ANSYS 高清晰 精品资料:第09章 周期对称结构的静力分析
- 格式:pdf
- 大小:812.90 KB
- 文档页数:48
ANSYS结构静力学与动力学分析教程第一章:ANSYS结构静力学分析基础ANSYS是一种常用的工程仿真软件,可以进行结构静力学分析,帮助工程师分析和优化设计。
本章将介绍ANSYS的基本概念、步骤和常用命令。
1.1 ANSYS的基本概念ANSYS是一款基于有限元方法的仿真软件,可以用于解决各种工程问题。
其核心思想是将结构分割成有限数量的离散单元,并通过求解线性或非线性方程组来评估结构的行为。
1.2 结构静力学分析的步骤进行结构静力学分析一般包括以下步骤:1)几何建模:创建结构的几何模型,包括构件的位置、大小和形状等信息。
2)网格划分:将结构离散为有限元网格,常见的有线性和非线性单元。
3)边界条件:定义结构的边界条件,如固定支座、力、力矩等。
4)材料属性:定义结构的材料属性,如弹性模量、泊松比等。
5)加载条件:施加外部加载条件,如力、压力、温度等。
6)求解方程:根据模型的边界条件和加载条件,通过求解线性或非线性方程组得到结构的响应。
7)结果分析:分析模拟结果,如应力、应变、变形等。
1.3 ANSYS常用命令ANSYS提供了丰富的命令,用于设置分析模型和求解方程。
以下是一些常用命令的示例:1)/PREP7:进入前处理模块,用于设置模型的几何、边界条件和材料属性等。
2)/SOLU:进入求解模块,用于设置加载条件和求解方程组。
3)/POST1:进入后处理模块,用于分析和可视化模拟结果。
4)ET:定义单元类型,如BEAM、SOLID等。
5)REAL:定义单元材料属性,如弹性模量、泊松比等。
6)D命令:定义位移边界条件。
7)F命令:定义力或压力加载条件。
第二章:ANSYS结构动力学分析基础ANSYS还可以进行结构动力学分析,用于评估结构在动态载荷下的响应和振动特性。
本章将介绍ANSYS的动力学分析理论和实践应用。
2.1 结构动力学分析的理论基础结构动力学分析是研究结构在动态载荷下的响应和振动特性的学科。
它基于质量、刚度和阻尼三个基本量,通过求解动态方程来描述结构的振动行为。
ANSYS静力分析的简单步骤第一步,启动工作台软件,然后选择与启动DS模块弹出得界面。
第二步,导入三维模型。
根据操作步骤进行。
首先,单击“几何体”,选择“文件”,然后选择弹出窗口中的3D模型文件,如果当时catia文件格式不符,可以把三维图先转换为“.stp”的格式,即可导入。
第三步,选择零件材料:文件导入软件后,在这个时候,依次选择“几何”下的“零件”,并且在左下角的“Details of ‘Part’”中以调整零件材料属性,本次钟形壳的材料是刚。
第四步,划分网格:选择“Project”树中的“Mesh”,右键选择“Generate Mesh”即可在这一点上,你可以在左下角的“网格”对话框的细节调整网格的大小(体积元)。
第五步,添加类型分析:第一选择顶部工具栏上的“分析”按钮,添加需要的类型分析,因为我们需要做的是在这种情况下的静态分析。
所以选择结构静力。
第六步,添加固定约束:首先选择“Project”树中的“Static Structural”按钮,右键点击支持插入固定树。
这时候在左下角的“Details of ‘Fixed Support’”对话框中“Geometry”会被选中,会要求输入固定的支撑面。
在这种情况下,固定支架的类型是表面支持,确定六凹面(此时也可点击“Edge”来确定“边”)。
然后一直的按住“CTRL”键,连续选择其它几个弧面为支撑面,在点击“Apply”进行确认,第七步,添加载荷:选择“Project”树中的“结构静力”,右键选择“Insert”中的“Force”,然后在选择载荷的作用面,再次点击“Apply”按钮进行确定。
第八步,添加变形:右键点击选择“Project”树中的“Solution”,随后依次选择插入,变形,Total”,添加变形。
第九步,添加等效应变:右键单击“项目”的树,“>插入应变->解决方案->添加等效,等效应变。
第十步,添加等效应力:首先右键点击“Project”树中的“Solution—>Insert—> Stress—>Equivalent”,添加等效应力。
第1章 静力分析1.1 力的概念力在我们的生产和生活中随处可见,例如物体的重力、摩擦力、水的压力等,人们对力的认识从感性认识到理性认识形成力的抽象概念。
力是物体间的机械作用,这种作用可以使物体的机械运动状态或者使物体的形状和大小发生改变。
