中考数学专题训练【动点与抛物线】提升(附参考答案)
- 格式:doc
- 大小:1.36 MB
- 文档页数:51
最全初中数学几何动点问题专题分类归纳汇总近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题.最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴).我们知道“对称、平移、旋转” 是三种保形变换。
通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。
数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。
(1)去伪存真。
刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。
(2)科学选择。
捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。
(3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。
冲刺中考《函数》压轴真题训练第Ⅰ卷(选择题)一.选择题1.(2019•兴安盟)如图,反比例函数y =的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.1 B.2 C.4 D.82.(2019•恩施州)函数y =﹣中,自变量x的取值范围是()A.x ≤B.x ≥C.x <且x≠﹣1 D.x ≤且x≠﹣1 3.(2019•济南)函数y=﹣ax+a与y =(a≠0)在同一坐标系中的图象可能是()A .B .1C .D .4.(2019•阜新)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A.(1200,)B.(600,0)C.(600,)D.(1200,0)5.(2019•铁岭)如图,在Rt△ABC中,AB=AC,BC=4,AG⊥BC于点G,点D为BC边上一动点,DE⊥BC交射线CA于点E,作△DEC关于DE的轴对称图形得到△DEF,设CD的长为x,△DEF与△ABG重合部分的面积为y.下列图象中,能反映点D从点C向点B运动过程中,y与x的函数关系的是()A .B .C .D .6.(2019•盘锦)如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()2A .B .C .D .7.(2019•恩施州)抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有()A.5个B.4个C.3个D.2个38.(2019•朝阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.49.(2019•营口)如图,A,B是反比例函数y =(k>0,x>0)图象上的两点,过点A,B分别作x轴的平行线交y轴于点C,D,直线AB交y轴正半轴于点E.若点B的横坐标为5,CD=3AC,cos∠BED =,则k的值为()A.5 B.4 C.3 D .10.(2019•莱芜区)如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y =(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()4A.1 B.2 C.3 D.411.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)12.(2019•丹东)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取5值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个6第Ⅱ卷(非选择题)二.填空题13.(2019•无锡)如图,已知A(0,3)、B(4,0),一次函数y =﹣x+b的图象为直线l,点O关于直线l的对称点O′恰好落在∠ABO的平分线上,则b的值为.14.(2019•无锡)如图,A为反比例函数y=(k<0)的图象上一点,AP⊥y轴,垂足为P.点B在直线AP上,且PB=3PA,过点B作直线BC∥y轴,交反比例函数的图象于点C,若△PAC的面积为4,则k的值为.15.(2019•兴安盟)若抛物线y=﹣x2﹣6x+m与x轴没有交点,则m的取值范围是.16.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.717.(2019•朝阳)如图,直线y =x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为.18.(2019•营口)如图,在平面直角坐标系中,直线l1:y=x+与x轴交于点A1,与y轴交于点A2,过点A1作x轴的垂线交直线l2:y=x于点B1,过点A1作A1B1的垂线交y轴于点B2,此时点B2与原点O重合,连接A2B1交x轴于点C1,得到第1个△C1B1B2;过点A2作y轴的垂线交l2于点B3,过点B3作y轴的平行线交l1于点A3,连接A3B2与A2B3交于点C2,得到第2个△C2B2B3……按照此规律进行下去,则第2019个△C2019B2019B2020的面积是.8三.解答题19.(2019•无锡)已知二次函数y=ax2﹣4ax+c(a<0)的图象与它的对称轴相交于点A,与y轴相交于点C(0,﹣2),其对称轴与x轴相交于点B(1)若直线BC与二次函数的图象的另一个交点D在第一象限内,且BD =,求这个二次函数的表达式;(2)已知P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,试直接写出a的值.20.(2019•恩施州)如图,已知∠AOB=90°,∠OAB=30°,反比例函数y =﹣(x<0)的图象过点B(﹣3,a),反比例函数y =(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y =交于点C.求△OAC的面积.21.(2019•济南)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y =(x>0)9的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E ,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.22.(2019•济南)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx ﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP =∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.1023.(2019•恩施州)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E 的坐标和的值.(3)点F(0,y)是y轴上一动点,当y 为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H ,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.24.(2019•兴安盟)如图,在▱OABC中,A、C两点的坐标分别为(4,0)、(﹣2,3),抛物线W经过O、A、C三点,点D是抛物线W的顶点.11(1)求抛物线W的函数解析式及顶点D的坐标;(2)将抛物线W和▱OABC同时先向右平移4个单位长度,再向下平移m(0<m<3)个单位长度,得到抛物线W1和□O1A1B1C1,在向下平移过程中,O1C1与x轴交于点H,▱O1A1B1C1与▱OABC重叠部分的面积记为S,试探究:当m为何值时,S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W1的顶点为F,若点M是x轴上的动点,点N是抛物线W1上的动点,是否存在这样的点M、N,使以D、F、M、N为顶点的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.25.(2019•抚顺)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON =,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点Q的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.1226.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y =(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.27.(2019•丹东)如图,在平面直角坐标系中,抛物线y =﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y =﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC =时,求点F的坐标.13(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t ≤),请直接写出S与t的函数关系式.14参考答案一.选择1.解:∵反比例函数y =,∴OA•AD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:C.2.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x ≤且x≠﹣1.故选:D.3.解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y =在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y =(a≠0)在二、四象限,只有D符合;故选:D.4.解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x 轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB ==5,15∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.5.解:∵AB=AC,AG⊥BC,∴BG=GC =,∵△DEC与△DEF关于DE对称,∴FD=CD=x.当点F与G重合时,FD=CD,即2x=2,∴x=1,当点F与点B重合时,FC=BC,即2x =4,∴x=2,如图1,当0≤x≤1时,y=0,∴B选项错误;如图2,当1<x≤2时,,∴选项D错误;如图3,当2<x≤4时,,∴选项C错误.16故选:A.6.解:tan∠DBC ===,tan∠DAH ====﹣x,y=EF﹣EM﹣NF=2﹣BF tan∠DBC﹣AE tan∠DAH=2﹣x ×﹣x ()=x2﹣x+2,故选:B.7.解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a<0,∴b<0,c>0,∴ab>0且c>0,故①错误,∵抛物线对称轴x=﹣1,经过(1,0),∴(﹣2,0)和(0,0)关于对称轴对称,∴x=﹣2时,y>0,∴4a﹣2b+c>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴x=﹣4时,y<0,17∵b=2a,∴16a﹣8a+c<0,即8a+c<0,故③错误,∵c=﹣3a=3a﹣6a,b=2a,∴c=3a﹣3b,故④正确,∵直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,∴方程ax2+(b﹣2)x+c﹣2=0的两个根分别为x1,x2,∴x1+x2=﹣,x1•x2=,∴x1+x2+x1x2=﹣+=﹣+=﹣5,故⑤错误,故选:D.8.解:①由图象可知:a>0,c<0,∴由于对称轴>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③顶点坐标为:(,)由图象可知:<﹣2,∵a>0,18即b2﹣4ac>8a,故③错误;④由图象可知:>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=﹣9a﹣3b,∴5a+b+c=5a+b﹣9a﹣3b=﹣4a﹣2b=﹣2(2a+b)>0,故④正确;故选:C.9.解:∵BD∥x轴,∴∠EDB=90°,∵cos∠BED ==,∴设DE=3a,BE=5a,∴BD ===4a,∵点B的横坐标为5,∴4a=5,则a =,∴DE =,设AC=b,则CD=3b,∵AC∥BD,∴===,19∴EC =b,∴ED=3b +b =,∴=,则b=1,∴AC=1,CD=3,设B点的纵坐标为n,∴OD=n,则OC=3+n,∵A(1,3+n),B(5,n),∴A,B是反比例函数y =(k>0,x>0)图象上的两点,∴k=1×(3+n)=5n,解得k =,故选:D.10.解:如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA =,∵CD∥OB,AB=BC,∴OD=OA =,CD=2OB=2a,20∴C (,2a),∵反比例函数y =(x>0)的图象经过点C,∴k =×2a=4.故选:D.11.解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.12.解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,21∴=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x轴下方的抛物线上存在点P,使得PM⊥PN,即≤﹣3,∵8a+c=0,∴c=﹣8a,∵b=﹣2a,∴,解得:a,故④错误;⑤易知抛物线与x轴的另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)(4﹣x)=﹣2,22即方程a(x+2)(x﹣4)=2的两根为x1,x2,则x1、x2为抛物线与直线y=2的两个交点的横坐标,∵x1<x2,∴x1<﹣2<4<x2,故⑤错误;故选:A.二.填空题(共6小题)13.解:延长OO'交AB于点C,交l于点E,过点O'作DG⊥x轴交于G,过点E作EF⊥x轴于点F;∵A(0,3)、B(4,0),∴直线AB的解析式为y =﹣x+3,∵直线l的解析式为y =﹣x+b,∴AB∥l,∵OO'⊥l,∴OC⊥AB,∵OA=3,OB=4,由等积法可求,OC =,∵∠COB+∠AOC=∠BAO+∠AOC=90°,∴∠BOC=∠BAO,∵BO'是∠ABO的角平分线,∴CO'=GO',23∴sin∠BAO ====,∴OO'=,∴O'G =﹣=,在Rt△OO'G中,GO =,∵E、F是△OO'G的中位线,∴E (,),∵E点在直线l上,∴=﹣×+b,∴b =,故答案为.14.解:当B点在P点右侧,如图,设A(t ,),∵PB=3PA,24∴B(﹣3t ,),∵BC∥y轴,∴C(﹣3t ,﹣),∵△PAC的面积为4,∴×(﹣t )×(+)=4,解得k=﹣6;当B点在P点左侧,设A(t ,),∵PB=3PA,∴B(3t ,),∵BC∥y轴,∴C(3t ,),∵△PAC的面积为4,∴×(﹣t )×(﹣)=4,解得k=﹣12;综上所述,k的值为﹣6或﹣12.故答案为﹣6或﹣12.2515.解:∵抛物线y=﹣x2﹣6x+m与x轴没有交点,∴当y=0时,0=﹣x2﹣6x+m,∴△=(﹣6)2﹣4×(﹣1)×m<0,解得,m<﹣9故答案为:m<﹣9.16.解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.17.解:在直线y =x+1中,当x=0时,y=1;当y=0时,x=﹣3;26∴OA=1,OM=3,∴tan∠AMO =,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB =,∴OB =.∵,∴,易得tan,∴,∴,∴,同理可得,,…,=.故答案为:.18.解:∵y =x +与x轴交于点A1,与y轴交于点A2,∴,27在y =中,当x=﹣1时,y =﹣,∴,设直线A2B1的解析式为:y=kx+b,可得:,解得:,∴直线A2B1的解析式为:,令y=0,可得:x =﹣,∴C1(﹣,0),∴=,∵△A1B1B2∽△A2B2B3,∴△C1B1B2∽△C2B2B3,∴,∴,同理可得:…,∴△C2019B2019B2020的面积=,28故答案为:.三.解答题(共9小题)19.解:(1)过点D作DH⊥x轴于点H,如图1,∵二次函数y=ax2﹣4ax+c,∴对称轴为x =,∴B(2,0),∵C(0,﹣2),∴OB=OC=2,∴∠OBC=∠DBH=45°,∵BH =,∴BH=DH=1,∴OH=OB+BH=2+1=3,∴D(3,1),把C(0,﹣2),D(3,1)代入y=ax2﹣4ax+c中得,,29∴,∴二次函数的解析式为y=﹣x2+4x﹣2;(2)∵y=ax2﹣4ax+c过C(0,﹣2),∴c=﹣2,∴y=ax2﹣4ax+c=a(x﹣2)2﹣4a﹣2,∴A(2,﹣4a﹣2),∵P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,∴①当抛物线的顶点A在x轴上时,∠POA=90°,则OP=OA,这样的P点只有2个,正、负半轴各一个,如图2,此时A(﹣2,0),∴﹣4a﹣2=0,解得a =;②当抛物线的顶点A不在x轴上时,∠AOB=30°时,则△OPA为等边三角形或∠AOP=120°的等腰三角形,这样的P点也只有两个,如图3,30∴AB=OB•tan30°=2×=,∴|﹣4a﹣2|=,∴或.综上,a =﹣或或.20.解:(1)∵比例函数y =﹣(x<0)的图象过点B(﹣3,a),∴a =﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD31∴===,∴AD =•OE ==3,OD =•BE ==∴A (,3),∵反比例函数y =(x>0)的图象过点A,∴k =×=9;(2)由(1)可知AD=3,OD =,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y =上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.3221.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y =(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y =,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),33∵DF⊥x轴于点F,交反比例函数y =的图象于点E,∴E(5,),∴DE=4﹣=,EF =,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D(m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC =,∴=m,34∴m=5,即:△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5.22.