医学统计学章节重点归纳
- 格式:doc
- 大小:102.00 KB
- 文档页数:7
医学统计学知识点 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物。
3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异。
统计学通过对变异的研究来探索事物。
(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。
(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、AB等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标。
统计量,指描述样本特征的指标。
(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。
第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。
总体包括有限总体和无限总体。
样本:从总体中随机抽取的部分观察单位,其实测值的集合。
获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。
资料的类型计量资料、计数资料和等级资料。
误差包括随机误差、系统误差和非系统误差。
抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。
概率:是描述随机事件发生可能性大小的一个度量。
取值范围0≤P ≤1。
小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。
P ≤0.05或P ≤0.01。
医学统计学的步骤:设计、收集资料、整理资料和分析资料。
统计分析包括:统计描述和统计推断。
统计推断包括:参数估计和假设检验。
第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。
对称分布:集中位置在中间,左右两侧頻数基本对称。
偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。
(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。
计量资料集中趋势包括算术均数、几何均数和中位数。
算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。
中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。
<<医学统计学>>1. 总体:根据研究的目的确定的同质研究对象中所有的观察单位变量值的集合。
2. 样本:按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
3. 同质:影响研究指标的主要因素易控制的因素基本上相同。
4. 抽样误差:在抽样研究中,由于变异的存在,即使在同一总体中抽取的几个样本,各样本统计量往往不等。
样本统计量与总体参数也不等,这种由于抽样研究所至样本之间和样本与总体之间的差异称为--5. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。
6. 截尾数据:生存时间观察过程被人为的截止称为截尾,又称删失或终检。
原因:失访/退出/终止(研究时限已到而终止观察)。
7. 卡方基本思想:X2分布是一种连续型分布,可用于检验资料的实际频数和按检验假设计算的理论频数是否相等等问题。
X2反应实现了实际频数与理论频数的吻合程度。
如果检验假设成立,则A-T一般不大,X2应很小,即出现大X2值概率很小。
即X2越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。
若P>a则没有理由拒绝H0。
8. X2用途:(1)实际频数与拟合频数拟合优度:A推断两个或两个以上总体率或构成比有无差别(四格表/行x列表)。
B两变量之间有无相互关系。
C频数分布的拟合优度检验(判断次样本是否来自某种分布)。
(2)某些分布可用X2近似。
(3)间接应用:如t分布和F分布就是在X2分布基础上推导出来的。
9. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是否具有统计学意义。
10. 假设检验中P,a,b(倍他)的关系及统计学意义:a:检验水准,即显着性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”,以此判断是否不拒绝H0无效假设,在假设检验中,按a检验水准,拒绝了原来正确的H0,即犯了第1类错误,犯此错误的概率为a。
第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。
医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。
2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。
变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。
