米液化石油气储罐的设计特点和应用领域。
110立方米液化石油气储罐通常采用钢制结构,具有良好的耐腐蚀性和密封性能。
其设计考虑到了LPG的特性,确保储存和运输过程中不会发生泄漏或安全事故。
同时,110立方米的储罐容量适中,既能满足一定规模的需求,又不会造成过度浪费。
在工业领域,110立方米液化石油气储罐常用于燃料供应系统。
工厂或企业可以将LPG储存在储罐中,以备不时之需。
这种储罐设计紧凑,占地面积小,适合各种规模的工厂使用。
同时,110立方米的容量足以满足一定时间的生产需求,不需要频繁补充LPG,提高了生产效率。
在农业领域,110立方米液化石油气储罐常用于农业灌溉系统或温室加热。
农业生产对燃料的需求量较大,110立方米的储罐可以满足农民长时间的使用需求,无需频繁更换燃料。
此外,储罐的设计使得燃料供应稳定可靠,保障了农作物的正常生长。
在生活领域,110立方米液化石油气储罐被广泛应用于城市居民区或商业建筑。
LPG作为清洁高效的燃料,受到了越来越多家庭和企业的青睐。
110立方米的储罐设计考虑到了城市空间的限制,可以灵活安装在建筑物的地下或屋顶,不占用过多空间。
总的来说,110立方米液化石油气储罐的设计充分考虑了LPG的特性和应用需求,适用于工业、农业和生活领域。
其安全可靠的性能和适中的容量使其成为一种理想的储存设备。
希望未来能有更多创新设计出现,进一步提升液化石油气储罐的性能和效率,为社会的发展做出贡献。