解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx 中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx ﹣中,得0=﹣4k ﹣,解得k =,∴直线l解析式为y =x ﹣,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,35∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OF,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m =•(﹣2m )﹣,解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB ===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB =,在x轴下方过点O作OH⊥OE,在OH上截取OH =OE =,36过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y =﹣x,解方程组,得,,∴点P 的横坐标为:或.3723.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y =x2﹣x﹣2;(2)如图1,∠AOC=90°,AC =,AB=4,设直线AC的解析式为:y=kx+b ,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时38=()2=()2=,∵S△AOC=1,∴S△AEB =,∴AB×|y E|=,AB=4,则y E =﹣,则点E (﹣,﹣);由△AOC∽△AEB 得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,39则FG=CF sin∠FCG =CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y =﹣时,即点F(0,﹣),CF+BF 有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),40∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m +),解得:m =,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).24.解:(1)设抛物线W的函数解析式为y=ax2+bx,图象经过A(4,0),C(﹣2,3)41∴抛物线W 的函数解析式为,顶点D的坐标为(2,﹣1);(2)根据题意,由O(0,0),C(﹣2,3),得O1(4,﹣m),C1(2,3﹣m)设直线O1C1的函数解析式为y=kx+b把O1(4,﹣m),C1(2,3﹣m)代入y=kx+b 得:,直线O1C1与x轴交于点H∴过C1作C1E⊥HA于点E,∵0<m<3∴,∴,∵,抛物线开口向下,S 有最大值,最大值为∴当时,;42(3)当时,由D(2,﹣1)得F(6,)∴抛物线W1的函数解析式为,依题意设M(t,0),以D,F,M,N为顶点的四边形是平行四边形,分情况讨论:①以DF为边时∵D(2,﹣1),F点D,F横坐标之差是4,纵坐标之差是,若点M、N的横纵坐标与之有相同规律,则以D,F,M,N为顶点的四边形是平行四边形,∵M(t,0),∴把分别代入得t1=0,t2=4,t3=6,t4=14∴M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0)②以DF为对角线时,以点D,F,M,N为顶点不能构成平行四边形.综上所述:M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0).25.解:(1)∵抛物线y=ax2+bx﹣3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3.43(2)如图1,设对称轴与x轴交于点H,∵MN平分∠OMD,∴∠OMN=∠DMN,又∵DM∥ON,∴∠DMN=∠MNO,∴∠MNO=∠OMN,∴OM=ON =.在Rt△OHM中,∠OHM=90°,OH=1.∴,∴M1(1,1);M2(1,﹣1).①当M1(1,1)时,直线OM解析式为:y=x,依题意得:x=x2﹣2x﹣3.解得:,,∵点Q在对称轴右侧的抛物线上运动,∴Q点纵坐标y =.∴,②当M2(1,﹣1)时,直线OM解析式为:y=﹣x,同理可求:,综上所述:点Q 的坐标为:,,44(3)由题意可知:A(﹣1,0),C(0,﹣3),D(1,﹣4),∴AC =,AD =,CD =,∵直线BC经过B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,∵抛物线对称轴为x=1,而直线BC交对称轴于点E,∴E坐标为(1,﹣2);∴CE =,设P点坐标为(x,y),则CP2=(x﹣0)2+(y+3)2,则EP2=(x﹣1)2+(y+2)2,∵CE=CD,若△PCE与△ACD全等,有两种情况,Ⅰ.PC=AC,PE=AD,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P1(﹣3,﹣4),P2(﹣1,﹣6).45Ⅱ.PC=AD,PE=AC,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P3(2,1),P4(4,﹣1).故若△PCE与△ACD全等,P点有四个,坐标为P1(﹣3,﹣4),P2(﹣1,﹣6),P3(2,1),P4(4,﹣1).26.解:(1)∵BM=OM=2,∴点B的坐标为(﹣2,﹣2),∵反比例函数y =(k≠0)的图象经过点B,则﹣2=,得k=4,∴反比例函数的解析式为y =,∵点A的纵坐标是4,∴4=,得x=1,46∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,解得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交于点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),∴OC=MB=2,∵BM⊥x轴,∴MB∥OC,∴四边形MBOC是平行四边形,∴四边形MBOC的面积是:OM•OC=4.27.解:(1)直线y =﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y =﹣x2+bx+2,将点C坐标代入上式并解得:b =,故抛物线的表达式为:y =﹣x2+x+2…①;(2)抛物线的对称轴为:x =,47点N 的横坐标为:+=5,故点N的坐标为(5,﹣3);(3)∵tan∠ACO ==tan∠FAC =,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r =,即点R 的坐标为:(,0),将点R、A的坐标代入一次函数表达式:y=mx+n 得:,解得:,故直线AR的表达式为:y =﹣x+2…②,48联立①②并解得:x =,故点F (,﹣);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(,﹣);(4)如图2,设∠ACO=α,则tan α==,则sin α=,cos α=;①当0≤t ≤时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST=∠ACO=α,过点T作TL⊥KH,则LT=HH′=t,∠LTD=∠ACO=α,则DT ====t,DS =,S=S△DST =DT×DS =t2;②当<t ≤时(右侧图),49同理可得:S=S梯形DGS′T′=×DG×(GS′+DT ′)=3+(+﹣)=t ﹣;③当<t ≤时,同理可得:S =t +;综上,S =.50。
2021年春九年级数学中考复习《几何图形的变换综合题》专题提升训练(附答案)1.如图,在矩形ABCD中,AB=4,AD=4,点E为线段CD的中点,动点F从点C出发,沿C→B→A的方向在CB和BA上运动,将矩形沿EF折叠,点C的对应点为C',当点C'恰好落在矩形的对角线上时(不与矩形顶点重合),点F运动的距离为.2.如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(﹣1,0),(5,0),(0,2).若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P在移动的过程中,使△PBF成为直角三角形,则点F的坐标是.3.如图,Rt△OAB∽Rt△BCD,斜边都在x轴上,tan∠AOB=2,AB=,双曲线(x >0)与AO交于点E、交BC于点F,且OE=2AE,CF=2BF,则反比例函数解析式是,点C的坐标是.4.矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为.5.如图①,在△ABC中,∠ACB=90°,AC=BC,以C为顶点作∠DCE=45°,且CD、CE分别与AB相交于D、E两点,将△ACD绕点C逆时针旋转90°得到△BCF.(1)求证:∠AEC=∠FEC;(2)若AD=6,EB=4,求DE的长;(3)若将∠DCE绕点C逆时针旋转使CD与AB相交于点D,边CE与AB的延长线相交于点E,而其他条件不变,如图②所示,猜想DE与AD、EB之间有何数量关系?证明你的猜想.6.如图,在平面直角坐标系xOy中,点A(4,0),M是线段OA上一动点,N为y轴正半轴上的点,且满足AM=ON.(1)若∠OMN=45°,求AM的长;(2)以MN为斜边在第一象限内作等腰直角△MNB,求点B的坐标;(3)在(2)的条件下,点B关于MN的对称点为E,当点E落在y轴上时,求AM的长.7.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.8.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.9.【问题情境】如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.(1)【问题解决】延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是.【反思感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.(2)【尝试应用】如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.(3)【拓展延伸】如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM 交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的长.10.观察猜想(1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸(3)如图③,在△ABC中,AB=AC,∠BAC=α,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=α,连接BF,则BE+BF的值是多少?请用含有n,α的式子直接写出结论.11.在△ABC中,∠BAC=90°,AB=AC.(I)如图,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC.求证:(1)△BAD≌△CAE;(2)BC=DC+EC.(Ⅱ)如图,D为△ABC外一点,且∠ADC=45°,仍将线段AD绕点A逆时针旋转90°得到AE,连接EC,ED.(1)△BAD≌△CAE的结论是否仍然成立?并请你说明理由;(2)若BD=9,CD=3,求AD的长.12.如图,在直角坐标系中,△ABC的三个顶点都在坐标轴上,A,B两点关于y轴对称,点C是y轴正半轴上一个动点,AD是角平分线.(1)如图1,若∠ACB=90°,直接写出线段AB,CD,AC之间数量关系;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图2,若∠ACB=100°,求证:AB=AD+CD.13.如图,在平面直角坐标系中,等边△ABC的顶点A,B,C均在坐标轴上,其中B(﹣4,0),C(4,0).(1)如图1,若将△AOC沿AC翻折得到△ACD,则A点坐标为,D点坐标为;(2)如图2,若点P为AO上一动点,作点P关于AC的对称点Q,连接QB,QC,是否存在这样的点P.使得△QBC的周长最小?如果存在,求出△QBC周长的最小值;如果不存在,请说明理由;(3)在(1)问的条件下,点E为y轴正半轴上一动点,是否存在点E使得△BDE为等腰三角形?如果存在,请直接写出△BDE的面积,若不存在,请说明理由.14.阅读下列材料,解答问题:定义:线段BE把等腰△ABC分成△ABE与△BCE(如图1),如果△ABE与△BCE均为等腰三角形,那么线段BE叫做△ABC的完美分割线.(1)如图1,已知△ABC中,AB=AC,∠BAC=36°,BE为△ABC的完美分割线,且CE<AE,则∠C=,∠AEB=;(2)如图2,已知△ABC中,AB=AC,∠BAC=108°,AC=CD,求证:AD为△ABC 的完美分割线;(3)如图3,已知△ABC是一等腰三角形纸片,AB=AC,AD是它的一条完美分割线,且BD>DC,将△ACD沿直线AD折叠后,点C落在点C1处,AC1交BD于点E.求证:BE=C1D.15.在等边△ABC中,点O在BC边上,点D在AC的延长线上且OA=OD.(1)如图1,若点O为BC中点,求证:∠COD的度数.(2)如图2,若点O为BC上任意一点,求证:AD=2BO+OC.(3)如图3,若点O为BC上任意一点,点D关于直线BC的对称点为点P,连接AP,OP,请判断△AOP的形状,并说明理由.16.在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分别交直线AB、AC于点M、N.(1)如图1,当α=90°时,求证:AM=CN;(2)如图2,当α=45°时,求证:BM=AN+MN;(3)当α=45°时,旋转∠MON至图3位置,请你直接写出线段BM、MN、AN之间的数量关系.17.人教版初中数学教科书八年级上册第84页探究了“三角形中边与角之间的不等关系”,部分原文如下:如图1,在△ABC中,如果AB>AC,那么我们可以将△ABC折叠,使边AC落在AB上,点C落在AB上的D点,折线交BC于点E,则∠C=∠ADE.∵∠ADE>∠B(想一想为什么),∴∠C>∠B.(1)请证明上文中的∠ADE>∠B;(2)如图2,在△ABC中,如果∠ACB>∠B,能否证明AB>AC?同学小雅提供了一种方法:将△ABC折叠,使点B落在点C上,折线交AB于点F,交BC于点G,再运用三角形三边关系即可证明,请你按照小雅的方法完成证明;(3)如图3,在△ABC中,∠C=2∠B,按照图1的方式进行折叠,得到折痕AE,过点E作AC的平行线交AB于点M,若∠BEA=110°,求∠DEM的度数.18.(1)如图1,在正方形ABCD中,∠F AG=45°,请直接写出DG,BF与FG的数量关系,不需要证明.(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC,E,F分别是BC上两点,∠EAF =45°.①写出BE,CF,EF之间的数量关系,并证明;②若将(2)中的△AEF绕点A旋转至如图3所示的位置,上述结论是否仍然成立?若不成立,直接写出新的结论,无需证明.(3)如图4,△AEF中,∠EAF=45°,AG⊥EF于G,且GF=2,GE=3,则S△AEF =.19.在△ABC中,AB=AC=6,∠BAC=90°,AD⊥BC于点D,E为线段AD上的一点,AE:DE=2:1,以AE为直角边在直线AD右侧构造等腰Rt△AEF,使∠EAF=90°,连接CE,G为CE的中点.(1)如图1,EF与AC交于点H,连接GH,求线段GH的长度.(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α且45°<α<135°,H为线段EF的中点,连接DG,HG,猜想∠DGH的大小是否为定值,并证明你的结论;(3)如图3,连接BG,将△AEF绕点A逆时针旋转,在旋转过程中,请直接写出BG 长度的最大值.20.如图,在平面直角坐标系中,A(﹣6,0),B(0,8),AB=10,点C在线段OB上,现将△AOC翻折,使得线段AO的对应边AD落到AB上,点O的对应点是点D,折痕为AC.(1)求点C的坐标;(2)连接OD,过点O作OH⊥CD于点H,求OH的长;(3)在(2)的条件下,若点P从点C出发,沿着C﹣D﹣A运动,速度为每秒1个单位,时间为t,是否存在t值,使得△AOP的面积为12,若存在求出t的值;若不存在,请说明理由.参考答案1.解:分两种情况:①当点C′落在对角线BD上时,连接CC′,如图1所示:∵将矩形沿EF折叠,点C的对应点为点C′,且点C'恰好落在矩形的对角线上,∴CC′⊥EF,∵点E为线段CD的中点,∴CE=ED=EC′,∴∠CC′D=90°,即CC′⊥BD,∴EF∥BD,∴点F是BC的中点,∵在矩形ABCD中,AD=4,∴BC=AD=4,∴CF=2,∴点F运动的距离为2;②当点C′落在对角线AC上时,作FH⊥CD于H,则CC′⊥EF,四边形CBFH为矩形,如图2所示:在矩形ABCD中,AB=4,AD=4,∠B=∠BCD=90°,AB∥CD,∴BC=AD=4,tan∠BAC===,∴∠BAC=30°,∵EF⊥AC,∴∠AFE=60°,∴∠FEH=60°,∵四边形CBFH为矩形,∴HF=BC=4,∴EH===,∵EC=CD=2,∴BF=CH=CE﹣EH=2﹣=,∴点F运动的距离为4+;综上所述:点F运动的距离为2或4+;故答案为:2或4+.2.解:能;①若F为直角顶点,过F作FD⊥x轴于D,则BP=6﹣t,DP=2OC=4,在Rt△OCP中,OP=t﹣1,由勾股定理易求得CP2=t2﹣2t+5,那么PF2=(2CP)2=4(t2﹣2t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF2÷PD=t2﹣2t+5,而PB的另一个表达式为:PB=6﹣t,联立两式可得t2﹣2t+5=6﹣t,即t=,P点坐标为(,0),则F点坐标为:(,);②B为直角顶点,那么此时的情况与(2)题类似,△PFB∽△CPO,且相似比为2,那么BP=2OC=4,即OP=OB﹣BP=1,此时t=2,P点坐标为(1,0).FD=2(t﹣1)=2,则F点坐标为(5,2).故答案是:(5,2),(,).3.解:分别过点E、A、F、C作EN⊥x轴,AM⊥x轴,FQ⊥x轴,CS⊥x轴于点N,M,Q,S.∵Rt△OAB,tan∠AOB=2,∴==2,∵AB=,∴AO=3,∵OE=2AE,∴EO=2,设NO=x,则EN=2x,由勾股定理得出:x2+(2x)2=(2)2,解得:x1=2,x2=﹣2(不合题意舍去),则EN=4,故E点坐标为:(2,4),则xy=k=2×4=8,故双曲线为:y=;∵AO=3,AB=6,∴BO==15,∵Rt△OAB∽Rt△BCD,tan∠AOB=2,∴tan∠FBQ==2,设BQ=y,则FQ=2y,故BQ=15+y,FQ=2y,则QO×FQ=8,即(15+y)×2y=8,解得:y1=,y2=(不合题意舍去),则FQ=﹣15+,∵FQ∥CS,CF=2BF,∴===,∴CS=﹣45+3,BS=,则OS=15+=,故C点坐标为:.故答案为:y=,(,3﹣45).4.解:由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.依题意画出图形,如右图所示.