注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。
有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。
样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。
在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。
医学统计学重点选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为μ(界值、面积)2.5% I1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与α的关系,α是人为规定的,它们之间没有关系;P值f,Qt(X)4.方差分析自由度V的计算,V总=nT;V组间=组数(k)-1;V组间=V总-V组间5.理论秩和(n(n+1)∕2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(X);有95%的总体参数在该区间内(X);该区间包含95%的总体参数(X);该区间有95%的可能包含总体参数。
(X);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(X);回归系数t,相关系数t(X);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(bα)用一个区间估计总体参数所在范围。
这个范围称作可信度为1-a的可信区间,又称置信区间。
3.P值:拒绝HO时所冒的风险(或“作出拒绝HO而接受H1”结论时冒了P风险)4.a(第一类错误):HO真实时被拒绝(或HO真实时,拒绝H0,接受H1)5.β(第二类错误):HO不真实时不拒绝(或HO不真实时,不拒绝HO)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异;引进回归方程后,Y方面的变异。
三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。
分辨一个样本是否属于某特定总体等。
区间估计(可信区间):按一定的概率或可信度(1-a)用一个区间估计总体参数所在范围。
1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。
≤6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P 25 P 50 P 75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
一:基本概念:1.参数:反映总体的统计指标。
2. 统计量:反映样本的统计指标称为统计量。
3. 概率:描述随机事件发生的可能性的大小的一个量度4.小概率事件:把p小于等于0.05或小于等于0.01的随机事件。
资料类型:计量资料,计数资料,等级资料。
医学统计的基本步骤:研究设计,收集资料,整理资料,分析资料,结果报告与结论表达。
二:变量分布:1.正态分布:指变量的频数或频率呈中间最多,两端逐渐对称地减少,表现为钟形的一种概率分布。
特征:(1)正态分布曲线是单峰,对称,钟形曲线,X=μ时曲线达到最高峰。
(2)正态曲线有两个参数,总体均数μ和总体标准差σ,μ越大曲线右移,越小左移,故称位置参数,σ越小曲线越瘦高,越大曲线越矮胖,故称形状参数。
(3)正态分布曲线下的面积分布具有一定的规律。
P80页。
应用:(1)质量控制(2)是统计学的理论基础(3)制定医学参考值范围制定医学参考值范围:包括绝大多数正常人的人体形态功能和代谢反应等各种生理生化指标的波动范围,是作为判定某项指标正常与否的参考标准。
方法:确定正常人对象的范围,统一测量标准,确定分组,样本含量确定,确定参考值范围的但双侧,确定百分界值,医学参考值范围的估计。
2.二项分布特征:(1)二项分布的图形:当π=0.5时图形对称,π≠0.5时,图形呈偏态,且当n的含量增大时,图形趋于对称。
(2)二项分布的均数与标准差:μ=n π;σ²=nπ(1-π);σ=根号下nπ(1-π)(3)二项分布的正态近似:当n无限增大时越趋近于正态分布。
应用:对立性,独立性,重复性三:统计分析:㈠1.统计描述:图表和指标(1)图表:频数分布图分为正偏态和负偏态,长尾向右侧延伸为正偏态,向左侧延伸为负偏态。
频数分布的特点:集中趋势和离散趋势。
(2)指标:分为计数指标和计量指标。
计数指标:相对数。
应用相对数的注意事项:①计算相对数时分母不宜太小②观测单位数不等的几个率不能直接想加求其合计率③资料对比时注意可比性④资料分析时不能以构成比代替率⑤考虑存在抽样误差计量指标:1.集中趋势:①算数均数χ:适用于对称分布资料,特别是正态或近似正态分布的计量资料。
第一章2选1总体:总体(population)是根据研究目的确定的同质观察单位(研究对象)的全体,实际上是某一变量值的集合。
可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
总体population根据研究目的而确定的同质观察单位的全体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
样本sample从总体中随机抽得的部分观察单位,其实测值的集合。