从力的定义中可以看出力是在物体间相互作用中产生的,这种作用至少是两个物体,如果没有了这种作用,力也就不存在,所以力具有物质性。
物体间相互作用的形式很多,大体分两类,一类是直接接触,例如物体间的拉力和压力;另一类是“场”的作用,例如地球引力场中重力,太阳引力场中万有引力等。
同时力有两种效应:一是力的运动效应,即力使物体的机械运动状态变化,例如静止在地面物体当用力推它时,便开始运动;二是力的变形效应,即力使物体大小和形状发生变化,例如钢筋受到横向力过大时将产生弯曲,粉笔受力过大时将变碎等。
描述力对物体的作用效应由力的三要素来决定,即力的大小、力的方向和力的作用点。
力的大小表示物体间机械作用的强弱程度,采用国际单位制,力的单位是牛顿(N )(简称牛)或者千牛顿(kN )(简称千牛),1kN =103N 。
力的方向是表示物体间的机械作用具有方向性,它包括方位和指向。
力的作用点表示物体间机械作用的位置。
一般说来,力的作用位置不是一个几何点而是有一定大小的一个范围,例如重力是分布在物体的整个体积上的,称体积分布力,水对池壁的压力是分布在池壁表面上的,称面分布力,同理若分布在一条直线上的力,称线分布力,当力的作用范围很小时,可以将它抽象为一个点,此点便是力的作用点,此力称为集中力。
由力的三要素知,力是矢量,记作F ,本教材中的黑体均表示矢量,可以用一有向线段表示,如图1-1所示,有向线段AB 的大小表示力的大小;有向线段AB 的指向表示力的方向;有向线段的起点或终点表示力的作用点。
1.2 静力学基本原理所谓静力学基本原理是指人们在生产和生活实践中长期积累和总结出来并通过实践反复验证的具有一般规律的定理和定律。
第1章 静力分析1.1 力的概念力在我们的生产和生活中随处可见,例如物体的重力、摩擦力、水的压力等,人们对力的认识从感性认识到理性认识形成力的抽象概念。
力是物体间的机械作用,这种作用可以使物体的机械运动状态或者使物体的形状和大小发生改变。
从力的定义中可以看出力是在物体间相互作用中产生的,这种作用至少是两个物体,如果没有了这种作用,力也就不存在,所以力具有物质性。
物体间相互作用的形式很多,大体分两类,一类是直接接触,例如物体间的拉力和压力;另一类是“场”的作用,例如地球引力场中重力,太阳引力场中万有引力等。
同时力有两种效应:一是力的运动效应,即力使物体的机械运动状态变化,例如静止在地面物体当用力推它时,便开始运动;二是力的变形效应,即力使物体大小和形状发生变化,例如钢筋受到横向力过大时将产生弯曲,粉笔受力过大时将变碎等。
描述力对物体的作用效应由力的三要素来决定,即力的大小、力的方向和力的作用点。
力的大小表示物体间机械作用的强弱程度,采用国际单位制,力的单位是牛顿(N )(简称牛)或者千牛顿(kN )(简称千牛),1kN =103N 。
力的方向是表示物体间的机械作用具有方向性,它包括方位和指向。
力的作用点表示物体间机械作用的位置。
一般说来,力的作用位置不是一个几何点而是有一定大小的一个范围,例如重力是分布在物体的整个体积上的,称体积分布力,水对池壁的压力是分布在池壁表面上的,称面分布力,同理若分布在一条直线上的力,称线分布力,当力的作用范围很小时,可以将它抽象为一个点,此点便是力的作用点,此力称为集中力。
由力的三要素知,力是矢量,记作F ,本教材中的黑体均表示矢量,可以用一有向线段表示,如图1-1所示,有向线段AB 的大小表示力的大小;有向线段AB 的指向表示力的方向;有向线段的起点或终点表示力的作用点。
图1-11.2 静力学基本原理所谓静力学基本原理是指人们在生产和生活实践中长期积累和总结出来并通过实践反复验证的具有一般规律的定理和定律。
实验二平面结构静力有限元分析一、实验目的:1、掌握ANSYS软件基本的几何形体构造方法、网格划分方法、边界条件施加方法及各种载荷施加方法。
2、熟悉有限元建模、求解及结果分析步骤和方法。
3、能利用ANSYS软件对平面结构进行静力有限元分析。
二、实验设备:微机,ANSYS软件(教学版)。
三、实验内容:如图所示,使用ANSYS分析平面带孔平板,分析在均布载荷作用下板内的应力分布。
已知条件:q=100N/m,板长L=12m,宽b=12m,厚t=0.02m ,圆孔半径r=1m,平板所用材料的弹性模量为E=2.06×1011Mpa,泊松比为0.3。
图1-2 带孔平板模型四、实验步骤:1、分析问题:由于模型及约束载荷均对称,所以取1/4模型进行分析。
2、建立有限元模型。