由轴对称性质可知,∠P AF+∠P AE=2∠P AB+2∠P AD=2(∠P AB+∠P AD)=180°,∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.连接AC,交BD于点O,则有AF=CG,且AF∥CG,∴四边形ACGF为平行四边形,∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.∴EF=FG=5,∵AP=AE=AF,∴AP=EF=2.5.∵OA=AC=2.5,∴AP=AO,即△APO为等腰三角形.过点A作AN⊥BD交BD于点N,则点N为OP的中点.由S△ABD=AB•AD=AC•AN,可求得:AN=2.4.在Rt△AON中,由勾股定理得:ON===0.7,∴OP=2ON=1.4;同理可求得:OQ=1.4,∴PQ=OP+OQ=1.4+1.4=2.8.故答案为:2.8.5.(1)证明:如图①中,∵△CBF是由∠CAD旋转得到,∴∠ACD=∠BCF,CD=CF,∴∠ACB=∠DCF=90°,∵∠DCE=90°,∴∠ECF=∠ECD=45°,∵CE=CE,∴△ECD≌△ECF(SAS),∴∠CED=∠CEF.(2)解:如图①中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵∠A=∠CBF=45°,∴∠EBF=90°,∵AD=BF=6,EB=4,∴EF===2,∵△ECD≌△ECF,∴DE=DF=2.(3)解:结论:DE2=AD2+BE2.理由:如图2中,连接EF.∵△CBF是由∠CAD旋转得到,∴∠ACD=∠BCF,CD=CF,AD=BF,∠A=∠CBF=45°,∴∠ACB=∠DCF=90°,∵∠DCE=90°,∴∠ECF=∠ECD=45°,∵CE=CE,∴△ECD≌△ECF(SAS),∴DE=EF,∵∠ABC=45°,∠CBF=45°,∴∠ABF=∠EBF=90°,∴BF2+BE2=EF2,∵BF=AD,EF=DE,∴DE2=AD2+BE2.6.解:(1)∵∠OMN=45°,∴OM=ON,∵AM=ON,∴AM=OM,∵A(4,0),∴OA=4,∴;(2)如图1,过点B作BF⊥x轴于F,BH⊥y轴于H,则∠BFM=∠BFO=∠BHN=90°,∴∠HBF=360°﹣∠NOM﹣∠BFO﹣∠BHN=90°,∵△MNB为等腰直角三角形,∴BM=BN,∠MBN=90°,∴∠FBM=∠HBN,∴△BFM≌△BHN(AAS),∴BF=BH,MF=NH,∴可设点B的坐标为(m,m),∴OF=OH=m,∵OM+ON=OM+AM=4,∴OF+OH=OM﹣MF+ON+HN=OM+ON或OF+OH=OM+MF+ON﹣HN=OM+ON,∴2m=4,解得m=2,∴点B的坐标为(2,2);(3)如备用图,(注:图形OMBN是正方形,为了更好的解决问题,图形画的偏差了一些),设BE交MN于G,则BG⊥MN,GB=GE,∵BM=BN,∴GM=GN,设OM=t,则ON=AM=4﹣t,过点G作GD⊥x轴于D,GC⊥y轴于C,连接OG,∵∠NOM=90°,∴,∴,,∴,∵B(2,2),同理,得E(t﹣2,2﹣t),∵点E在y轴上,∴t﹣2=0,解得t=2,∴AM=4﹣2=2.7.解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化.理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC.②能.∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°或120°.8.(1)证明:如图1,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF;(2)如图2,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴EF=CF,∴AF+EF=AF+CF=AC=DE;(3)如图3,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF,∵AC=DE,∴AF=AC+FC=DE+EF.9.解:(1)延长AD至E,使DE=AD,连接BE,如图①所示,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)结论:AB2+AC2=4AD2.理由:延长AD至E,使DE=AD,连接BE,如图②所示,由(1)可知:△BDE≌△CDA,∴BA=AC,∠E=∠CAD,∵∠BAC=90°,∴∠E+∠BAE=∠BAE+∠CAD=∠BAC=90°,∴∠ABE=90°,∴AB2+BE2=AE2,∴AB2+AC2=4AD2.(3)如图,延长ND到E,使得DN=DE,连接BE、EM.∵BD=DC,∠BDE=∠CDN,DE=DN,∴△BDE≌△CDN,∴BE=CM.∠EBD=∠C,∵∠ABC+∠C=90°,∴∠ABD+∠DBE=90°,∵MD⊥EN,DE=DN,∴ME=MN=5,在Rt△BEM中,BE==3,∴CN=BE=3,∵AC=6,∴AN=NC,∵∠BAC=90°,BD=DC,∴AD=DC=BD,∴DN⊥AC,在Rt△AMN中,AM==4,∴AM=BM,∵DA=DB,∴DM⊥AB,∴∠AMD=∠AND=∠MAN=90°,∴四边形AMDN是矩形,∴AD=MN=5.10.解:(1)如图①中,∵∠EAF=∠BAC=90°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE,∴∠ABF=∠C,BF=CE,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为:BF⊥BE,BC.(2)如图②中,作DH∥AC交BC于H.∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可知,BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD=DH=2,∴BH=2,∴BF+BE=BH=2;(3)如图③中,作DH∥AC交BC的延长线于H,作DM⊥BC于M.∵AC∥DH,∴∠ACB=∠H,∠BDH=∠BAC=α,∵AB=AC,∴∠ABC=∠ACB∴∠DBH=∠H,∴DB=DH,∵∠EDF=∠BDH=α,∴∠BDF=∠HDE,∵DF=DE,DB=DH,∴△BDF≌△HDE,∴BF=EH,∴BF+BE=EH+BE=BH,∵DB=DH,DM⊥BH,∴BM=MH,∠BDM=∠HDM,∴BM=MH=BD•sin.∴BF+BE=BH=2n•sin.11.解:(Ⅰ)(1)∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);(2)∵△BAD≌△CAE∴BD=CE,∴BC=BD+CD=EC+CD;(Ⅱ)(1)△BAD≌△CAE的结论仍然成立,理由:∵将线段AD绕点A逆时针旋转90°得到AE,∴△ADE是等腰直角三角形,∴AE=AD,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS);(2)∵△BAD≌△CAE,∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.12.解:(1)如图1,过D作DM⊥AB于M,∵A,B两点关于y轴对称,∴CA=CB,∵∠ACB=90°,AD是角平分线,∴CD=MD,∠ABC=45°,∴∠BDM=45°,∴BM=DM,∴BM=CD,在RT△ADC和RT△ADM中,,∴RT△ADC≌RT△ADM(HL),∴AC=AM,∴AB=AM+BM=AC+CD,即AB=AC+CD;(2)设∠ACB=α,则∠CAB=∠CBA=90°﹣α,在AB上截取AK=AC,连结DK,∵AB=AC+BD,∴BK=BD,∵AD是角平分线,∴在△CAD和△KAD中,,∴△CAD≌△KAD(SAS),∴∠ACD=∠AKD=α,∴∠BKD=180°﹣α,∵BK=BD,∴∠BDK=180°﹣α,在△BDK中,180°﹣α+180°﹣α+90°﹣α=180°,∴α=108°,∴∠ACB=108°;(3)如图2,在AB上截取AH=AD,连接DH,∵∠ACB=100°,AC=BC,∴∠CAB=∠CBA=40°,∵AD是角平分线,∴∠HAD=∠CAD=20°,∴∠ADH=∠AHD=80°,在AB上截取AK=AC,连接DK,由(1)得,△CAD≌△KAD,∴∠ACB=∠AKD=100°,CD=DK,∴∠DKH=80°=∠DHK,∴DK=DH=CD,∵∠CBA=40°,∴∠BDH=40°,∴DH=BH,∴BH=CD,∵AB=AH+BH,∴AB=AD+CD.13.解:(1)如图1中,过点D作DH⊥x轴于H.∵B(﹣4,0),C(4,0),∴OB=OC=4,∵△ABC是等边三角形,∴AB=AC=BC=8,∠ACO=60°,∵∠AOC=90°,∴∠OAC=30°,∴AC=2OC=8,∴OA===4,∴A(0,4),∵将△AOC沿AC翻折得到△ACD,∴∠ACD=∠ACO=60°,CD=CO=4,∴∠DCH=180°﹣60°﹣60°=60°,∵DH⊥CH,∴∠DHC=90°,∴∠CDH=30°,∴CH=CD=2,∴DH===2,OH=OC+CH=6,∴D(6,2).故答案为:(0,4),(6,2).(2)如图2中,∵P,Q关于AC对称,点P在线段OA上,∴点Q在线段AD上,作点C关于直线AD的对称点C′,连接BC′交AD于Q′,连接CQ′,此时△BCQ′的周长最小,∵C(4,0),D(6,2),CD=DC′,∴C′(8,4),∵B(﹣4,0),∴BC′==8,∴△BCQ′的周长=BC+CQ′+BQ′=BC+C′Q′+BQ′=BC+BC′=8+8,∴△BCQ的周长的最小值为8+8.(3)存在.如图3中,设BD交y轴于F,E(0,m).由题意,∠BAC=60°,∠CAD=∠CAO=30°,∴∠BAD=90°,∵AB=8,AD=4,∴S△ABD=•AB•AD=•AF•(x D﹣x B),∴AF==,∴OF=4﹣=,①当EB=ED时,42+m2=62+(m﹣2)2,解得m=,∴E(0,),∴S△EBD=×(﹣)×10=.②当BD=BE′时,m2+42=102+(2)2,解得m=4或﹣4(舍弃),∴E′(0,4),∴S△BDE′=×(4﹣)×10=20﹣4.③当DB=DE″时,62+(m﹣2)2=102+(2)2,解得m=2+2或﹣2+2(舍弃),∴E(0,2+2),∴S△BDE″=×(2+2﹣)×10=10+6,综上所述,△BDE的面积为或20﹣4或10+6.14.解:(1)如图1,∵AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BE为△ABC的完美分割线,且CE<AE,∴△ABE与△BCE均为等腰三角形,∴∠BEC=∠C=72°,∴∠AEB=108°.故答案为:72°,108°;(2)如图2,∵AB=AC,∠BAC=108°,∴∠B=∠C=(180°﹣∠BAC)=36°,∵AC=CD,∴∠CAD=∠CDA=(180°﹣∠C)=72°,∴∠DAB=36°,∴∠BAD=∠B,∴DA=DB,∴△ABD、△ACD均为等腰三角形,∴AD为△ABC的完美分割线;(3)∵AD是△ABC的一条完美分割线,∴AD=CD,AB=BD,∴∠C=∠CAD,∠BAD=∠BDA,∵∠C+∠CAD+∠ADC=180°,∠ADC+∠BDA=180°,∴∠BDA=∠C+∠CAD=2∠CAD,∴∠BAD=2∠CAD,∵∠CAD=∠C1AD,∴∠BAD=2∠C1AD,∵∠BAD=∠C1AD+∠BAE,∴∠C1AD=∠BAE,∵AC=AB,∴∠C=∠B,∴∠C1=∠B,∵AC=AC1,∴AC1=AB,∴△AC1D≌△ABE(ASA),∴DC1=BE.15.解:(1)∵△ABC为等边三角形,∴∠BAC=60°,∵O为BC中点,∴,且AO⊥BC,∠AOC=90°,∵OA=OD,∴△AOD中,∠D=∠CAO=30°,∴∠AOD=180°﹣∠D﹣∠CAO=120°,∴∠COD=∠AOD﹣∠AOC=30°;(2)如图1,过O作OE∥AB,OE交AD于E,∵OE∥AB∴∠EOC=∠ABC=60°∠CEO=∠CAB=60°,∴△COE为等边三角形,∴OE=OC=CE∠AEO=180°﹣∠CEO=120°∠DCO=180°﹣∠ACB=120°,又∵OA=OD,∴∠EAO=∠CDO,在△AOE和△COD中,,∴△AOE≌△DOC(AAS),∴CD=EA,∵EA=AC﹣CE,BO=BC﹣CO,∴BO=CD,又∵AD=AC+CD,AB=BC,∴AD=AB+BO=BC+BO=BO+CO+BO=2BO+CO;(3)△AOP为等边三角形.证明:如图2,连接PC,PD,延长OC交PD于F,∵P、D关于OC对称,∴PF=DF,∠PFO=∠DFO=90°,在△OPE与△OPF中,,∴△OPE≌△OPF(SAS),∴∠POF=∠DOF,OP=OD,∴△AOP为等腰三角形,过O作OE∥AB,OE交AD于E,由(2)得△AOE≌△DOC∠AOE=∠DOC,∴∠AOE=∠POF,∴∠AOE+∠POE=∠POF+∠POE,即∠AOP=∠COE=60°,∴△AOP是等边三角形.16.证明:(1)如图1,连接OA,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠MON=∠AOC=90°,∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,∴△AOM≌△CON(ASA)∴AM=CN;(2)证明:如图2,在BA上截取BG=AN,连接GO,AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∵BG=AN,∠ABO=∠NAO=45°,AO=BO,∴△BGO≌△AON(SAS),∴OG=ON,∠BOG=∠AON,∵∠MON=45°=∠AOM+∠AON,∴∠AOM+∠BOG=45°,∵∠AOB=90°,∴∠MOG=∠MON=45°,∵MO=MO,GO=NO,∴△GMO≌△NMO(SAS),∴GM=MN,∴BM=BG+GM=AN+MN;(3)MN=AN+BM,理由如下:如图3,过点O作OG⊥ON,连接AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠GBO=∠NAO=135°,∵MO⊥GO,∴∠NOG=90°=∠AOB,∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,∴△NAO≌△GBO(ASA),∴AN=GB,GO=ON,∵MO=MO,∠MON=∠GOM=45°,GO=NO,∴△MON≌△MOG(SAS),∴MN=MG,∵MG=MB+BG,∴MN=AN+BM.17.(1)证明:∵∠ADE=∠B+∠BED,∴∠ADE>∠B;(2)证明:由折叠知,BF=CF,在△ACF中,AF+FC>AC,∴AF+BF>AC,∴AB>AC;(3)由折叠知,∠MAE=∠EAC,∠ADE=∠C,∵∠C=2∠B,∴∠ADE=2∠B,∵∠ADE=∠B+∠BED,∴∠B=∠BED,∵ME∥AC,∴∠MEA=∠EAC,∵∠MAE=∠EAC,∴∠MAE=∠MEA,∵∠BEA=110°,∴∠B+∠BAE=180°﹣∠BEA=180°﹣110°=70°,∴∠BED+∠MEA=∠B+∠BAM=70°,∴∠DEM=∠BEA﹣(∠BED+∠MEA)=110°﹣70°=40°.18.解:(1)结论:FG=BF+DG.理由如下:如图1中,在正方形ABCD中,∵AB=AD,∠BAD=∠ADC=∠B=90°,把△ABF绕点A逆时针旋转90°得到△ADE,∵∠ADG=∠ADE=90°,∴点G、D、E共线,∴∠EAG=90°﹣45°=45°=∠F AG,在△AGF和△AGE中,,∴△AGF≌△AGE(SAS),∴FG=GE=DE+DG=BF+DG.(2)①BE、CF、EF之间的数量关系为:EF2=BE2+FC2.证明如下:∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连FG,如图2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=45°,而∠EAG=90°,∴∠GAF=90°﹣45°=45°,而AG=AE,AF公共,∴△AGF≌△AEF(SAS),∴FG=EF,∴EF2=BE2+FC2.②如图3,将△AEB沿直线AE折叠,得△AED,连DF,∴△ADE≌△ABE,∴AD=AB,DE=EB,∠DAE=∠BAE,∠ADE=∠ABE=45°,又∵AB=AC,∴AD=AC,∵∠DAE=∠DAF+∠EAF=∠DAF+45°,∠BAE=∠BAC﹣∠EAC=90°﹣(∠EAF﹣∠F AC)=45°+∠F AC,∴∠DAF=∠F AC,在△AFD和△AFC中,,∴△ADF≌△ACF(SAS),∴FC=DF,∠ADF=∠ACF=∠BAC+∠B=135°,∴∠EDF=∠ADF﹣∠ADE=135°﹣45°=90°,在Rt△EDF中,DE2+FD2=EF2,即EF2=BE2+FC2.(3)证明:如图4,将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.∴AD=AG=AB,∠D=∠AGF=90°,∠B=∠AGE=90°,∠DAF=∠GAF,∠BAE =∠GAE,∵∠EAF=45°=∠F AG+∠GAE,∴∠DAF+∠BAE=45°,∴∠DAB=45°+45°=90°,即∠B=∠D=∠DAB=90°,AD=AB,∴四边形ABCD是正方形.由折叠知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,∴BE=EG=3,DF=FG=2,∵EF=5,设AG=x,则AB=BC=CD=AG=x,CE=CB﹣BE=x﹣3,CF=x﹣2.∵CE2+CF2=EF2,∴(x﹣3)2+(x﹣2)2=52.解得x1=6,x2=﹣1(舍去).∴AG=6.∴△AEF的面积=EF•AG=×5×6=15.故答案为:15.19.解:(1)如图1中,连接BE,CF.∵AB=AC=6,∠BAC=90°,AD⊥BC于点D,∴BC=AB=12,BD=CD=6,∠BAD=∠CAD=30°,∴AD=BD=DC=6,∵△AEF是等腰直角三角形,∴AE=AF∵∠DAH=∠F AH=45°,∴EH=HF,∵AE:DE=2:1,∴AE=4,DE=2,∴BE===2,∵AB=AC,AE=AF,∠BAC=∠EAF=90°,∴∠BAE=∠CAF,∴△BAE≌△CAF(SAS),∴CF=BE=2,∵EG=CG,EH=FH,∴GH=CF=.(2)结论:∠DGH=90°是定值.理由:连接BE,CF,设CF交BE于点O,BE交AC于J.同法可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠AJB=∠CJO,∴∠COJ=∠BAJ=90°,∴CF⊥BE,∵EH=EH,EG=GC,∴GH∥CF,∵CD=DB,CG=GE,∴DG∥BE,∴DG⊥GH,∴∠DGH=90°.(3)如图3中,取AC的中点J,连接BJ,JG.由题意AJ=JC=3,AB=6,∵∠BAJ=90°,∴BJ===3,∵AJ=JC,EG=CG,∴JG=AE=3,∵BG≤BJ+JG,∴BG≤3+2,∴BG的最大值为3+2.20.解:(1)设C(0,m),∵A(﹣6,0),B(0,8),∴OA=6,OB=8,由翻折的性质可知,∠CDA=∠AOC=90°,OC=CD=m,∵S△AOB=S△AOC+S△ACB,∴•OA•OB=•OC•OA+•AB•CD,∴6×8=6m+10m,∴m=3,∴C(0,3).(2)如图2中,由翻折的性质可知,OA=AD=6,CD=OC=3,∵AB=10,∴BD=AB﹣AD=10﹣6=4,∴BD:AB=4:10=2:5,∴S△BOD=•S△AOB=××6×8=,∵OC:OB=3:8,∴S△CDO=S△BOD,∵OH⊥CD,∴×3×OH=×,∴OH=.(3)如图3中,设P(m,n).∴S△POA=12,∴×6×n=12,∴n=4,∴当点P在线段AB上时,P A=PB=5,此时P(3.4),∴PD=AD﹣P A=6﹣5=1,∴CD+PD=3+1=4,∴t=4(s).当点P′在线段CD上时,CP′=t,则有S四边形AOCD﹣S△ADP′﹣S△P′OC=S△P′OA,∴2××3×6﹣×6×(3﹣t)﹣×t×=12,∴t=(s).综上所述,满足条件的t的值为4s或s。