3选1小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件。
P值:P 值即概率,反映某一事件发生的可能性大小。
统计学根据显著性检验方法所得到的P 值反应结果真实程度,一般以P ≤ 0.05 认为有统计学意义, P ≤0.01 认为有高度统计学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05 或0.01。
P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2) 拒绝原假设的最小显著性水平。
3) 观察到的(实例的) 显著性水平。
4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不可能性原理。
统计学中,一般认为等于或小于0.05或0.01的概率为小概率。
资料的类型(3选1)(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。
计量资料measurement data定量资料quantitative data数值变量资料numerical variable为观测每个观察单位某项指标的大小,而获得的资料。
第一章2选1总体:总体(population)是根据研究目的确定的同质观察单位(研究对象)的全体,实际上是某一变量值的集合。
可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
总体population根据研究目的而确定的同质观察单位的全体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
样本sample从总体中随机抽得的部分观察单位,其实测值的集合。
3选1小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件。
P值:P 值即概率,反映某一事件发生的可能性大小。
统计学根据显著性检验方法所得到的P 值反应结果真实程度,一般以P ≤ 0.05 认为有统计学意义, P ≤0.01 认为有高度统计学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05 或0.01。
P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2) 拒绝原假设的最小显著性水平。
3) 观察到的(实例的) 显著性水平。
4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不可能性原理。
统计学中,一般认为等于或小于0.05或0.01的概率为小概率。
资料的类型(3选1)(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。
计量资料measurement data定量资料quantitative data数值变量资料numerical variable为观测每个观察单位某项指标的大小,而获得的资料。
1. 变异:同质事物之间的差别。
2. 频数分布的两个特征:集中位置,离散趋势3. 数据分布的类型:对称分布和非对称分布。
非对称分布又称偏态分布,包括正偏态和负偏态。
单峰分布,双峰分布,多峰分布。
4. 统计描述:用统计表、统计图和统计指标等方法对资料的数量特征与分布规律进行描述。
5. 集中位置的描述,集中位置指标又称平均数指标。
有哪些及适用条件?(1) 算数平均数:最适用于单峰对称分布资料的平均水平的描述,特别是正态分布资料 (2) 几何平均数:适用于 ①等比资料 ② 对数正态分布资料(3) 中位数和百分位数:适用于 ①偏态分布的资料 ②开口资料 ③资料分布不明等 6. 离散趋势的描述四分位数间距,适用于单峰小样本资料方差和标准差,适用于对称分布尤其是正态分布资料变异系数,常用于 ①比较度量衡单位不同的两组或多种资料的变异度 差悬殊的两组或多组资料的变异度7. 常用相对数(1 )率,是二分类指标(2)构成比(3)比 8. 正确应用相对数应注意几个问题:分析时不能以构成比代替率对观察单位数不等的几个率,不能直接相加求其总率计算率时要注意资料的同质性,对比分析时应注意资料的可比性 也有抽样误差,需要假设检验。
9. 率的标准法(1) 基本思想:采用统一的标准,以消除病情构成不同对治愈率比较的影响,使算得的标准化治愈率有可比性。
(2) 目的:控制混杂因素对研究结果的影响。
10.正态分布 (1)概念P16X(2)标准正态分布,U 变换:u=,u 是标准正态离差,卩是均数,b 是标准差。
(1) 全距亦称极差,适用于单峰小样本资料②比较均数相 (1) 计算相对数的分母不宜过小U 〜N (0, 1)(3) 正态分布的特征:① 是单峰分布,高峰位置在均数 X=u 处。
② 以均数为中心,左右完全对称。
③ 取决于两个参数,均数卩和标准差b 。
卩为位置参数,卩越大,则曲线沿横轴向右移动; 卩越小,则曲线沿横轴向左移动。
医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。
2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。
3、变异:同质基础上各观察单位某变量值的差异。