(1)创建工作文件夹并添加标题;在ANSYS工作目录下创建一个文件夹,命名为plate,以便用这个文件夹保存分析过程中所生成的文件。
启动ANSYS后,使用菜单“File”——“Change Directory…”将工作目录指向plate文件夹;使用“Change Jobname…”输入plate为初始文件名,使分析过程中生成的文件均以plate为前缀。
选择结构分析,操作如下:GUI: Main Menu > Preferences > Structural(2)选择单元;首先进入单元类型库,操作如下:GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add…在对话框左侧选择Solid选项,在右侧列表中选择Quad 8 node 82选项,然后单击OK按钮。
本问题所用单元类型为带厚度平面应力分析,因此分析类型设定为Plane strs w/thk类型,操作如下:GUI:PreProcessor Menu > Element Type > Add/Edit/Delete > Options…在K3项后面下拉菜单中选“Plane strs w/thk“。
如何进行对称模型的模态分析而你不会丢失模态?最简单的办法是:不管结构是否对称,都对整个结构建模、划分网格,然后执行模态分析。
对于中小型结构,这是简单方便的办法,很值得提倡。
但是对于大型结构,由于结构大,有限元模型也很大,求解模态的时间会很长,所需硬盘空间也很大,分析过程很容易出问题。
如:由于计算时间太长,中途容易发生意外 - 断电、误操作 (特别是多人合用的情况);或是硬盘空间不够 (程序自动退出),等。
对这种情况,如果结构具有对称性,可以考虑充分利用结构的对称性来减小模型的规模,加快求解的速度。
如果结构具有一个对称面,利用对称性可以把模型的规模减小到原来的一半左右,计算时间可以减小到原来的 1/4 左右,占有硬盘至少减小到原来的一半,其效果是很可观的。
但是,利用对称性来减小计算规模也有一些地方需要注意,否则很容易发生丢失模态的情况。
对于只有一个对称面的情况,,需要计算两种工况才能保证不丢失模态:这两种工况分别是:对称面约束条件分别设置为对称条件和反对称条件;对于有两个对称面的情况,则必须分析四种工况才能保证不丢失模态:这四种工况分别是:两个对称面的约束条件为如下四种组合:对称 + 对称;对称 + 反对称;反对称 + 对称;反对称 + 反对称。
下面通过一个例子说明这一点:例题:一块板,边长100 mm,厚度 5 mm,中心孔半径10 mm;材料性能为: E = 21000 Mpa;μ= 0.3ρ= 7.8e-9 Mpa模型:创建了 2 种模型:(1) 整个板为一个模型;(2) 考虑对称性,取1/4 板计算。
约束条件:(1) 板的外部边界:Uz 和Un 为零(n 为边界在面内的法向);(2) 对称边界:1/4 模型有两个对称边界,分别取了 4 种组合情况:对称–对称;对称–反对称;反对称–反对称;反对称–对称实际计算时,可以只取其中的 3 个1/4 模型,或取全部 4 个1/4 模型,以便进行比较。
ANSYS WORKBENCH 11.0培训教程(DS)第四章静力结构分析序言•在DS中关于线性静力结构分析的内容包括以下几个方面:–几何模型和单元–接触以及装配类型–环境(包括载荷及其支撑)–求解类型–结果和后处理•本章当中所讲到的功能同样适用与ANSYS DesignSpace Entra及其以上版本.–本章当中的一些选项可能需要高级的licenses,但是这些都没有提到。
–模态,瞬态和非线性静力结构分析在这里没有讨论,但是在相关的章节当中将会有所阐述。
线性静力分析基础•在线性静力结构分析当中,位移矢量{x} 通过下面的矩阵方程得到:在分析当中涉及到以下假设条件:–[K] 必须是连续的•假设为线弹性材料•小变形理论•可以包括部分非线性边界条件–{F} 为静力载荷•不考虑随时间变化的载荷•不考虑惯性(如质量,阻尼等等)影响•在线性静力分析中,记住这些假设是很重要的。
非线性分析和动力学分析将在随后的章节中给予讨论。
[]{}{}F x K =A. 几何结构•在结构分析当中,可以使用所有DS 支持的几何结构类型.•对于壳体,在几何菜单下厚度选项是必须要指定的。
•梁的截面形状和方向在DM已经指定并且可以自动的传到DS模型当中。