中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
挑战2023年中考数学选择、填空压轴真题汇编专题03动点问题的函数图象压轴真题训练1.(2021•益阳)如图,已知▱ABCD的面积为4,点P在AB边上从左向右运动(不含端点),设△APD的面积为x,△BPC的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】B【解答】解:∵▱ABCD的面积为4,x+y是平行四边形面积的一半,∴x+y=2,∴y=2﹣x,∴y是x的一次函数,且当x=0时,y=2;x=2时,y=0;故只有选项B符合题意.故选:B.2.(2021•河南)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.4B.5C.6D.7【答案】C【解答】解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用三角形两边之差小于第三边,得到P A﹣PE≤AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则BA=t+1,∴(t+1)2+t2=25,即:t2+t﹣12=0,∴(t+4)(t﹣3)=0,由于t>0,∴t+4>0,∴t﹣3=0,∴t=3.∴BC=2BE=2t=2×3=6.故选:C.3.(2022•鞍山)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【答案】B【解答】解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.4.(2022•菏泽)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE =2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG 的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【解答】解:如图,作CH⊥AB于点H,∵AB=2,△ABC是等腰直角三角形,∴CH=1,当0≤x≤1时,y=×2x•x=x2,当1<x≤3时,y==1,当3<x≤4时,y=1﹣=﹣(x﹣3)2+1,故选:B.5.(2022•鄂尔多斯)如图①,在正方形ABCD中,点M是AB的中点,点N 是对角线BD上一动点,设DN=x,AN+MN=y,已知y与x之间的函数图象如图②所示,点E(a,2)是图象的最低点,那么a的值为()A.B.2C.D.【答案】A【解答】解:如图,连接AC交BD于点O,连接NC,连接MC交BD于点N′.∵四边形ABCD是正方形,∴O是BD的中点,∵点M是AB的中点,∴N′是△ABC的重心,∴N′O=BO,∴N′D=BD,∵A、C关于BD对称,∴NA=NC,∴AN+MN=NC+MN,∵当M、N、C共线时,y的值最小,∴y的值最小就是MC的长,∴MC=2,设正方形的边长为m,则BM=m,在Rt△BCM中,由勾股定理得:MC2=BC2+MB2,∴20=m2+(m)2,∴m=4,∴BD=4,∴a=N′D=BD=×4=,故选:A.6.(2021•鞍山)如图,△ABC是等边三角形,AB=6cm,点M从点C出发沿CB方向以1cm/s的速度匀速运动到点B,同时点N从点C出发沿射线CA方向以2cm/s的速度匀速运动,当点M停止运动时,点N也随之停止.过点M 作MP∥CA交AB于点P,连接MN,NP,作△MNP关于直线MP对称的△MN′P,设运动时间为ts,△MN′P与△BMP重叠部分的面积为Scm2,则能表示S与t之间函数关系的大致图象为()A.B.C.D.【答案】A【解答】解:如图1中,当点N′落在AB上时,取CN的中点T,连接MT.∵CM=t(cm),CN=2t(cm),CT=TN,∴CT=TN=t(cm),∵△ABC是等边三角形,∴∠C=∠A=60°,∴△MCT是等边三角形,∴TM=TC=TN,∴∠CMN=90°,∵MP∥AC,∴∠BPM=∠A=∠MPN=60°,∠BMP=∠C=60°,∠C+∠CMP=180°,∴∠CMP=120°,△BMP是等边三角形,∴BM=MP,∵∠CMP+∠MPN=180°,∴CM∥PN,∵MP∥CN,∴四边形CMPN是平行四边形,∴PM=CN=BM=2t,∴3t=6,∴t=2,如图2中,当0<t≤2时,过点M作MK⊥AC于K,则MK=CM•sin60°=t,∴S=•(6﹣t)•t=﹣t2+t.如图3中,当2<t≤6时,S=•MQ•PQ=×(6﹣t)×(6﹣t)=×(6﹣t)2,观察图象可知,选项A符合题意,故选:A.7.(2021•威海)如图,在菱形ABCD中,AB=2cm,∠D=60°,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s 的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),△APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】A【解答】解:∵四边形ABCD为菱形,∴AB=BC=CD=DA=2cm,∠B=∠D=60°.∴△ABC、△ACD都是等边三角形,∴∠CAB=∠ACB=∠ACD=60°.如图1所示,当0≤x≤1时,AQ=2xcm,AP=xcm,作PE⊥AB于E,∴PE=sin∠PAE×AP=(cm),∴y=AQ•PE=×2x×=,故D选项不正确;如图2,当1<x≤2时,AP=xcm,CQ=(4﹣2x)cm,作QF⊥AC于点F,∴QF=sin∠ACB•CQ=(cm),∴y===,故B选项不正确;如图3,当2<x≤3时,CQ=(2x﹣4)cm,CP=(x﹣2)cm,∴PQ=CQ﹣CP=2x﹣4﹣x+2=(x﹣2)cm,作AG⊥DC于点G,∴AG=sin∠ACD•AC=×2=(cm),∴y===.故C选项不正确,故选:A.8.(2021•日照)如图,平面图形ABD由直角边长为1的等腰直角△AOD和扇形BOD组成,点P在线段AB上,PQ⊥AB,且PQ交AD或交于点Q.设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y关于x的大致图象是()A.B.C.D.【答案】D【解答】解:当Q在AD上时,即点P在AO上时,有0<x≤1,此时阴影部分为等腰直角三角形,∴y=,该函数是二次函数,且开口向上,排除B,C选项;当点Q在弧BD上时,补全图形如图所示,阴影部分的面积等于等腰直角△AOD的面积加上扇形BOD的面积,再减去平面图形PBQ的面积即减去弓形QBF的面积,设∠QOB=θ,则∠QOF=2θ,=﹣S△QOF,∴,S弓形QBF=﹣=﹣,当θ=45°时,AP=x=1+≈1.7,S弓形QBFy=+﹣(﹣)=≈1.14,=﹣=﹣,当θ=30°时,AP=x≈1.87,S弓形QBFy=+﹣(﹣)=≈1.24,当θ=60°时,AP=x≈1.5,y≈0.98,在A,D选项中分别找到这两个特殊值,对比发现,选项D符合题意.故选:D.法二、当1<x<2时,即P在OB之间时,设∠QOD=θ,则θ∈(0,),则PQ=cosθ,OP=sinθ,则弧QD的长为θπ,此时S阴影=+θπ+sinθcosθ=+θ+sin2θ,∴y随x的增大而增大,而且增加的速度越来越慢,分析四个选项中的图象,只有选项D符合.故选:D.9.(2021•辽宁)如图,在矩形ABCD中,AB=6,AD=4,E是CD的中点,射线AE与BC的延长线相交于点F,点M从A出发,沿A→B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【答案】B【解答】解:如图,∵E是CD的中点,∴CE=DE,∵四边形ABCD是矩形,∴∠D=∠DCF=90°,AD=BC=4,在△ADE与△FCE中,,∴△ADE≌△FCE(SAS),∴CF=AD=4,∴BF=CF+BC=8,∴AF=,当点M在AB上时,在Rt△AMN和Rt△AFB中,tan∠NAM=,∴NM=x=x,∴△AMN的面积S=×x×x=x2,∴当点M在AB上时,函数图象是开口向上、经过原点的抛物线的一部分;当点M在BF上时,如图,AN=x,NF=10﹣x,在Rt△FMN和Rt△FBA中,tan∠F=,∴=﹣,∴△AMN的面积S==﹣,∴当点M在BF上时,函数图象是开口向下的抛物线的一部分;故选:B.10.(2021•苏州)如图,线段AB=10,点C、D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA、PB 的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图象大致是()A.B.C.D.【答案】D【解答】解:∵AB=10,AC=BD=1,∴CD=10﹣1﹣1=8,∵PC=t,∴AP=t+1,PB=8﹣t+1=9﹣t,设围成的两个圆锥底面圆半径分别为r和R则:2πr=;.解得:r=,R=,∴两个圆锥的底面面积之和为S===,根据函数关系式可以发现该函数图象是一个开口向上的二次函数.故选:D.11.(2021•甘肃)如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为()A.3B.6C.8D.9【答案】B【解答】解:由图2知,AB+BC=2,∵AB=BC,∴AB=,∵AB=BC,BD⊥AC,∴AC=2AD,∠ADB=90°,在Rt△ABD中,AD²+BD²=AB²=13①,设点M到AC的距离为h,=AD•h,∴S△ADM∵动点M从A点出发,沿折线AB→BC方向运动,∴当点M运动到点B时,△ADM的面积最大,即h=BD,由图2知,△ADM的面积最大为3,∴AD•BD=3,∴AD•BD=6②,①+2×②得,AD²+BD²+2AD•BD=13+2×6=25,∴(AD+BD)²=25,∴AD+BD=5(负值舍去),∴BD=5﹣AD③,将③代入②得,AD(5﹣AD)=6,∴AD=3或AD=2,∵AD>BD,∴AD=3,∴AC=2AD=6,故选:B.12.(2021•百色)如图,矩形ABCD各边中点分别是E、F、G、H,AB=2,BC=2,M为AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是()A.B.C.D.【答案】D【解答】解:①当M点运动在AE段,+S△GHD﹣S△EOM﹣S△GPS,此时S=S△HAE∵四边形ABCD是矩形,直线l⊥AB,H、E、F、G为AD、AB、BC、CD的中点,=S△GHD,S△EOM=S△GPS,∴AH=AD==1,AE=AB=,S△HAE﹣2S△EOM,∴S=2S△HAE=AE•AH=;∴S△HAE∵直线l⊥AB,∴∠OME=∠A=90°,∠HEA=∠OEM,∴△HAE∽△OME,∴,∴OM=,又∵ME=AE﹣AM=﹣x,∴OM=ME=,=,∴S△EOM﹣2S△EOM=,∴S=2S△HAE此时,对应抛物线开口向下;②当M点运动到在BE段,+S△GHD+S△EO1M1+S△GP1S1,此时,S=S△HAE+2S△EO1M1,即S=2S△HAE与①同理,O1M1=,又∵M1E=AM1﹣AE=x﹣,∴O1M1=M1E=,=,∴S△EO1M1+2S△EO1M1=,∴S=2S△HAE此时,对应抛物线开口向上,故选:D.13.(2021•鄂尔多斯)如图①,在矩形ABCD中,H为CD边上的一点,点M 从点A出发沿折线AH﹣HC﹣CB运动到点B停止,点N从点A出发沿AB运动到点B停止,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t(s),△AMN的面积为S(cm2),已知S与t之间函数图象如图②所示,则下列结论正确的是()①当0<t≤6时,△AMN是等边三角形.②在运动过程中,使得△ADM为等腰三角形的点M一共有3个.③当0<t≤6时,S=.④当t=9+时,△ADH∽△ABM.⑤当9<t<9+3时,S=﹣3t+9+3.A.①③④B.①③⑤C.①②④D.③④⑤【答案】A【解答】解:由图②可知:点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动,如图,①∵点M、N两点的运动速度为1cm/s,∴AH=AB=6cm,∵四边形ABCD是矩形,∴CD=AB=6cm.∵当t=6s时,S=9cm2,∴×AB×BC=9.∴BC=3cm.∵当6≤t≤9时,S=且保持不变,∴点N在B处不动,点M在线段HC上运动,运动时间为(9﹣6)秒,∴HC=3cm,即点H为CD的中点.∴BH=cm.∴AB=AH=BH=6cm,∴△ABM为等边三角形.∴∠HAB=60°.∵点M、N同时开始运动,速度均为1cm/s,∴AM=AN,∴当0<t≤6时,△AMN为等边三角形.故①正确;②如图,当点M在AD的垂直平分线上时,△ADM为等腰三角形:此时有两个符合条件的点;当AD=AM时,△ADM为等腰三角形,如图:当DA=DM时,△ADM为等腰三角形,如图:综上所述,在运动过程中,使得△ADM为等腰三角形的点M一共有4个.∴②不正确;③过点M作ME⊥AB于点E,如图,由题意:AM=AN=t,由①知:∠HAB=60°.在Rt△AME中,∵sin∠MAE=,∴ME=AM•sin60°=tcm,∴S=AN×ME=cm2.∴③正确;④当t=9+时,CM=cm,如图,由①知:BC=3cm,∴MB=BC﹣CM=2cm.∵AB=6cm,∴tan∠MAB=,∴∠MAB=30°.∵∠HAB=60°,∴∠DAH=90°﹣60°=30°.∴∠DAH=∠BAM.∵∠D=∠B=90°,∴△ADH∽△ABM.∴④正确;⑤当9<t<9+3时,此时点M在边BC上,如图,此时MB=9+3﹣t,∴S=×AB×MB=×6×(9+3﹣t)=27+9﹣3t.∴⑤不正确;综上,结论正确的有:①③④.故选:A.14.(2021•通辽)如图,在矩形ABCD中,AB=4,BC=3,动点P,Q同时从点A出发,点P沿A→B→C的路径运动,点Q沿A→D→C的路径运动,点P,Q的运动速度相同,当点P到达点C时,点Q也随之停止运动,连接PQ.设点P的运动路程为x,PQ2为y,则y关于x的函数图象大致是()A.B.C.D.【答案】C【解答】解:当0≤x≤3时,在Rt△APQ中,∠QAP=90°,AP=AQ=x,∴PQ2=2x2.∴y=PQ2=2x2;当3≤x≤4时,DQ=x﹣3,AP=x,∴y=PQ2=32+32=18;当4≤x≤7时,CP=7﹣x,CQ=7﹣x,∴y=PQ2=CP2+CQ2=2x2﹣28x+98.故选:C.15.(2021•湖北)如图,AC为矩形ABCD的对角线,已知AD=3,CD=4,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.【答案】D【解答】解:∵BC∥AD,∴∠ACB=∠DAC,∵∠PEC=∠D=90°,∴△PCE∽△CAD,∴==,∵AD=3,CD=4,∴AC==5,∴当P在CA上时,即当0<x≤5时,PE==x,CE==x,∴y=PE•CE==x2,当P在AD上运动时,即当5<x≤8时,PE=CD=4,CE=8﹣x,∴y=PE•CE=×4×(8﹣x)=16﹣2x,综上,当0<x≤5时,函数图象为二次函数图象,且y随x增大而增大,当5<x≤8时,函数图象为一次函数图象,且y随x增大而减小,故选:D.16.(2021•衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q 两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O﹣A﹣D﹣O,点Q的运动路线为O﹣C﹣B﹣O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.【答案】(2+3)【解答】解:由图分析易知:当点P从O→A运动时,点Q从O→C运动时,y不断增大,当点P运动到A点,点Q运动到C点时,由图象知此时y=PQ=2cm,∴AC=2cm,∵四边形ABCD为菱形,∴AC⊥BD,OA=OC==cm,当点P运动到D点,Q运动到B点,结合图象,易知此时,y=BD=2cm,∴OD=OB=BD=1cm,在Rt△ADO中,AD===2(cm),∴AD=AB=BC=DC=2cm,如图,当点P在A﹣D段上运动,点P运动到点E处,点Q在C﹣B段上运动,点Q运动到点F处时,P、Q两点的距离最短,此时,OE=OF==,AE=CF===,∴当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为:(cm),故答案为:(2+3).17.(2021•武汉)如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB 上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是.【答案】﹣1【解答】解:∵图象过点(0,2),即当x=AD=BE=0时,点D与A重合,点E与B重合,此时y=AE+CD=AB+AC=2,∵△ABC为等腰直角三角形,∴AB=AC=1,过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:∵AD=BE,∠NBE=∠CAD,∴△NBE≌△CAD(SAS),∴NE=CD,又∵y=AE+CD,∴y=AE+CD=AE+NE,当A、E、N三点共线时,y取得最小值,如图所示,此时:AD=BE=x,AC=BN=1,∴AF=AC•sin45°=,\又∵∠BEN=∠FEA,∠NBE=∠AFE∴△NBE∽△AFE∴,即,解得:x=,∴图象最低点的横坐标为:﹣1.故答案为:.18.(2022•营口)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y=cm2.【答案】【解答】解:过点D作DE⊥AB,垂足为E,在Rt△ADE中,∵∠AED=90°,∠EAD=45°,∴,∵点P的速度为cm/s,点Q的速度为2cm/s,∴AP=x,AQ=2x,∴,在△APQ和△AED中,=,∠A=45°,∴△AED∽△APQ,∴点Q在AD上运动时,△APQ为等腰直角三角形,∴AP=PQ=x,∴当点Q在AD上运动时,y=AP•AQ=×x×x=x2,由图像可知,当y=9此时面积最大,x=3或﹣3(负值舍去),∴AD=2x=6cm,当3<x≤4时,过点P作PF⊥AD于点F,如图:=S△APF+S四边形PQDF﹣S△ADQ,此时S△APQ在Rt△APF中,AP=x,∠PAF=45°,∴AF=PF=x,FD=6﹣x,QD=2x﹣6,=x2+(x+2x﹣6)•(6﹣x)﹣×6×(2x﹣6),∴S△APQ即y=﹣x2+6x,当x=时,y=﹣()2+6×=,故答案为:.。