数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。
变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。
可以分为有限总体和无限总体。
5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
样本代表性的前提:同质总体,足够的观察单位数,随机抽样。
统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。
6、概率:描述随机事件发生的可能性大小的一个度量。
若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。
统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。
频数分布有对称分布和偏态分布之分。
后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。
2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。
x均数:适用于正态或近似正态的分布的数值变量资料。
样本均数用表示,总体均数用μ表示。
几何均数:适用于等比级数资料和对数呈正态分布的资料。
注意观察值中不能有零,一组观察值中不能同时有正值和负值。
中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。
3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。
全距:任何资料,一组中最大值与最小值的差。
..第一章绪论1、数据/资料的分类:①、计量资料,又称定量资料或者数值变量;为观测每个观察单位某项治疗的大小而获得的资料。
②、计数资料,又称定性资料或者无序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后而得到的资料。
③、等级资料,又称半定量资料或者有序分类变量。
为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后而得到的资料。
2、统计学常用基本概念:①、统计学(statistics )是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、总体(population )指的是根据研究目的而确定的同质观察单位的全体。
③、医学统计学(medical statistics ):用统计学的原理和方法处理医学资料中的同质性和变异性的科学和艺术,通过一定数量的观察、对比、分析,揭示那些困惑费解的医学问题背后的规律性。
④、样本(sample ):指的是从总体中随机抽取的部分观察单位。
⑤、变量(variable ):对观察单位某项特征进行测量或者观察,这种特征称为变量。
⑥、频率(frequency ):指的是样本的实际发生率。
⑦、概率(probability):指的是随机事件发生的可能性大小。
用大写的P 表示。
3、统计工作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个方面。
第二章计量资料的统计描述1. 频数表的编制方法,频数分布的类型及频数表的用途①、求极差(range ):也称全距,即最大值和最小值之差,记作R ;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L ,上限为U ,变量X 值得归组统一定为L ≤X <U ,最后一组包括下限。
医学统计学第一章 绪言研究设计、资料分析、结论定量资料:以定量值表达每个观察单位的某项观察指标,如血脂心率等。
定性资料:以定性方式表达每个观察单位的某项观察指标,如血型性别等。
等级资料:以等级方式表达每个观察单位的某项观察指标,如疗效分级等。
总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。
样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。
(以上均可能考名解)描述某总体特征的指标称为总体参数,简称参数;描述某样本特征的指标称为样本统计量,简称统计量。
概率是随机事件发生可能性大小的一个度量,概率小于或等于0.05时,统计学通常称该事件为小概率事件,其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。
定量资料的统计指标(大题):算术均数,几何均数,中位数和百分位数。
同质性与异质性:同质是指观察单位具有相同的性质,是构成研究总体的必备条件;异质性是指性质不同,研究内容不同,对同质性的要求不同。
第二章 个体变异与变量分布变异(名解):是以具有同质性的观察单位为载体,某项观察指标在观察单位之间显示的差别。
【在同质的基础上各观察单位(或个体)之间的差异】 正偏态与负偏态【2.3节为重点,尤其是统计指标与图的关系】几何均数应用于比值数据,中位数适用于偏态分布离散趋势指标(重点简答):全距,四分位数间距,方差,标准差和变异系数,其中常用的是标准差和变异系数。
变异系数(名解):亦称离散系数,是标准差s 与均数x 之比,即XS CV X100%,变异系数常用于比较度量衡单位不同的两组或多组资料的变异度、比较均数相差悬殊的两组或多组资料的变异度。