–对于线性体,仅仅可以得到位移结果.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional xStructural xMechanical/Multiphysics x…Point Mass•Point Mass 在“Geometry”分支在模拟没有明确建模的重量–只有面实体才能定义point mass–可以用以下方式定义point mass位置:•在任意用户定义坐标系中(x, y, z)坐标•选择点/边/面来定义位置–重量/质量大小在“Magnitude”中输入–在结构静力分析中,point mass只受“加速度”,“标准重力加速度,”和“旋转速度”的作用.–质量和所选面相连通时它们之间没有刚度. 这不是一个刚度区域假设而是一个类似与分布质量的假设–没有旋转惯性项出现.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x…Point Mass•point mass 将会以灰色圆球出现–前面提到,只有惯性力才会对point mass 起作用。
第一章结构静力分析1.1 结构分析概述结构分析的定义:结构分析是有限元分析方法最常用的一个应用领域。
结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身骨架;海洋结构,如船舶结构;航空结构,如飞机机身等;同时还包括机械零部件,如活塞,传动轴等等。
在ANSYS产品家族中有七种结构分析的类型。
结构分析中计算得出的基本未知量(节点自由度)是位移,其他的一些未知量,如应变,应力,和反力可通过节点位移导出。
静力分析---用于求解静力载荷作用下结构的位移和应力等。
静力分析包括线性和非线性分析。
而非线性分析涉及塑性,应力刚化,大变形,大应变,超弹性,接触面和蠕变。
模态分析---用于计算结构的固有频率和模态。
谐波分析---用于确定结构在随时间正弦变化的载荷作用下的响应。
瞬态动力分析---用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。
谱分析---是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。
曲屈分析---用于计算曲屈载荷和确定曲屈模态。
ANSYS可进行线性(特征值)和非线性曲屈分析。
显式动力分析---ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。
此外,前面提到的七种分析类型还有如下特殊的分析应用:断裂力学1●复合材料●疲劳分析●p-Method结构分析所用的单元:绝大多数的ANSYS单元类型可用于结构分析,单元型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元。
1.2 结构线性静力分析静力分析的定义静力分析计算在固定不变的载荷作用下结构的效应,它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。
可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)。
静力分析轴对称问题有限元(设置)选择单元Element Types-单击Options按钮,在“Element behavior”选择“Axisymmetric”-OK.显示单元受力情况:Utility Menu>Select>Entities…选择“Elements”点[Apply]弹出“Select elements”对话框,选择[Box].Utility Menu>PlotCtrls>Style>Symmetry Expansion>2D Axi-Symmetric.!轴对称问题有限元可以采用三维空间单元模型求解。
–轴对称模型中的载荷是3-D结构均布面力载荷的总量。
轴对称单元:PLANE25,SHELL61,PLANE75,PLANE78,FLUID81,PLANE83杆梁问题有限元(设置)主要不同在于:框架为线;选择单元—Beam;设置实常数前三个。
可以选择打开截面功能:Utility Menu>PlotCtrls>Size and Shape板壳问题的有限元(设置)主要不同在于:框架为面;选择单元—Shell,设置实常数—输入厚度I.J.K.Lnodes的厚度。
结构振动问题有限元(设置)对梁杆结构振动:主要不同在于:框架为线;选择单元—Beam;设置实常数前三个。
1.模态分析设置:Main Menu>Solution>Analysis Type>New Analysis,设置模态分析。