2018年中考数学提分训练: 几何图形的动点问题一、选择题1.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x 的大致图象是()A. B. C. D.2.如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )A. B. C. 6 D. 53.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④4.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.5.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别为AM,MR的中点,则EF的长随M点的运动( )A. 变短B. 变长C. 不变D. 无法确定二、填空题6.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)7.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________.8.如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC 在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。
函数图象解题思路起点:动点从何处出发,何时出发,何速度运动,运动方向是什么,形成的是何图形?起点有没有意义?点运动的路程(边长)中间点:分阶段运动,中间的位置是什么?终点:何时何地结束运动,停止时是否有先后?特殊点:运动过程中特殊的位置。
类型一、实际问题【经典例题1】已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( )A.B. C. D.【解析】 由题意和图象可得,乙到达B 地时甲距A 地120km ,开始时两人的距离为0; 甲的速度是:120÷(3−1)=60km/h ,乙的速度是:80÷3=380km/h ,即乙出发1小时后两人距离为380km ;设乙出发后被甲追上的时间为x h ,则60(x −1)=380x ,得x =1.8,即乙出发后被甲追上的时间为1.8h.所以符合题意的函数图象只有选项B.故选:B.练习1-1甲、乙两位同学进行长跑训练,甲和乙所跑的路程S (单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA 和折线OBCD ,则下列说法正确的是( )A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢练习1-2小明在书上看到了一个实验:如图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象,如下图所示.小明选择的物体可能是( )A.B.C.D.练习1-3如图,在一个盛水的圆柱形容器的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速将小球从水下向水面上拉动时,圆柱形容器内水面的高度与时间的函数图象大致是()类型二:几何动态①动点图形面积【经典例题2】如图,在等腰△ABC中,AB=AC=4cm,△B=30°,点P从点B 出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B. C. D.【解析】作AH ⊥BC 于H ,∵AB=AC=4cm ,∴BH=CH ,∵∠B=30°,∴AH=12AB=2,BH=3AH=23,∴BC=2BH=43,∵点P 运动的速度为3m/s ,Q 点运动的速度为1cm/s ,∴点P 从B 点运动到C 需4s ,Q 点运动到C 需8s ,当0△x △4时,作QD ⊥BC 于D ,如图1,BQ=x ,BP=3x ,在Rt △BDQ 中,DQ=21BQ=21x , ∴y=21⋅21x ⋅3x =43x 2,当4<x △8时,作QD ⊥BC 于D ,如图2,CQ=8−x ,BP=43在Rt △BDQ 中,DQ=21CQ=21(8−x ),∴y=21⋅21(8−x )⋅43=−3+83, 综上所述,⎪⎩⎪⎨⎧≤<+-≤≤=)84(383)40(432x x x x y ,,,.故选D.练习2-1四边形ABCD 为直角梯形,CD△AB ,CB△AB 且CD=BC=21AB ,若直线l △AB ,直线l 截这个梯形所得的位于此直线左方的图形面积为y ,点A 到直线L 的距离为x ,则y 与x 关系的大致图象为( )A.B. C. D.练习2-2如图,四边形ABCD 是矩形,AB=8,BC=4,动点P 以每秒2个单位的速度从点A 沿线段AB 向B 点运动,同时动点Q 以每秒3个单位的速度从点B 出发沿B −C −D 的方向运动,当点Q 到达点D 时P 、Q 同时停止运动,若记△PQA 的面积为y ,运动时间为x ,则下列图象中能大致表示y 与x 之间函数关系图象的是( )练习2-3如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A. B. C. D.练习2-4如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是()A. B. C. D.练习2-5如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s 的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t (s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()练习2-6如图,在△ABCD中,AB=6,BC=10,AB△AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.练习2-7如图,在平面直角坐标系x Oy中,A(2,0),B(0,2),点M在线段AB 上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为()A. B. C. D.练习2-8木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B. C. D.练习2-9数学课上,老师提出一个问题:如图△,在平面直角坐标系中,点A的坐标为(0,1),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使△BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图△所示,题中用“……”表示的缺失的条件应补为( )A. 点C的横坐标B. 点C的纵坐标C. △ABC的周长D. △ABC的面积练习2-10如图,在平面直角坐标系x Oy中,以点A(2,3)为顶点作一直角∠PAQ,使其两边分别与x轴,y轴的正半轴交于点P,Q.连接PQ,过点A作AH⊥PQ 于点H.设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x函数关系的图象大致是().②动点图形边长【经典例题3】如图△,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图△所示,则AD边的长为( )A. 3B. 4C. 5D. 6【解析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为3. ∴21AB •21=3,即AB •BC=12. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为7,∴AB+BC=7.则BC=7-AB ,代入AB •BC=12,得AB 2-7AB+12=0,解得AB=4或3, 因为AB<AD ,即AB<BC ,所以AB=3,BC=4.故选:B .练习3-1如图1,动点P 从菱形ABCD 的顶点A 出发,沿以1cm/s 的速度运动到点D ,设点P 的运动时间为x (s ),△PAB 的面积为y(cm 2),表示y 与x 的函数关系的图象如图2所示,则a 的值为( ) A.25 B.5 C. 2 D.52练习3-2如如图△,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B--运动到点D.图△是点P、Q运动时,△BPQ的面积S随时出发沿折线B C D间t变化关系图象,则a的值是()A.2B.2.5C.3D.练习3-3如如图1,四边形ABCD中,AB△CD,△B=90°,AC=AD.动点P从点B出发沿折线B﹣A﹣D﹣C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.C.8D.练习3-4如如图1,点P 从ABC △的顶点B 出发,沿B C A →→匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC △的面积是______.练习3-5如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC=y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是52,则矩形ABCD 的面积是() A.523 B. 5 C. 6 D. 425【经典例题4——圆】如图,在平面直角坐标系x Oy中,以(3,0)为圆心作△P,△P与x轴交于A. B,与y轴交于点C(0,2),Q为△P上不同于A. B的任意一点,连接QA、QB,过P点分别作PE△QA于E,PF△QB于F. 设点Q的横坐标为x,PE2+PF2=y.当Q 点在△P上顺时针从点A运动到点B的过程中,下列图象中能表示y与x的函数关系的部分图象是( )【解析】△P(3,0),C(0,2),△PC2=13.△AC是直径,△△Q=90°.又PE△QA于E,PF△QB于F,△四边形PEQF是矩形。
2023年中考专题训练——二次函数的最值1.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =. (1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少? (3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图1,抛物线2323333y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B 作直线BD ∥直线AC ,交抛物线y 于另一点D ,点P 为直线AC 上方抛物线上一动点.(1)求线段AB 的长.(2)过点P 作PF y ∥轴交AC 于点Q ,交直线BD 于点F ,过点P 作PE AC ⊥于点E ,求233PE PF +的最大值及此时点P 的坐标. (3)如图2,将抛物线2323333y x x =--+向右平移3个单位得到新抛物线y ',点M 为新抛物线上一点,点N 为原抛物线对称轴一点,直接写出所有使得A 、B 、M 、N 为顶点的四边形是平行四边形时点N 的坐标,并写出其中一个点N 的坐标的求解过程. 3.已知二次函数2y x bx c =+-的图象经过点(3,0),且对称轴为直线1x =.(1)求b c +的值;(2)当43x -≤≤时,求y 的最大值;(3)平移抛物线2y x bx c =+-,使其顶点始终在二次函数221y x x =--上,求平移后所得抛物线与y 轴交点纵坐标的最小值.4.已知关于x 的一元二次方程()()121x x m --=+(m 为常数).(1)若它的一个实数根是方程()2140x --=的根,则m =_____,方程的另一个根为_____; (2)若它的一个实数根是关于x 的方程()240x m --=的根,求m 的值; (3)若它的一个实数根是关于x 的方程()240x n --=的根,求m n +的最小值.5.如图,抛物线23y ax bx =++交x 轴于()3,0A ,()1,0B -两点,交y 轴于点C ,动点P 在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P ,B ,C 为顶点的三角形周长最小时,求点P 的坐标及PBC 的周长;(3)若点Q 是平面直角坐标系内的任意一点,是否存在点Q ,使得以A ,C ,P ,Q 为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.6.平面直角坐标系中,二次函数y =ax 2+bx +c 的顶点为(32,﹣254),它的图象与x 轴交于点A ,B (点A 在点B 左侧).(1)若AB =5,交y 轴于点C ,点C 在y 轴负半轴上. ①求二次函数的解析式;②若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围. (2)当-1≤x ≤1时,函数值y 有最小值为﹣a 2,求a 的值(其中a 为二次函数的二次项系数).7.已知直线1y kx =+经过点()2,3,与抛物线2y x bx c =++的对称轴交于点1,2n ⎛⎫⎪⎝⎭(1)求k ,b 的值;(2)抛物线2y x bx c =++与x 轴交于()()12,0,0x x 且2139x x ≤-<,若22123p x x =-,求p 的最大值;(3)当12x -<<时,抛物线2y x bx c =++与直线1y kx =+有且只有一个公共点,直接写出c 的取值范围.8.如图,直线:l y m =-与y 轴交于点A ,直线:a y x m =+与y 轴交于点B ,抛物线2y x mx =+的顶点为C ,且与x 轴左交点为D (其中0m >).(1)当12AB =时,在抛物线的对称轴上求一点P 使得BOP △的周长最小;(2)当点C 在直线l 上方时,求点C 到直线l 距离的最大值; (3)若把横坐标、纵坐标都是整数的点称为“整点”.当2021m =时,求出在抛物线和直线a 所围成的封闭图形的边界上的“整点”的个数.9.如图,在平面直角坐标系中,抛物线2y x bx c =++经过A (0,﹣1),B (4,1).直线AB 交x 轴于点C ,P 是直线AB 下方抛物线上的一个动点.过点P 作PD ⊥AB ,垂足为D ,PE ∥x 轴,交AB 于点E .(1)求抛物线的函数表达式;(2)当△PDE 的周长取得最大值时,求点P 的坐标和△PDE 周长的最大值;(3)把抛物线2y x bx c =++平移,使得新抛物线的顶点为(2)中求得的点P .M 是新抛物线上一点,N 是新抛物线对称轴上一点,直接写出所有使得以点A ,B ,M ,N 为顶点的四边形是平行四边形的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.10.如图,抛物线2y x bx c =-++过点()3,2A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为()4,m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ∠=︒?若存在,求点Q 的坐标;若不存在,请说明理由.11.如图,抛物线24y ax bx =++交x 轴于3,0,()(,0)4A B -两点,与y 轴交于点C ,连接,AC BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q . (1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .求线段PN 的最大值.(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以,,A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标:若不存在,请说明理由.12.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B . (1)求抛物线的解析式(2)若直线y =mx +n 经过B 、C 两点,求直线BC 的解析式; (3)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标及此时距离之和的最小值13.在平面直角坐标系xOy 中,已知抛物线y =ax 2-2ax -1(a <0). (1)抛物线的对称轴为,抛物线与y 轴的交点坐标为;(2)试说明直线y =x -2与抛物线y =ax 2-2ax -1(a <0)一定存在两个交点; (3)若当-2≤x ≤2时,y 的最大值是1,求当-2≤x ≤2时,y 的最小值是多少?14.如图,抛物线2y ax bx =+经过点()3,33A -、()12,0B . (1)求抛物线的解析式; (2)试判断OAB 的形状;(3)曲线AB 为抛物线上点A 到点B 的曲线,在曲线AB 上是否存在点P 使得四边形OAPB 的面积最大,若存在,求点P 的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,二次函数y =ax 2+bx ﹣6的图象交坐标轴于A (﹣2,0),B (3,0)两点,抛物线与y 轴相交于点C ,抛物线上有一动点P 在直线BC 下方. (1)求这个二次函数的解析式;(2)是否存在点P ,使△POC 是以OC 为底边的等腰三角形?若存在,求出P 点坐标; (3)动点P 运动到什么位置时,△PBC 面积最大.求出此时P 点坐标和△PBC 的最大面积.16.已知抛物线y =x 2﹣bx +c (b ,c 为常数)的顶点坐标为(2,﹣1). (1)求该抛物线的解析式;(2)点M (t ﹣1,y 1),N (t ,y 2)在该抛物线上,当t <1时,比较y 1与y 2的大小; (3)若点P (m ,n )在该抛物线上,求m ﹣n 的最大值. 17.如图1,抛物线2y x bx c =++与x 轴交于点(2,0)A -、(6,0)B .(1)求抛物线的函数关系式.(2)如图1,点C 是抛物线在第四象限内图像上的一点,过点C 作CP y ⊥轴,P 为垂足,求CP OP +的最大值;(3)如图2,设抛物线的顶点为点D ,点N 的坐标为()2,16--,问在抛物线的对称轴上是否存在点M ,使线段MN 绕点M 顺时针旋转90︒得到线段MN ',且点N '恰好落在抛物线上?若存在,求出点M 的坐标;若不存在,请说明理由.18.如图,已知抛物线2y ax bx c =++()0a ≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,且OC OB =.(1)求点C 的坐标和此抛物线的解析式;(2)若点E 为第二象限抛物线上一动点,连接BE ,CE ,BC ,求BCE 面积的最大值; (3)点P 在抛物线的对称轴上,若线段PA 绕点P 逆时针旋转90°后,点A 的对应点A '.恰好也落在此抛物线上,求点P 的坐标.19.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0). (1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积; (3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长.20.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当24x ≤≤时,两个函数:()221,211y x y x =+=-+的最大值和最小值; (2)若2y x=的值不大于2,求符合条件的x 的范围;(3)若(0)ky k x=≠,当()20t x x ≤≤≠时既无最大值,又无最小值,求a 的取值范围.参考答案:1.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -【分析】(1)先求出点C 的坐标,得到点B 的坐标,再将点A 、B 的坐标代入解析式计算即可;(2)将函数解析式化为顶点式,根据函数的性质解答即可; (3)存在点P ,设()0,P m ,根据相似三角形对应边成比例列得PC CC PO OB'=,代入数值求出m 即可.