如何正确使用相对数(选择或简答):1,计算相对数的分母不宜过小。
2,分析时不能以构成比代替率。
3,对观察单位数不等的几个率,不能直接相加求其平均率(或称总率)。
4,计算率时要注意资料的同质性,对比分析时应注意资料的可比性。
医学统计学章节重点归纳第一节概述1、主要内容:a、卫生统计学的基本原理和方法(研究设计和数据处理中的统计理论和方法)b、健康统计(医学人口统计、疾病统计和生长发育统计)c、卫生服务统计(卫生资源、医疗卫生服务的需求和利用、医疗保健制度和管理中的统计问题)。
2、卫生统计工作的步骤:设计、资料的搜集、资料的整理、资料的分析3、医学统计资料主要四个方面:统计报表、报告卡(单)、日常医疗卫生工作记录,专题研究或实验。
4、观察单位:是获得数据的最小单位,观察单位是根据研究目的确定的,观察单位可以是人、标本、家庭、国家等。
5、变异:是指客观事物的多样性和不确定性。
6、变量:观察单位的某种特征,称为变量。
a、数值变量(定量变量)b、分类变量(定型变量或字符变量)。
7、总体:根据研究目的所确定的同质研究对象的全体。
确切的说是性质相同的所有观察单位的某种变量的集合。
8、样本:从总体中随机抽取部分观察单位,其变量值就构成样本,通过样本信息来推断总体特征。
9、概率:事件发生的可能性大小的量度,通常以符号P表示。
10、误差:测量值与真值之差或样本指标和总体指标之差。
分为随机误差和系统误差。
第二节数值资料的统计描述1、频数分布就是观察值在所取得范围内分布的情况。
重要特征:集中趋势和离散趋势。
2、频数分布类型:正态分布型频数、正偏态分布型频数,负偏态分布型频数。
3、集中趋势指标:算术平均数(均数)、几何均数、中位数。
指标使用条件计算公式算术平均数适用于正态或近似正态分布的数值变量资料几何均数①对数正态分布,即数据经过对数变换后呈正态分布的资料;②等比级数资料,即观察值之间呈倍数或近似倍数变化的资料。
中位数①非正态分布资料(对数正态分布除外);②频数分布的一端或两端无确切数据的资料③总体分布不清楚的资料。
为奇数 , 为偶数,4、离散型趋势指标:极差、标准差和变异系数指标计算公式主要优缺点极差R=Xmax-Xmin 计算简单,便于理解;只考虑最大值与最小值之差异,不能反映组内其它观察值的变异度,不稳定,受样本量影响很大。
离均差平方和反映了各变量值之间的变异情况,但单位是原观察值单位的平方,不易理解,同时又受观察值个数的影响,不利于比较。
方差反映了各变量值之间的变异情况,不受观察值个数的影响,但单位是原观察值单位的平方,不易理解。
标准差反映了各变量值之间的变异情况,不受观察值个数的影响,单位与原观察值单位相同,是最常用的离散程度指标之一,但在两组合多组资料比较时,常受到计量单位不同和均数相差很大的影响而不能比较和不便于比较。
变异系数反映了各变量值之间的变异情况,不受观察值个数的影响,没有单位,用于比较度量衡单位不同或均数相差悬殊的多组资料的变异度。
5、 正态分布下面积分布规律①标准正态分布时区间(-1,1)或正态分布时区间(μ-1σ,μ+1σ)的面积占总面积的68.27%;②标准正态分布时区间(-1.96,1.96)或正态分布时区间(μ-1.96σ,μ+1.96σ)的面积占总面积的95%;③标准正态分布时区间(-2.58,2.58)或正态分布时区间(μ-2.58σ,μ+2.58σ)的面积占总面积的99%。
6、 正态分布的应用。
a 、医学参考值范围 b 、质量控制 c 、正态分布是其他一些理论分布的极限形式。
第三节 总体均数的估计和t 检验1、 均数的抽样误差:由抽样引起的样本均数与总体均数之差。
均数的抽样误差大小用标准误来描述。
标准误σX =n σ。
一般不知道总体均数σ,可用样本标准差S 来代替:S X =n s 。
2、标准差与标准误的区别与联系: 区别:⑴标准差S (σ):①意义:描述个体观察值变异程度的大小。
标准差小,均数对一组观察值得代表性好;②应用:与X 结合,用以描述个体观察值的分布范围,常用于医学参考值范围的估计;③与n 的关系:n 越大,S 越趋于稳定;⑵标准误S X (σX ):①意义:描述样本均数变异程度及抽样误差的大小。
标准误小,用样本均数推断总体均数的可靠性大;②应用于X 结合,用以估计总体均数可能出现的范围以及对总体均数作假设检验;③与n 的关系:n 越大,S 越小。
联系:①都是描述变异程度的指标;②由S X =n s 可知,S X 与S 正比。
n 一定时,s 越大,S X 越大。
3、t 分布:当X 服从均数为μ的正态分布时,统计量 n s X t μ-=服从自由度为v=n-1的t 分布,是小样本总体均数的区间估计及假设检验的理论基础。
4、t 分布的图形特征:t 值得分布于自由度有关。
t 分布只有一个参数即v 。
特征:①单峰分布,以0为中心,左右对称;②v 越小,t 值越分散,曲线的峰部越矮,尾部越高;③随着v 逐渐增大,t 分布逐渐接近标准正态分布;当v 趋向∞时,t 分布趋近标准正态分布,故标准正态分布是t 分布的特例;④t 分布是一簇曲线。
5、一般正态分布转化为标准正态分布就是将变量X 转变为标准正态变量Z 值。
Z=(X-X )/S 。
6、小样本均数可信区间:总体均数μ的双侧(1-α)置信区间为X ±t v ,α2/S X ;单侧(X -t v ,αS X ,∞)或(-∞,X + t v ,αS X )。