选择Modal. Main Menu>Solution>Analysis Type> Analysis Options选择Reduced,OK.弹出对话框,输入频率0和10000其他默认,OK。
Main Menu>Solution>Master DOFs>Program Selected在主自由度“NTOT”输入“420”,即结点数的2倍。
新东北电气(锦州)电力电容器有限公司2006.91、有限元分析法和ANSYS简介1.1材料力学研究的对象主要是杆、柱、梁、轴,截面比长度小很多的物体;弹性力学研究的是材料力学的内容+板、壳、块等物体。
1.2 弹性力学研究的对象是理想弹性体,其应力和应变之间为线性关系,符合虎克定律。
理想弹性体有以下五个假设:物体是连续的;(整个物体被组成该物体的介质填满,不存在任何空隙) 物体是完全弹性的;(弹性模量不随应力大小和符号而变)物体是均匀的;(物体的各个部分具有相同的弹性)物体是各向同性的;(物体的弹性在各个方向上都是相同的)物体的变形是微小的。
(小变形,小位移)1.3 弹性力学的3个基本方程:1)平衡微分方程:反映位移和应力之间的关系,共3 个方程。
2)几何方程:反映的是位移和应变之间的关系,共6个方程。
3)物理方程:反映的是应力和应变之间的关系,共6个方程。
共15个方程,解15个未知量。
但只有少数简单的问题才能求出其解析解,对于比较复杂,物理形状又不规则的问题,用解析法难以解决。
1.4弹性力学的几个典型问题1.4.1平面问题1.4.1.1平面应力问题:即平板问题,板在其垂直方向(Z方向)不受力,在X,Y方向受力。
1.4.1.2平面应变问题:即水坝问题,截面面积不变,受的载荷不变,与截面垂直方向不受力,Z方向不发生位移。
1.4.2轴对称问题:要求受力体轴对称,约束轴对称,载荷轴对称。
1.4.3板壳问题:薄板、厚板,薄壳、厚壳。
1.5 有限单元法,简称有限元法(FEM-Finite Element Method),是当前工程技术领域中最常用的数值计算方法,可以很好解决弹性力学问题。
基本思想是把一个连续的弹性体变换为一个离散的结构体→离散成单元和节点→解线性方程组求节点位移及单元应力→近似成原连续体,求近似解从而进行总体分析。
1.6 ANSYS软件是融结构、温度、流体、电磁场分析于一体的大型通用有限元分析软件。
第九章 周期对称结构的静力分析 如果结构绕其轴旋转一个角度α,结构(包括材料常数)与旋转前完全相同,则将这种结构称为周期对称结构(循环对称结构)。
符合这一条件的最小旋转角α称为旋转周期,从结构中任意取出夹角为α的部分都可以称为结构的基本扇区。
由基本扇区绕其轴旋转复制N (=απ/2,N 必为整数)份,则可得到整个完整的结构。
在ANSYS 中可以利用结构的周期对称性,在建立模型和求解时,只对一个基本扇区建模和分析,在后处理中再进行扩展,也可得到整个结构的结果。
这样可以降低分析的规模,节省计算费用。
本章中介绍的实例依然是第八章的轮盘,区别是此处考虑了轮盘上的6个均压孔。
9.1 问题描述
某型压气机盘如图9.1所示,其截面图如图9.2所示。
盘上6个均压孔均布。
将叶片的引起的离心效果均匀施加于轮盘的边缘。
图9.1 带有均压孔的压气机盘
图9.2 压气机盘截面
图中所标各点坐标如表9.1所示。
表9.1 盘上各关键点坐标 点编号 1 2 3 4 5 6 7 8
X
226226 157 237.5229.2237.5126 138 Z
208.8258.7 258.7 220.3220.3208.8276.7276.7 点编号 9 10 11 12 13 14 15 16 17 X
102.5102.5 237.5 237.5135 243.85243.85229.2 162.5 Z 263 248.7 273.8 264.1248.7273.8254.8254.8 264.1
盘转速为11373转/分,盘材料TC4钛合金,其弹性模量为:1.15×10MPa ,泊松比
为0.30782,密度为4.48×10吨/立方毫米。
59−叶片数目为74个,叶片和其安装边总共产生的离心力等效为628232N (沿径向等效),这些力假定其均匀作用于轮盘边缘。
孔数目为6个,孔半径为10mm ,均布于轮盘径向200mm 的圆上。
位移约束施加于鼓桶上,为在鼓桶的上表面施加径向约束,在鼓桶的侧面施加轴向约束,为避免刚体位移,两个位置的周向约束均被固定。
9.2 建立模型