【解析】(1)二次函数23y ax bx =+-的图象与y 轴交于C 点,()0,3C ∴-.OB OC =,点A 在点B 的左边,()3,0B ∴.又点A 的坐标为()1,0-,由题意可得:093303a b a b =+-⎧⎨=--⎩,解得:12a b =⎧⎨=-⎩.∴二次函数的解析式为2=23y x x --.(2)()22=2314y x x x ---=-,二次函数顶点坐标为()1,4-,∴当1x =时,4y =-最小值,当01x ≤≤时,y 随着x 的增大而减小, ∴当0x =时,3y =-最大值,当14x <≤时,y 随着x 的增大而增大, ∴当4x =时,5y =最大值.∴当04x ≤≤时,函数的最大值为5,最小值为4-.(3)存在点P ,如图,设()0,P m ,CC OB '∥,且PC 与PO 是相似三角形的对应边,PC CC PO OB ∴'=,即:()323m m --=, 解得:9m =-或95m =-,()0,9P ∴-或90,5P ⎛⎫- ⎪⎝⎭.【点评】此题考查了二次函数与图形问题,待定系数法求二次函数的解析式,二次函数的对称性,相似三角形的性质,二次函数的最值,正确掌握二次函数的综合知识是解题的关键. 2.(1)4(2)当32t =-时,233PE PF +1733232P ⎛- ⎝⎭; (3)(1,3N --,113⎛- ⎝⎭和3731,⎛- ⎝⎭【分析】(1)令232330,求解即可; (2)求直线,AC BD 的解析式,设点232,33P t ⎛ ⎝,则33Q t ⎛ ⎝,33F t ⎛ ⎝⎭,利用30QFC ∠=︒,将所求转化为23333PE PF PQ PF +=+,再求解即可; (3)推出平移后的解析式,设234383,M m ⎛ ⎝⎭,()2,N n -,分三种情况讨论;再利用平行四边形的性质结合中点坐标求解即可. 【解析】(1)令232330, 解得1x =或3x =-, ∴()()3,0,1,0A B -,4AB ∴=;(2)232333y x x =-(3C ∴,设直线AC 的解析式为y kx b =+,303k b b -+=⎧⎪∴⎨=⎪⎩,解得33k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为y x =(),1,0AC BD B ∥,∴直线BD 的解析式为y x =设点2,P t ⎛ ⎝+,则Q t ⎛+ ⎝,F t ⎛ ⎝⎭, ∵点P 为直线AC 上方抛物线上一动点,22PQ ∴==,22P F ==∵3,OA OC ==30CAO ∴∠=︒,,PE AC PF OA ⊥⊥, 30QFC ∴∠=︒,PE ∴=,∴222333332PF PQ PF t ⎛⎫+=+==-+ ⎪⎭⎝⎭∴当32t =-时,3PF +32P ⎛- ⎝⎭;(3))22313y x =-+ ∴抛物线对称轴为直线=1x -,∵抛物线2y =3个单位得到新抛物线y ',∴新抛物线y '的解析式为)22y x =-+',∴2,M m ⎛ ⎝⎭,()1,N n -,①当AB 为平行四边形的对角线时,2311,0m n -=-+=,∴1,m n =-=∴((1,N M --,;②当AM 为平行四边形的对角线时,234383311,m n -=+-= ∴1133,m n ==∴113113N M ⎛⎛- ⎝⎭⎝⎭,; ③当AN 为平行四边形的对角线时,24311,3383n m -+-=+=, ∴3735,m n =-= ∴3733735,1,M N ⎛⎛-- ⎝⎭⎝⎭,; 综上,N 点坐标分别为(1,3N -,113⎛- ⎝⎭和3731,⎛- ⎝⎭. 【点评】本题考查了为此函数的图象和性质,直角三角形的性质,平行四边形的性质,熟练掌握知识并能够运用分类讨论的思想是解题的关键. 3.(1)1 (2)21 (3)1312-【分析】(1)根据对称轴公式求出b ,再有二次函数2y x bx c =+-的图象经过点(3,0),代入求出c ,计算即可;(2)根据二次函数的增减性可知,当x =-4时,y 值最大,代入求解即可;(3)因为平移抛物线2=23y x x --,其顶点始终在二次函数221y x x =--上,故设顶点坐标为()2,21h h h --,可得平移后的解析式为22()21y x h h h =-+--,可求平移后所得抛物线与y 轴交点纵坐标为231=--w h h ,根据二次函数求最值的方法求解即可. (1)解:由题意可知12bx =-=,∴2b =-. 将(3,0)代入22y x x c =--,得3c =, ∴1b c +=. (2)解:由(1)得2223(1)4y x x x =--=--,∴当1x <时,y 随x 增大而减小,当1x >时,y 随x 增大而增大.∵1(4)31-->-,∴当4x =-时,y 取最大值21. (3)解:∵平移抛物线2=23y x x --,其顶点始终在二次函数221y x x =--上,∴设顶点坐标为()2,21h h h --,故平移后的解析式为22()21y x h h h =-+--,∴22222221231y x hx h h h x hx h h =-++--=-+--. 设平移后所得抛物线与y 轴交点的纵坐标为w , 则22113313612w h h h ⎛⎫=--=-- ⎪⎝⎭,∴当16h =时,平移后所得抛物线与y 轴交点纵坐标的最小值为1312-. 【点评】本题考查了二次函数的性质,和最值,平移规律,熟练掌握二次函数的性质和平移规律是解题的关键.4.(1)1,0x =;(2)11m =,21m =-;(3)当1n =-时,m n +有最小值为-2. 【分析】(1)求方程2(x -1)-4=0的根,代入(x -1)(x -2)=m +1中,确定m 的值;解(x -1)(x -2)=m +1,得到另一个根;(2)求方程2(x -m )-4=0的根,代入(x -1)(x -2)=m +1中,确定m 的值;(3)求方程()240x n --=的根,代入(x -1)(x -2)=m +1中,用含n 的代数式表示m ,构造m +n 与n 的二次函数,利用二次函数的性质确定最值. 【解析】(1)∵2(x -1)-4=0, ∴x =3,∴(3-1)(3-2)=m +1, 解得m =1, ∴(x -1)(x -2)=2, ∴2x -3x =0, ∴123,0x x ==, 故答案为:1,0x =. (2)由()240x m --=,得 2x m =+.则()()21221m m m +-+-=+ ∴21m m m +=+, ∴21m =,∴11m =,21m =-. (3)由()240x n --=,得2x n =+.则()()21221n n m +-+-=+. 即21m n n =+-.∴()222112m n n n n +=+-=+-; ∴当1n =-时,m n +有最小值-2.【点评】本题考查了一元一次方程,一元二次方程,二次函数的最值,熟练掌握方程的解法,二次函数的最值是解题的关键.5.(1) 223y x x =-++;(2) P 点坐标为(1,2),BCP ∆1032(3) Q 点坐标存在,为(2,2)或(417或(4,17-或(2-,314或(2-,314【分析】(1)将()3,0A ,()1,0B -代入即可求解;(2)连接BP 、CP 、AP ,由二次函数对称性可知,BP=AP ,得到BP +CP =AP +CP ,当C 、P 、A 三点共线时,△PBC 的周长最小,由此求出AC 解析式,将P 点横坐标代入解析式中即可求解;(3)设P 点坐标为(1,t ),Q 点坐标为(m ,n ),按AC 为对角线,AP 为对角线,AQ 为对角线分三种情况讨论即可求解.【解析】解:(1)将()3,0A ,()1,0B -代入二次函数表达式中,∴093303a b a b =++⎧⎨=-+⎩ ,解得12a b =-⎧⎨=⎩,∴二次函数的表达式为:223y x x =-++; (2)连接BP 、CP 、AP ,如下图所示:由二次函数对称性可知,BP=AP , ∴BP +CP =AP +CP , BCPC BP CP BCPA CP BCBC 为定直线,当C 、P 、A 三点共线时,PA CP 有最小值为AC ,此时BCP ∆的周长也最小,设直线AC 的解析式为:y kx m =+,代入()3,0,(0,3)A C ,∴0=330k m m +⎧⎨=+⎩,解得13k m =-⎧⎨=⎩,∴直线AC 的解析式为:3y x =-+, 二次函数的对称轴为12bx a=-=,代入3y x =-+,得到2y =, ∴P 点坐标为(1,2),此时BCP ∆的周长最小值=222213331032BC AC;(3)()3,0,(0,3)A C 设P 点坐标为(1,t ),Q 点坐标为(m ,n ), 分类讨论:情况一:AC 为菱形对角线时,另一对角线为PQ ,此时由菱形对角互相平分知:AC 的中点也必定是PQ 的中点, 由菱形对角线互相垂直知:1AC PQk k ,∴30103111m t n n t m ⎧⎪+=+⎪+=+⎨⎪-⎪-⋅=--⎩,解得221m n t =⎧⎪=⎨⎪=⎩,∴P 点坐标为(1,1),对应的Q 点坐标为(2,2); 情况二:AP 为菱形对角线时,另一对角线为CQ ,同理有:310030312m t n t n m ⎧⎪+=+⎪+=+⎨⎪--⎪⋅=--⎩,解得43m n t=⎧⎪⎨⎪=⎩或43m n t =⎧⎪=⎨⎪=⎩,∴P 点坐标为(1,3)或(1,3,对应的Q 点坐标为(4或(4,); 情况三:AQ 为菱形对角线时,另一对角线为CP ,()3,0,(0,3)A C 设P 点坐标为(1,t ),Q 点坐标为(m ,n ),同理有:3010303131m n t n t m ⎧⎪+=+⎪+=+⎨⎪--⎪⋅=--⎩,解得23m n t =-⎧⎪=⎨⎪=⎩23m n t =-⎧⎪=⎨⎪=⎩ ∴P 点坐标为(1或(1,,对应的Q 点坐标为(-2,3或(-2,3; 纵上所示,Q 点坐标存在,为(2,2)或(4或(4,或(2-,3或(2-,3.【点评】本题考查了待定系数法求二次函数解析式,二次函数对称性求线段最值问题及菱形的存在性问题,本题第三问难度大一些,熟练掌握各图形的性质是解决本题的关键. 6.(1)①234y x x =--;②自变量x 的取值范围为12x >-;(2)a 1401-+25541-- 【分析】(1)①二次函数y =ax 2+bx +c 的顶点为(32,﹣254),可确定二次函数的对称轴为32x =,利用对称轴求出抛物线与x 轴的交点A (-1,0),B (4,0),利用待定系数法可求抛物线解析式;②设自变量x 的值增加4时,的函数为y 1,求出新增函数21=5y x x +,利用1y y >两函数作差840x +>解不等式即可;(2)设二次函数的解析式为232524y a x ⎛⎫=-- ⎪⎝⎭,由-1≤x ≤132<,0a >或a<0分两种情况利用函数的增减性构造关于a 的一元二次方程,求出a 的值即可. 【解析】解:(1)①二次函数y =ax 2+bx +c 的顶点为(32,﹣254),∴二次函数的对称轴为32x =, ∵与x 轴交于点A ,B ,AB =5, ∴A 、B 两点关于对称轴为32x =对称,35122-=-,35+422=, ∴A (-1,0),B (4,0), 设解析式为()()14y a x x =+-,∵()()14y a x x =+-过顶点(32,﹣254),∴253314422a ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭, 解得=1a ,∴二次函数解析式为:2=34y x x --, ②设自变量x 的值增加4时,的函数为y 1, ∴()()221=+43+44=5y x x x x --+, ∵1y y >,∴()22534840x x x x x +---=+>,解得12x >-;(2)设二次函数的解析式为232524y a x ⎛⎫=-- ⎪⎝⎭,当-1≤x ≤132<, 当0a >,二次函数开口向上,在二次函数对称轴的左侧,y 随x 的增大而减小, ∴当x =1时函数取最小值﹣a 2,∴22325124a a ⎛⎫--=- ⎪⎝⎭,整理得24+250a a -=,解得a =0a =<(舍去), 当a<0,二次函数开口向下,在二次函数对称轴的左侧,y 随x 的增大而增大, ∴当x =-1时函数取最小值﹣a 2,∴22325124a a ⎛⎫---=- ⎪⎝⎭, 整理得24+25250a a -=,解得a =或0a =>(舍去). 【点评】本题考查待定系数法求抛物线解析式,利用自变量增大函数值增大构造不等式,利用函数的增减性取最小值构造关于a 的一元二次方程,掌握待定系数法求抛物线解析式,会列不等式与解不等式,利用函数的增减性取最小值构造关于a 的一元二次方程和解方程是解题关键.7.(1)1k =,1b =;(2)p 最大值为1;(3)30c -<≤或1c =【分析】(1)将(2,3)和1,2n ⎛⎫⎪⎝⎭分别代入直线表达式中可求得k 和n 值,再根据抛物线的对称轴公式求解b 值即可;(2)抛物线的对称轴为直线x =﹣12和2139x x ≤-<得出211x x =--及152x -<≤-,则()22221211331p x x x x =-=---2133222x ⎛⎫=-++ ⎪⎝⎭,根据二次函数的最值方法求解即可;(3)联立方程组可得x 2=1﹣c ,对c 讨论,结合方程根取值范围进行求解即可. 【解析】解:(1)把()2,3代入1y kx =+得:213k +=,则1k =,∴点1,2n ⎛⎫⎪⎝⎭在直线1y x =+上,∴12n =-,∴抛物线的对称轴122b x =-=-,∴1b =;(2)由(1)知1b =,则2y x x c =++,∵抛物线2y x x c =++与x 轴交点的横坐标为1x ,2x 且213x x -≥ ∴2112x x >-> ∴211122x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭即121x x +=-. ∴211x x =--.∴()22221211331p x x x x =-=---2133222x ⎛⎫=-++ ⎪⎝⎭∵2139x x ≤-<,∴()11319x x ≤---< ∴152x -<≤-∵20-<且对称轴为直线32x =-∴当152x -<≤-时,p 随1x 的增大而增大, ∴当12x =-时,p 取最大值且最大值为1;(3)由(1)知,直线的表达式为1y x =+,抛物线表达式为2y x x c =++,联立方程组21y x y x x c =+⎧⎨=++⎩得:x 2=1﹣c , 当c >1时,该方程无解,不满足题意; 当c =1时,方程的解为x =0满足题意; 当c <1时,方程的解为x =±1c -当1c -2即30c -<≤时,满足12x -<<时,抛物线2y x bx c =++与直线1y kx =+有且只有一个公共点,综上,满足题意的c 的取值范围为30c -<≤或1c =.【点评】本题考查二次函数与一次函数的综合,涉及待定系数法求函数表达式、二次函数的图象与性质、求二次函数的最值问题、两个函数图象的交点问题、解一元二次方程、解一元一次不等式组等知识,解答的关键是认真分析题意,找寻知识之间的关联点,利用待定系数法、分类讨论和数形结合思想进行推理、探究和计算. 8.(1)()3,3-;(2)1;(3)4044个【分析】(1)先求出点B 坐标,B 的纵坐标减去A 的纵坐标等于12求出m 值,再求出抛物线的对称轴,根据抛物线的对称性和两点之间线段最短知,当B 、P 、D 三点共线时OBP 周长最短,此时点P 为直线a 与对称轴的交点,进而求解即可;(2)先求出抛物线的顶点C 坐标2,24m m ⎛⎫-- ⎪⎝⎭,由C 与l 的距离221()(2)1144m m m =---=--+≤即可求出最大值;(3)先求出抛物线与直线a 的交点的横坐标,根据每一个整数x 的值都对应的一个整数y 值,结合边界由线段和抛物线组成求解即可. 【解析】解:(1)当0x =时,y x m m =+=, (0,)B m ∴,12AB =,而(0,)A m -,()12m m ∴--=,6m ∴=,∴抛物线L 的解析式为:26y x x =+,L ∴的对称轴3x =-,又知O 、D 两点关于对称轴对称,则OP DP =OB OP PB OB DP PB ∴++=++∴当B 、P 、D 三点共线时OBP 周长最短,此时点P 为直线a 与对称轴的交点,当3x =-时,63y x =+=, (3,3)P ∴-;(2)2224m m y x ⎛⎫=+- ⎪⎝⎭,L ∴的顶点2,24m m C ⎛⎫-- ⎪⎝⎭,点C 在l 上方,C ∴与l 的距离221()(2)1144m m m =---=--+≤,∴点C 与l 距离的最大值为1;(3)当2021m =时,抛物线解析式2:2021L y x x =+ 直线解析式:2021a y x =+联立上述两个解析式220212021y x xy x ⎧=+⎨=+⎩可得:12021x =-,21x =∴可知每一个整数x 的值都对应的一个整数y 值,且-2021和1之间(包括-2021和1)共有2023个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线, ∴线段和抛物线上各有2023个整数点, ∴总计4046个点∵这两段图象交点有2个点重复, ∴“整点”的个数:404624044-=(个); 故2021m =时“整点”的个数为4044个.【点评】本题考查二次函数的图象与性质、一次函数的图象与性质、图形与坐标、最短路径问题、二次函数的最值、两函数图象的交点问题、解二元一次方程组等问题,综合性强,难度适中,解答的关键是读懂题意,找寻相关知识的关联点,利用数形结合思想解决问题. 9.(1)2712y x x =--;(2)t =2时,△PDE 2458, 点P的坐标为(2,﹣4);(3)满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12),过程见解析【分析】(1)利用待定系数法求函数表达式即可;(2)先求出直线AB 的函数表达式和点C 坐标,设P 27,12t t t ⎛⎫-- ⎪⎝⎭,其中0<t <4,则E22727,12t t t t ⎛⎫---⎪⎝⎭,证明△PDE ∽△AOC ,根据周长之比等于相似比可得())22355651024522828l t t ++⎡⎤=--+=-⎣⎦,根据二次函数求最值的方法求解即可;(3)分以下情况①若AB 是平行四边形的对角线;②若AB 是平行四边形的边,1)当 MN ∥AB 时;2)当 NM ∥AB 时,利用平行四边形的性质分别进行求解即可. 【解析】解(1)∵抛物线2y x bx c =++经过点A (0,﹣1),点B (4,1),∴11641c b c =-⎧⎨++=⎩, 解得721b c ⎧=-⎪⎨⎪=-⎩, ∴该抛物线的函数表达式为2712y x x =--;(2)∵A (0,-1),B (4,1), ∴直线AB 的函数表达式为112y x =-, ∴C (2,0),设P 27,12t t t ⎛⎫-- ⎪⎝⎭,其中0<t <4,∵点E 在直线112y x =-上,PE ∥x 轴, ∴E 22727,12t t t t ⎛⎫--- ⎪⎝⎭,∠OCA =∠DEP ,∴PE =()2228228t t t -+=--+, ∵PD ⊥AB , ∴∠EDP =∠COA , ∴△PDE ∽△AOC , ∵AO =1,OC =2, ∴AC∴△AOC 的周长为令△PDE 的周长为lACPE=,∴())2222828l t t ⎡⎤=--+=-⎣⎦, ∴当t =2时,△PDE8, 此时点P 的坐标为(2,﹣4),(3)如图所示,满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12). 