μ95%的可信区间:X ±t 0.05,v S X ;μ99%的可信区间:X ±t 0.01,v S X7、大样本均数可信区间估计:μ95%的可信区间:X ±1.96S X ;μ99%的可信区间:X ±2.58 S X8、t 检验主要用于两组均属的比较,它能够判断进行比较的两个均数的差别是由于抽样误差引起,还是来自不同总体。
9、t 检验应用条件:①资料是数值资料②分析目的是对两均数进行比较③样本例数较少时,资料服从正态分布,做两样本均数比较时,要求两总体方差齐。
10、样本均数与总体均数比较的t11、配对设计的t12、两样本均数比较的u 检验,两样本均数比较时,如n 1和n 2均大于100,可用Z 检验。
22212121n S n S X X Z +-=第四节 方差分析1、方差分析应用:a 、两个或多个样本均数的比较b 、分离各有关因素并分别估计其效应c 、分析两因素或多因素的交互作用d 、方差齐性检验2、方差分析包括:a 、完全随机设计的方差分析b 、随机区组(配伍组)设计资料的方差分析c 、均数间的两两比较。
C=(∑∑Xij )/n i1、 方差分析基本条件:a 、独立性各样本是相互独立的随机样本b 、方差齐性各组实验结果变异程度一致c 、正态性各组实验结果都服从正态分布第四节 分类资料的统计描述1、常用相对数包括:率、构成比、相对比2、率:率又称频率指标,说明某现象发生的频率或强度,常以100%、1000‰等表示。
3、构成比又称构成指标,说明某一事物内部各组成部分所占的比重或分布。
常以百分数表示。
4、相对比,是A 、B 两个有关指标之比,说明两者的对比水平,常以倍数或百分数表示,其公式为:相对比=甲指标 / 乙指标(或100%)5、动态数列常用指标:绝对增减量、发展速度、增减速度、平均发展速度、平均增减速度。
6、标化率:在进行几个总率比较时,由于内部构成不同并影响了相互比较的结论时,采用统一的标准对几个总率的内部构成进行矫正后在比较。
校正后的总率称标化率或调整率。
第六节 二项分布及其应用1、二项分布是一种离散型随机变量的分布类型。
如果每个观察对象阳性结果的发生概率为π,阴性结果的发生概率为(1-π);而且每个观察对象的结果是相互对立的,那么,重复观察n 个人,发生阳性结果的人数X 的概率分布为而二项分布,记作B (n ,π)。
2、二项分布的概率函数P (X )=C n x πx (1-π)n-x3、二项分布适用条件:①每次实验只有两种互斥的结果;②各次实验互相独立;③发生成功事件的概率恒定。
4、分布特征:二项分布的特征由二项分布的参数π以及观察的次数n 决定。
图形分布特征:二项分布图的高峰在μ=n π处或附近;π=0.5时,图形对称;π≠0.5时,分布不对称,且对同一n ,π离0.5愈远,对称性愈差。
对于同一π,随着n 的增大,分布趋于对称。
%100⨯=单位总数可能发生某现象的观察数发生某现象的观察单位率%100⨯=观察单位总数同一事物各组成部分的位数某一组成部分的观察单构成比当n→∞时,只要π不太靠近0或1(特别是当nπ和n(1-π)均大于5时),二项分布趋于对称。
5、二项分布的均数和标准差:若X服从二项分布B(n,π),则X的总体均数为μ=nπ,总体方差为σ2=n π(1-π)第七节泊松分布及其应用1、Poisson分布:是一种离散型随机变量的分布类型,是二项分布的特例,用以描述单位时间、空间、面积等的罕见事件发生次数的概率分布。
一般记作P(λ),λ是Poisson分布的唯一参数。
总体均数为λ=nπ。
前提条件:互斥、独立、恒定。
2、概率函数为:P(X)=e-λ,X为观察单位内稀有事件的发生次数,e=2.71828。
3、分布特性:Poisson分布是非对称的,总体参数λ值越小,分布越偏;随着λ→∞,分布趋于对称,当λ≥20时,Poisson分布资料可按正态分布处理。
4、Poisson分布总体均数与总体方差相等,均为λ5、Poisson分布的观察结果可加性,即对于服从Poisson分布的m歌互相独立的随机变量X1、X2…Xm,它们的和也服从Poisson分布,其均数为这个m随机变量的均数之和。
6、三种常用分布之间的关系:①二项分布与Poisson分布的关系:当n很大,发生概率π(或1-π)很小,二项分布B(n,π)近似于Poisson 分布P(nπ);②二项分布与正态分布的关系:当n较大,π不接近0或1(特别是当nπ和n(1-π)均大于5时),二项分布B(n,π)近似于正态分布N(nπ,nπ(1-π));③Poisson分布与正态分布的关系:当λ≥20时,Poisson分布渐进正态分布N(λ,λ)。
7、二项分布与Poisson分布的区别:⑴相同点:都是离散型随机变量的常见分布;⑵区别:a、取值不同。
服从二项分布的随机变量有n+1个不同的取值;Poisson分布的随机变量的可能去只有无限多个,即非负整数0,1,2……;b、随机变量的概率不同:二项分布P(X=k)= ,Poisson分布P(X=k)=e-λ;c、描述的随机变量不同。
二项分布描述的是一次试验只会出现两种对立的结果之一,n次独立重复试验中某种结果出现次数的概率分布。
Poisson分布描述的是在单位时间、面积、空间等范围中某种事件发生数的概率分布。
第八节卡方检验1、检验用途:常用于分类变量资料的统计推断,主要用途包括:①单样本分布的拟合优度;②比较两个或多个独立样本频率分布;③比较配对设计两样本频率和两频率分布;④推断两个变量或特征之间有无关联性。