本实例中,首先生成第八章建立的盘截面模型,然后根据盘截面生成盘的三维实体模型,再根据布尔运算创建出盘上的均压孔,由于采用周期对称选项进行分析,所以只建立盘的六分之一即可。
本实例中的单位为应力单位MPa ,力单位为N ,长度为mm 。
在周期对称分析中,在建立模型后,划分网格之前,还需要指定周期对称分析类型选
项。
9.2.1 设定分析作业名和标题
在进行一个新的有限元分析时,通常需要修改数据库文件名,并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。
另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。
(1)选取菜单项Utility Menu >File >Change Jobname,将弹出Change Jobname(修改文件名)对话框,如图9.3所示。
图9.3 设定分析文件名
(2)在Enter new jobname(输入新文件名)文本框中输入文字“CH09”,为本分析实例的数据库文件名。
(3)单击按钮,完成文件名的修改。
(4)选取菜单项Utility Menu >File >Change Title,将弹出Change Title(修改标题)对话框,如图9.4所示。
图9.4 设定分析标题
(5)在Enter new title(输入新标题)文本框中输入文字“sstatic analysis of compressor structure with hole”,为本分析实例的标题名。
(6)单击按钮,完成对标题名的指定。
(7)选取菜单项Utility Menu>Plot>Replot,指定的标题“static analysis of compressor structure with hole”将显示在图形窗口的左下角。
(8)选取菜单项Main Menu >Preference,将弹出Preference of GUI Filtering(菜单过滤参数选择)对话框,选中Structural复选框,单击按钮确定。
9.2.2 定义单元类型
在进行有限元分析时,首先应根据分析问题的几何结构,分析类型和所分析的问题的
精度要求等,选定适合分析实例的有限元单元。
本例中选用8节点六面体实体单元SOLID45。
SOLID45不需要设定实常数。
(1)选取菜单项Main Menu >Preprocessor >Element Type >Add/Edit/Delete,将弹出Element Types(单元类型)定义对话框,如图9.5所示。
图9.7定义单元类型
(2)单击按钮,将弹出Library of Element Types(单元类型库)对话框,如图9.6所示。
图9.6 单元类型库对话框
(3)然后在左边的列表框中选择“Solid”,选择实体单元类型。
(4)单击右边的列表框右边的滚动条,选择“Brick 8node 45”,选择8节点六面体单元SOLID45。
(5)单击按钮,将SOLID45单元添加,并关闭单元类型库对话框,同时返回到第一步弹出的单元类型对话框。
(6)单击按钮,关闭单元类型对话框,结束单元类型的添加。
9.2.3 定义材料属性
本例中选用的单元类型不需定义实常数,故略过定义实常数这一步骤而直接定义材料属性。
考虑惯性力的静力分析中需要定义材料的弹性模量以及密度。
具体步骤如下:
(1)选取菜单项Main Menu>Preprocessor>Material Props>Material Models,将弹出Define Material Model Behavior(定义材料模型)对话框,如图9.7所示。
图9.7 定义材料属性对话框
(2)依次双击Structural>Linear>Elastic>Isotropic,展开材料属性的树形结构。
将弹出1号材料的弹性模量EX和泊松比PRXY的定义对话框,如图9.8所示。
图9.8 线性各向同性材料的弹性模量和泊松比
(3)在对话框的EX文本框中输入弹性模量为1.15e5,在PRXY文本框中输入泊松比为0.30782。
(4)单击按钮,关闭对话框,并返回到定义材料属性对话框,在定义材料属性会话框的左边一栏出现刚刚定义的参考号为1的材料属性。
(5)依次双击Structural>Density,弹出定义密度对话框,如图9.9所示。
图9.9 定义密度对话框
(6)在DENS文本框中输入密度数值“4.48e-9”,单位为吨/立方毫米。
(7)单击按钮,关闭对话框,并返回到定义材料属性对话框,在定义材料属性。