由题意可知,平移后抛物线的函数表达式为24y x x =-,对称轴为直线2x =. ①若AB 是平行四边形的对角线,当MN 与AB 互相平分时,四边形ANBM 是平行四边形, 即MN 经过AB 的中点C (2,0),∵点N 的横坐标为2,∴点M 的横坐标为2,∴点M 的坐标为(2,-4);②若AB 是平行四边形的边,1)MN ∥AB 时,四边形ABNM 是平行四边形,∵A (0,-1),B (4,1),点N 的横坐标为2,∴点M 的横坐标为2﹣4=﹣2,∴点M 的坐标为(﹣2,12);2)当 NM ∥AB 时,四边形ABMN 是平行四边形,∵A (0,-1),B (4,1),点N 的横坐标为2,∴点M 的横坐标为2+4=6,∴点M 的坐标为(6,12),综上,满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12).【点评】本题考查待定系数法求函数的表达式、相似三角形的判定与性质、求二次函数的最值、平行四边形的性质等知识,解答的关键是熟练掌握二次函数的性质,运用平行四边形的性质,结合数形结合和分类讨论的思想方法进行探究、推导和计算.10.(1)21722y x x =-++;(2)352(3)存在,点Q 的坐标为(10,23Q 、(20,23Q 【分析】(1)先将点B 的坐标为(4,)m 代入代入直线解析式中,求得点B 的坐标,再利用,A B 坐标,待定系数法求二次函数解析式;(2)设217,22D m m m ⎛⎫-++ ⎪⎝⎭,则7,2E m m ⎛⎫-+ ⎪⎝⎭,()21222DE m =--+,当2m =时,DE 有最大值为2,此时72,2D ⎛⎫ ⎪⎝⎭,作点A 关于对称轴的对称点A ',连接A D ',与对称轴交于点P ,PD PA PD PA A D ''+=+=此时PD PA +最小,勾股定理即可求得;(3)作AH y ⊥轴于点H ,连接AM 、AQ 、MQ 、HA 、HQ ,由45AQM ∠=︒可知12AQM AHM ∠=∠,继而可得:2QH HA HM ===,设(0,)Q t ,勾股定理即可求得点Q 的坐标【解析】解:(1)将点B 的坐标为(4,)m 代入72y x =-+, 71422m =-+=-, ∴B 的坐标为14,2⎛⎫- ⎪⎝⎭, 将(3,2)A ,14,2B ⎛⎫- ⎪⎝⎭代入 212y x bx c =-++, 2213322114422b c b c ⎧-⨯++=⎪⎪⎨⎪-⨯++=-⎪⎩ 解得1b =,72c =, ∴抛物线的解析式21722y x x =-++; (2)设217,22D m m m ⎛⎫-++ ⎪⎝⎭, 则7,2E m m ⎛⎫-+ ⎪⎝⎭, 222177112(2)222222DE m m m m m π⎛⎫⎛⎫=-++--+=-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当2m =时,DE 有最大值为2 此时72,2D ⎛⎫ ⎪⎝⎭, 作点A 关于对称轴的对称点A ',连接A D ',与对称轴交于点P .PD PA PD PA A D ''+=+=,此时PD PA +最小,∵(3,2)A ,∴(1,2)A '-,2273(12)2522A D ⎛⎫'=--+- ⎪⎝⎭ 即PD PA +352(3)作AH y ⊥轴于点H ,连接AM 、AQ 、MQ 、HA 、HQ ,∵抛物线的解析式21722y x x =-++, ∴(1,4)M ,∵(3,2)A ,∴2AH MH ==,(1,2)H∵45AQM ∠=︒,90AHM ∠=︒, ∴12AQM AHM ∠=∠, 可知AQM 外接圆的圆心为H ,∴2QH HA HM ===设(0,)Q t2,2t =2∴符合题意的点Q的坐标:(10,2Q、(20,2Q .【点评】本题考查了待定系数法求二次函数解析式,二次函数图像与性质,勾股定理,将军饮马求线段和的最小值,三角形的外心,圆周角定理,正确作出图形是解题的关键.11.(1)211433y x x =-++;(2)3;(3)存在,点Q 的坐标为(1,3)或⎝⎭ 【分析】(1)将点A 、B 的坐标代入解析式中求解即可;(2)由抛物线的表达式211433y x x =-++求出y 轴交点C 的坐标,利用待定系数法求得直线BC 的解析式,然后用m 表示出PQ ,利用三角函数求出PN =PQ cos45°,再利用二次函数的性质即可求解;(3)分三种情况:①当AC CQ =时,过点Q 作QE y ⊥轴于点E .则222CQ CE EQ =+,即[]224(4)25m m +--+=;②当AC AQ =时,连结AQ ,则5AQ AC ==,在Rt AMQ △中,由勾股定理得:AQ 2=AM 2+QM 2=AC 2,即22[(3)](4)25m m --+-+=;③当CQ AQ =时,则EC 2+EQ 2=AM 2+QM 2,即()[]2222(3)(+44)4m m m m =--+--+⎡⎤+⎦-⎣,分别求解即可. 【解析】解:(1)∵抛物线24y ax bx =++交x 轴于3,0,()(,0)4A B -两点,∴将点A B 、的坐标代入抛物线表达934016440a b a b -+=⎧⎨++=⎩, 解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的表达式为:211433y x x =-++;(2)∵抛物线的表达式211433y x x =-++,当x=0时,y=4,∴点(0,4)C ,设直线BC 的表达式为:y kx b =+;把点B C 、的坐标代入解析式得:404k b b +=⎧⎨=⎩, 解得:14k b =-⎧⎨=⎩, 直线BC 的表达式为:4y x =-+;设点(,0)M m ,则点211,433P m m m ⎛⎫-++ ⎪⎝⎭,点4(),Q m m -+, 221114443333PQ m m m m m ∴=-+++-=-+, OB OC =,∴45ABC OCB ∠=∠=︒,∵PM ⊥x 轴,∴∠MQB =90°-∠CBO =90°-45°=45°,∴∠PQN =∠MQB =45°,∵PN ⊥BC ,∴45NPQ NQP ∠=∠=︒,22214222sin 452)33PN PQ m m m ⎫∴=︒=-+=-⎪⎝⎭, 206-<,开口向下,PN 有最大值, 当2m =时,PN 22 (3)存在,理由: 点A C 、的坐标分别为(3,0),(0,4)-,在△OAC 中由勾股定理有()2222-34AC OA OC +=+①当AC CQ =时,过点Q 作QE y ⊥轴于点E .则222CQ CE EQ =+,∴222=CE EQ AC +即()224425m m ⎡⎤⎣-⎦+-+=, 解得:52m =(舍去负值),∴点Q ⎝⎭;②当AC AQ =时,连结AQ ,则5AQ AC ==,在Rt AMQ △中,由勾股定理得:AQ 2=AM 2+QM 2=AC 2即[]22(3)(4)25m m --+-+=,解得:1m =或0(舍去0),∴点()1,3Q ;③当CQ AQ =时,则EC 2+EQ 2=AM 2+QM 2,即()[]2222(3)(+44)4m m m m =--+--+⎡⎤+⎦-⎣, 解得:2542m =>(舍去);综上,点Q 的坐标为(1,3)或822⎛- ⎝⎭..【点评】本题考查待定系数法求抛物线解析式和直线解析式,两点距离公式,锐角三角函数,分类探究等腰三角形.勾股定理,掌握待定系数法求抛物线解析式和直线解析式,两点距离公式,锐角三角函数,分类探究等腰三角形.勾股定理,利用勾股定理构造方程是解题关键.12.(1)223y x x =--+;(2)y =x +3;(3)M (-1,2),【分析】(1)根据抛物线的对称轴可得12b a-=-,然后代入A (1,0),C (0,3)代入抛物线解析式03a b c c ++=⎧⎨=⎩解方程组即可; (2)利用(1)的函数解析式令y =0,解方程即可求出点B 坐标,再根据B 、C 坐标利用待定系数法求直线BC 的解析式即可;(3)由点A 与点B 是关于对称轴直线=1x -的对称点,直线BC 与对称轴直线=1x -的交点就是D (-1,2),由点M 在对称轴上,可得AM =BM ,由点M 到点A 的距离与到点C 的距离之和最小,点B ,点M ,点C 三点共线时最短,即点M 与点D 重合时,距离之和的最小值就是可得CM +AM =BC 的长,在Rt △BOC 中,由勾股定理得BC =32【解析】解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得123a b c =-⎧⎪=-⎨⎪=⎩,∴223y x x =--+;(2)当y=0时2x 2x 30--+=解得123,1x x =-=∴点B (-3,0)由直线BC 的解析式为:y =mx+n ,代入B (﹣3,0),C (0,3)得:303m n n -+=⎧⎨=⎩, 解得:13m n =⎧⎨=⎩, ∴直线BC 的解析式为:y =x +3;(3)∵点A 与点B 是关于对称轴直线=1x -的对称点,∴直线BC 与对称轴直线=1x -的交点就是D 点,∴当=1x -时3y x =-1+3=2,∴D (-1,2),∵点M 在对称轴上,∴AM =BM ,点M 到点A 的距离与到点C 的距离之和最小,∴点B ,点M ,点C 三点共线时最短,即点M 与点D 重合时,点M (-1,2),∴距离之和的最小值就是CM +AM =CM+BM = BC 的长,在Rt △BOC 中,由勾股定理得BC∴距离之和的最小值就是【点评】本题考查的是二次函数的综合运用,待定系数法求函数解析式,一次函数解析式,利用轴对称求最短路径以及M 坐标是解题关键.13.(1)直线x =1,(0,-1);(2)见解析;(3)17-.【分析】(1)将抛物线解析式转化为顶点式解析式,得到对称轴,当0x =时,可解得抛物线与y 轴的交点坐标;(2)将y =x -2代入二次函数解析式,得到关于x 的一元二次方程,根据一元二次方程根的判别式解题即可;(3)将抛物线解析式转化为顶点式,得到对称轴为直线x =1,根据抛物线的图象与性质解题即可.【解析】解:(1)抛物线y =ax 2-2ax -12(1)1a x a =--- ,∴抛物线的对称轴为直线1x =,抛物线y =ax 2-2ax -1中,当0x =时,1y =-,∴抛物线与y 轴的交点坐标为:(0,1)-故答案为:直线x =1,(0,1)-;(2)将y =x -2代入二次函数解析式,得x -2 = ax 2-2ax -1,则原方程可化为 ax 2-(2a +1)x +1=0,由根的判别式可得2-4b ac =()222214441441a a a a a a ⎡⎤-+-=++-=+⎣⎦2410a +>0∴∆>∴直线y =x -2与抛物线y =ax 2-2ax -1(a < 0)一定存在两个交点;(3)∵抛物线的开口向下,对称轴直线为x =1,顶点坐标为(1,1)a --,∴当-2≤x ≤2时,∵y 的最大值是1,∴顶点坐标为(1, 1),11a ∴--=2a ∴=-∴当x < 1时,y 随x 的增大而增大,当x >1时,y 随x 的增大而减小,∵2x =-比2x =离对称轴1x =更远一些,即x =-2时,y 有最小值,∴最小值是22(2)2(2)(2)117y =-⨯--⨯-⨯--=-,即y 的最小值是 17-.【点评】本题考查二次函数的图象与性质、一次函数与二次函数的交点问题,涉及二次函数的最值等知识,是重要考点,难度一般,掌握相关知识是解题关键.14.(1)2343y x =;(2)直角三角形;(3)存在,点P 坐标为:151353,2⎛ ⎝⎭. 【分析】(1)把(3,33A -、(12,0)B 代入2y ax bx =+,利用待定系数法解题;(2)利用勾股定理的逆定理解题;(3)连接AB ,利用待定系数法解得直线AB 的解析式为:33y =-2343P x x ⎛⎫ ⎪ ⎪⎝⎭,过点P 作PM x ⊥轴,垂足为M ,交AB 于点343N x x ⎛- ⎝,由三角形面积公式,结合二次函数的最值问题解题即可.【解析】解:(1)把(3,33A -、(12,0)B 代入2y ax bx =+,得9333144120a b a b ⎧+=-⎪⎨+=⎪⎩①②, ①4⨯-②得,1083a -=-3a ∴= 把3a =①得 43b =343a b ⎧=⎪⎪∴⎨⎪=⎪⎩∴抛物线的解析式为:2343y x =;(2)(0,0)O,(3,A -、(12,0)B(222336OA ∴=+=∣(222(123)108AB =-+=2212144OB ==22236108144OA AB OB +=+==OAB ∴△为直角三角形;(3)存在,连接AB ,OAB APB OAPB S S S =+△△四边形而OAB S 已确定,要使四边形OAPB S 面积最大,只需要APB S 最大即可,设直线AB 的解析式为(0)y kx b k =+≠,把点(3,A -、(12,0)B代入,得:3120k b k b ⎧+=-⎪⎨+=⎪⎩解得:k b ⎧=⎪⎨⎪=-⎩∴直线AB的解析式为:y x =-设2P x x ⎛⎫ ⎪ ⎪⎝⎭,过点P 作PM x ⊥轴,垂足为M ,交AB 于点N ,于是N x ⎛- ⎝,则2119922APB APB S PN S x x ⎡⎤⎫=⋅⋅==--⨯⎢⎥⎪⎪⎢⎥⎝⎝⎭⎣⎦△△2x =-当152x ==⎝⎭时,APB S 最大.2x x = ∴符合条件的点P坐标为:15,2⎛ ⎝⎭.【点评】本题考查二次函数与一次函数的综合题,涉及勾股定理逆定理、待定系数法求一次。
2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(1)求抛物线的解析式;(2)抛物线上是否存在点,使P存在,请说明理由.(1)求该抛物线的函数表达式;(2)在直线上是否存在点,使说明理由.(3)为第一象限内抛物线上的一个动点,且在直线,垂足为,以点为圆心,,且不经过点l C P PM l ⊥M M 2PAB PT S =V M e (4.如图,已知顶点为的抛物线与x 轴交于A ,B 两点,且.(1)求点B 的坐标;(2)求二次函数的解析式;(3)作直线,问抛物线上是否存在点M ,使得,若存在,求出点M 的坐标;若不存在,请说明理由.5.如图,抛物线与x 轴交于A 、B 两点,,,与y 轴交于点C ,连接.()0,6C -()20y ax b a =+≠OC OB =()20y ax b a =+≠CB ()20y ax b a =+≠15MCB ∠=︒24y ax bx =+-()2,0A -()8,0B AC BC 、(1)求抛物线的解析式;(2)求证:;(3)点P 在抛物线上,且,求点P的坐标.6.如图,在平面直角坐标系中,已知抛物线与x 轴交于、两点,与y 轴交于点C ,连接.(1)求抛物线的解析式;(2)在对称轴上是否存在一点M ,使,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)若点P 是直线下方的抛物线上的一个动点,作于点D ,当的值最大时,求此时点P 的坐标及的最大值.∠=∠ACO ABC PCB ACO ∠=∠()230y ax bx a =+-≠()3,0A ()1,0B -AC MCA MAC ∠=∠AC PD AC ⊥PD PD(1)试求抛物线的解析式;(2)点P 是直线下方抛物线上一动点,当的面积最大时,求点P 的坐标;(3)若M 是抛物线上一点,且,请直接写出点M 的坐标.BC BCP V MCB ABC ∠=∠(1)求此抛物线的解析式;(2)点E 是AC 延长线上一点,的平分线CD 交⊙于点D ,连接BD ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P ,使得?如果存在,请求出点P 的坐标;如果不存在,请说明理由.9.综合与实践:如图,抛物线与x 轴交于点和点,与y 轴交于点C ,连接,点D 在抛物线上.(1)求抛物线的解析式;(2)小明探究点D 位置时发现:如图1,点D 在第一象限内的抛物线上,连接,,面积存在最大值,请帮助小明求出面积的最大值;(3)小明进一步探究点D 位置时发现:点D 在抛物线上移动,连接,存在BCE ∠O 'PDB CBD ∠=∠22y ax bx =++()1,0A -()4,0B BC BD CD BCD △BCD △CD(1)求抛物线的解析式.(2)如图1,过点D 作轴,垂足为M ,点P 在直线P 作,,求的最大值,以及此时点(3)将原抛物线沿射线方向平移个单位长度,在平移后的抛物线上存在点得,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过DM x ⊥PE AD ⊥PF DM ⊥2PE PF +CA 5245CAG ∠=︒(1)填空:___________,___________;(2)点为直线上方抛物线上一动点.①连接、,设直线交线段于点,求的最大值;②过点作于点,连接,是否存在点,使得中的,若存在,求出点的坐标;若不存在,请说明理由.(1)求抛物线的解析式;b =c =D AC BC CD BD AC E DE EBD DF AC ⊥F CD D CDF V 2DCF BAC ∠=∠D(1)求抛物线的解析式;(2)抛物线上是否存在点D ,使得?若存在,求出所有点不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 动点,EF 与直线OB 交于点G .设和的面积分别为值.DOB OBC ∠=∠BFG V BEG V S14.如图,在平面直角坐标系中,点为坐标原点,抛物线与轴交于、两点且点,,与轴的负半轴交于点,.(1)求此抛物线的解析式;(2)在(1)的条件下,连接,点为直线下方的抛物线上的一点,过点作交于点,交直线于点,若,求点的坐标.(3)在(1)的条件下,点为该抛物线的顶点,过点作轴的平行线交抛物线于另一点,过点作于点,该抛物线对称轴右侧的抛物线上有一点,连接交于点,当时,求的度数.15.已知抛物线与轴相交于点,,与轴相交于点.O 2y x bx c =++x A B (3B 0)y C OB OC =AC P BC P PQ AC ∥AB Q BC D PD DQ =P D C x R R RH AB ⊥H M DM RH Q 2MQ RQ =MQH ∠24y ax bx =++x ()1,0A ()4,0B y C参考答案:的值最大时,此时,。
专题14 动点最值之胡不归模型背景故事:从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.模型建立:将这个问题数学化,我们不妨设总时间为,由可得,提取一个得,若想总的时间最少,就要使得最小,如图,过定点A 在驿道下方作射线AE ,夹角为,且,作DG ⊥AE 于点G,则,将转化为DG +DB ,再过点B 作BH ⊥AE 于点H就是我们要找的点,此时DG +DB 的最小值为BH ,,综上,所需时间的最小值为2驿道解决思路:构造射线AD 使得sin ∠DAN =k ,即CHk AC=,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.例题1. 如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD 的最小值是_______.【解析】∵tan A =2,∴△ABE三边之比为1:2sin ∠, 故作DH ⊥AB 交AB 于H点,则DH =.问题转化为CD +DH 最小值,故C 、D 、H 共线时值最小,此时CD DH CH BE +===例2.如图,△ABC 在直角坐标系中,AB =AC,C (1,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A→D→C ,点P 在AD 上的运动速度是在CD 上的3倍,要使整个运动时间最少,则点D 的坐标应为( )A .(0,B .(0) C .(0,)D .(0)M MABCDEHEDCBA ABCDEH【答案】D【解析】假设P在AD的速度为3V,在CD的速度为1V,总时间t+CD最小,因为AB=AC=3,过点B作BH⊥AC交AC于点H,交OA于D,易证△ADH∽△ACO,所以,所以,因为△ABC是等腰三角形,所以BD=CD,最小,就是要DH+BD最小,就要B、D、H三点共线就行了.因为△AOC∽△BOD,所以即所以,所以点D的坐标应为.例3.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是s.【解析】过点E作x轴的平行线,再过D点作y轴的平行线,两线相交于点H,如图,∵EH∥AB,∴∠HEB=∠ABE,∴tan∠HED=tan∠EBA=,设DH=4m,EH=3m,则DE=5m,∴蚂蚁从D爬到E点的时间=4(s)若设蚂蚁从D爬到H点的速度为1单位/s,则蚂蚁从D爬到H点的时间==4(s),∴蚂蚁从D爬到E点所用的时间等于从D爬到H点所用的时间相等,∴蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点所用时间等于它从A以1单位/s的速度爬到D点,再从D点以1单位/s速度爬到H点的时间,作AG⊥EH于G,则AD+DH≥AH≥AG,∴AD+DH的最小值为AQ的长,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),直线BE交y轴于C点,如图,在Rt△OBC中,∵tan∠CBO=∴OC=4,则C(0,4),设直线BE的解析式为y=kx+b,把B(3,0),C(0,4)代入得,解得,∴直线BE的解析式为,解方程组得或,则E,∴蚂蚁从A爬到Gs),即蚂蚁从A到E的最短时间为【变式训练1】如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB的最小值等于________.【解析】已知∠A=60°,且,故延长AD,作PH⊥AD延长线于H点,即可得PH,∴PB=PB+PH.当B、P、H三点共线时,可得PB+PH取到最小值,即BH的长,解直角△ABH即可得BH长.【变式训练2】如图,在△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是.A BCD PMHPD CBA A BCD PHM【解析】如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,,∵AB=AC,BE⊥AC,CM⊥AB,∵∠DBH=∠ABE,∠BHD=∠BEA,∴∴CD+DH≥CM,.【变式训练3】如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则________.过点P作PQ⊥AD,垂足为Q,∵四边形ABCD是平行四边形,∴DC//AB,∴∠QDP=∠DAB=60°,∴当点B、P、Q三点共线时,的最小值为.课后训练1.如图,在Rt△ABC中,△ACB=90°,△B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE△CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A.B.C.D.【解答】解:延长AC到点P,使CP=AC,连接BP,过点F作FH△BP于点H,取AC中点O,连接OG,过点O作OQ△BP于点Q,△△ACB=90°,△ABC=30°,AB=4,△AC=CP=2,BP=AB=4△△ABP是等边三角形,△△FBH=30°,△Rt△FHB中,FH=FB△当G、F、H在同一直线上时,GF+FB=GF+FH=GH取得最小值△AE△CD于点G,△△AGC=90°,△O为AC中点,△OA=OC=OG=AC△A、C、G三点共圆,圆心为O,即点G在△O上运动,△当点G运动到OQ上时,GH取得最小值△Rt△OPQ中,△P=60°,OP=3,sin△P=△OQ=OP=,△GH最小值为故选:C.2.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+BD的最小值为()A.B.C.D.【解答】解:△的度数为120°,△△C=60°,△AC是直径,△△ABC=90°,△△A=30°,作BK△CA,DE△BK于E,OM△BK于M,连接OB.△BK△AC,△△DBE=△BAC=30°,在Rt△DBE中,DE=BD,△OD+BD=OD+DE,根据垂线段最短可知,当点E与M重合时,OD+BD的值最小,最小值为OM,△△BAO=△ABO=30°,△△OBM=60°,在Rt△OBM中,△OB=2,△OBM=60°,△OM=OB•sin60°=,△DB+OD的最小值为,故选:B.3.如图,在平面直角坐标系中,二次函数y=ax2+bx+c C(2,0),其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接PD,则+PD的最小值为;(3)M(x,t)为抛物线对称轴上一动点①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有个;②连接MA,MB,若∠AMB不小于60°,求t的取值范围.【解答】(1)(2);【解析】(1)由题意解得,∴抛物线解析式为,∵(2)如图,连接AB,作DH⊥AB于H,交OB于P PB+PD最小.理由:∵OA=1,OB=,∴tan∠ABO ABO=30°,∴PH=PB,∴+PD=PH+PD=DH,∴此时+PD最短(垂线段最短).在Rt△ADH中,∵∠AHD=90°,AD=,∠HAD=60°,∴sin60°DH=,∴+PD的最小值为;4.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)证明:CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD CD+OD的最小值为6时,求⊙O的直径AB的长.【答案】(1)见解析;(2)(3)AB=8【解析】(1)连接OC,如图,∵CA=CE,∠CAE=30°,∴∠E=∠CAE=30°,∠COE=2∠A=60°,∴∠OCE=90°,∴CE是⊙O的切线;(2)过点C作CH⊥AB于H,连接OC,如图,由题可得CH=h.在Rt△OHC中,CH=OC•sin∠COH,∴h=OC•sin60°=,∴OC=h,∴AB=2OC=h;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图,则∠AOF=∠COF=AOC=(180°﹣60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DH⊥OC于H,∵OA=OC,∴∠OCA=∠OAC=30°,∴DH=DC•sin∠DCH=DC•sin30°=DC,∴+OD=DH+FD.根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD+OD)最小,此时FH=OF•sin∠FOH==6,则OF=,AB=2OF=.∴当+OD的最小值为6时,⊙O的直径AB的长为8.5.如图,已知抛物线y=x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=-+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF 以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【答案】(1);(2)或;(3)当点F坐标为(﹣2)时,点M在整个运动过程中用时最少.【解析】(1)抛物线y=x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线经过点B(4,0),∴×4+b=0,解得b=,∴直线BD当x=﹣5时,y=,∴D(﹣5).∵点D(﹣5)在抛物线y=x+2)(x﹣4)上,∴5+2)(﹣5﹣4)=,∴.∴抛物线的函数表达式为:(x+2)(x﹣4).(2)由抛物线解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,∴.∴P(x x+k),代入抛物线解析式y=x+2)(x﹣4),得(x+2)(x﹣4x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:.②若△ABC ∽△PAB ,则有∠ABC =∠PAB ,如答图2﹣2所示. 设P (x ,y ),过点P 作PN ⊥x 轴于点N ,则ON =x ,PN =y . tan ∠ABC =tan ∠PAB ,即:,∴.∴P (x ,x ),代入抛物线解析式y =(x +2)(x ﹣4),得(x +2)(x ﹣4x +x 2﹣4x ﹣12=0,解得:x =6或x =﹣2(与点A 重合,舍去),∴P (6,2k ). ∵△ABC ∽△PAB ,,∴,解得,∵k >0,∴,综上所述,.(3)作DK ∥AB ,AH ⊥DK ,AH 交直线BD 于点F ,∵∠DBA =30°,∴∠BDH =30°,∴FH =DF ×sin30°,∴当且仅当AH ⊥DK 时,AF +FH 最小,点M ,∵lBD :,∴F X =A X =﹣2,∴F (﹣2).。
2020中考数学专题:运动与变化之函数思想(含答案)【例1】 同学们都知道,一次函数()0≠+=k b kx y 的图象是一条直线,它可以表示许多实际意义,比如在图1中,x 表示时间(小时),y 表示路程(千米).那么从图象上可以看出,某人出发时(x =0),离某地(原点)2千米,出发1小时,由x =1,得y =5,即某人离某地5千米,他走了3千米. 在图2中,OA ,BA 分别表示甲、乙两人的运动图象,请根据图象回答下列问题:(1)如果用t 表示时间,y 表示路程,那么甲、乙两人各自的路程与时间的函数关系式:甲_________,乙________________;(2)甲的运动速度是______千米/时;(3)甲、乙同时出发,相遇时,甲比乙多走______千米.图1 图2【例2】对于方程222x x m -+=,如果方程实根的个数恰为3个,则m 值等于( )A .1BC .2D .2.5【例3】已知b ,c 为整数,方程052=++c bx x 的两根都大于-1且小于0,求b 和c 的值.【例4】在直角坐标系中.有以A (-1,-1),B (1,一1), C (1,1),D (-1,1)为顶点的正方形,设它在折线y x a a =-+上侧部分的面积为S .试求S 关于a 的函数关系式,并画出它们的图象.【例5】如图,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25米.由柱子顶端A处的喷头向外喷水,水流沿形状相同的各条抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1米处时距水面最大高度为2.25米.(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不至落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5米,要使水流不落到池外,此时水流的最大高度应达多少米?(精确到0.1米)【例6】某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.注:“300~400”表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%) +30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?能力训练1.如图,是兰州市市内电话费y(元)与通话时间t(分钟)之间的函数关系的图象,则通话7分钟需付电话费_________(元).第1题图第2题图第4题图2.如图,某航空公司托运行李的费用与托运行李重量的关系的函数图象,由图中可知行李的重量只要不超过_________公斤,就可免费托运.3.已知a,b为抛物线y=(x-c)(x-c-d) -2与x轴交点的横坐标,a<b,则|a-c|+ |c-b|的值为_________.4.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y(元)与用水量x(吨)之间的函数关系如图.按上述分段收费标准,小明家三、四月份分别交水费26元和18元,则四月份比三月份节约用水__________吨.5.某校组织学生到距离学校6千米的光明科技馆去参观.学生王红因事没能乘上学校的包车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准如下:(1)写出出租车行驶的里程数x≥3(千米)与费用y(元)之间的函数关系式:___________ .(2)王红同学身上仅有14元钱,乘出租车到科技馆的车费够不够?请说明理由._______________ 6.已知边长为1的正方形ABCD,E为边CD的中点,动点P在正方形ABCD边上沿A→B→C→E运动.设点P经过的路程为x,△APE的面积为y,则y关于x的函数图象大致为( )A B C D7.向高为h的水瓶中注水,注满为止,如果注水量v与水深h的函数关系如图所示,那么水瓶的形态是( )A B C D8.方程()0141442=-++-kxkx的两根满足0<1x<1<2x<2,则k的取值范围是( )A.0<k<2 B.0<k<74C.14<k<74D.14<k<29.某旅社有100张床位,每床每晚收费10元时,客床可全部租出,若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每床每晚应提高( )A.4元或6元B.4元C.6元D.8元10.如图所示,矩形ABCD中,AB=a,BC=b,3b≤a≤3b.在AB,BC,CD和DA上分别取E,F,G,H,使得AE=AH=CF=CG,则四边形EFGH面积的最大值为( )A.2()2a b+B.2()4a b+C.2()8a b+D.2()16a b+11.某公司生产一种产品,每件成本为2元,售价为3元.年销售量为100万件.为获取更好的效益,公司准备拿出一定资金做广告.通过市场调查发现:每年投入的广告费用为x(10万元)时,产品的年销量将是原售量的y倍;同时y又是x的二次函数,相互关系如下表:(1)求y与x的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(10万元)与广告费x(10万元)的函数关系式;(3)如果一年投入的广告费为10~30万元,问广告费在什么范围内时,公司获得的年利润随广告费的增大而增大?GFHEDCBA12. 如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x 轴,横断面的对称轴为y 轴.桥拱的D DG '部分为一段抛物线,顶点G 的高度为8米,AD 和A 'D '是两侧高为5.5米的支柱.OA 和OA '为两个方向的汽车通行区,宽都为15米,线段CD 和D C ''为两段对称的上桥斜坡,其坡度比为1:4.(1) 求桥拱DGD '所在抛物线的解析式及CC '的长;(2) BE 和B 'E '为支撑斜坡的立柱,其高都为4米,相应的AB 和A 'B '为两个方向的行人及非机动车通行区,试求AB 和A 'B '的宽;(3) 按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米.今有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米;它能否从OA (或OA ')区域安全通过?请说明理由.13.有一边长为5cm 的正方形ABCD 和等腰△PQR ,PQ = PR =5cm ,QR =8cm .点B ,C ,Q ,R 在同一条直线l 上. 当C ,Q 两点重合时,等腰△PQR 以1cm /秒的速度沿直线l 按箭头所示方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为scm 2. 解答下列问题: (1) 当t =3秒时,求s 的值; (2) 当t =5秒时,求s 的值;(3) 当5秒≤t ≤8秒时,求s 与t 的函数关系式,并求出s 的最大值.14. 是否存在这样的实数k ,使得二次方程()()023122=+--+k x k x 有两个实数根,且两根都在2与4之间?如果有,试确定k 的取值范围;如果没有,试述理由.15.实数a ,b ,c 满足()()0<+++c b a c a .证明:()()c b a a c b ++>-42.16.如图,已知点A (-1,0),B (3,0),C (0,t ),且0>t ,tan ∠BAC =3,抛物线经过A ,B ,C 三点.点P (2,m )是抛物线与直线l : ()1+=x k y 的一个交点. (1)求抛物线的解析式;(2)对于动点Q (1,n ),求PQ +QB 的最小值;(3)若动点M 在直线l 上方的抛物线上运动,求△AMP 的边AP 上的高h 的最大值.17. 点A (4,0),B (0,3)与点C 构成边长分别是3,4,5的直角三角形,如果点C 在反比例函数 ky x=的图象上,求k 可能取的一切值.18.已知函数2121++--+=x x x y . (1)在直角坐标系中作出函数图象;(2)已知关于x 的方程21213++--+=+x x x kx (0≠k )有三个解,求k 的取值范围.19.当-1≤x ≤2时,函数224222+++-=a a ax x y 有最小值2,求a 所有可能取的值.参考答案例l (l )y=4t(t ≥0) y=3t+5(t ≥0) (2) 4 (3) 5例2 C 提示:如图所示,当m=2时,222y x x =-+与y=m 有三个不同的交点。
2021中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练十二:与最值、定值相关的压轴题(附答案)方法提炼:1、已知一条直线上一动点M和直线同侧两个固定点A、O,求AM+OM最小值的问题,我们只需做出点O关于这条直线的对称点B,将点A与B连接起来交直线与点M,那么AB就是AM+OM的最小值。
同理,我们也可以做出点A关于这条直线的对称点A’,将点O与A’连接起来交直线与点M,那么OA’就是AM+OM的最小值。
应用的定理是:两点之间线段最短。
2、初中阶段学过的有关线段最值的有:两点之间线段最短和垂线段最短;及三角形三边之间的关系,“两边之和大于第三边”求第三边的最小值;“两边之差小于第三边”,求第三边的最大值;还有稍微难一点的就是利用二次函数及其自变量取值范围来求最大值。
典例引领:8.已知抛物线C:y=ax2﹣2ax+c经过点C(1,2),与x轴交于A(﹣1,0)、B两点(1)求抛物线C的解析式;(2)如图1,直线y=x交抛物线C于S、T两点,M为抛物线C上A、T之间的动点,过M点作ME⊥x轴于点E,MF⊥ST于点F,求ME+MF的最大值;(3)如图2,平移抛物线C的顶点到原点得抛物线C1,直线l:y=kx﹣2k﹣4交抛物线C1于P、Q两点,在抛物线C1上存在一个定点D,使∠PDQ=90°,求点D的坐标.分析:(1)利用待定系数法即可得出结论;(2)先确定出ME,MF与t的关系,最后建立ME+MF与t的函数关系式,即可得出结论;(3)先求出x2+2kx﹣4k﹣8=0,进而得出x1+x2=﹣2k,x1x2=﹣4k﹣8,而DE'•DF'=PE'•QF',得出(a﹣x1)(x2﹣a)=(b﹣y1)(b﹣y2),借助b=,y1=,y2=,即可得出(a﹣x1)(x2﹣a)=(a+x1)(a+x2)(x1﹣a)(x2﹣a),即可得出结论.解:(1)∵抛物线C:y=ax2﹣2ax+c经过点C(1,2),与x轴交于A(﹣1,0)、B两点∴,∴;(2)如图1,设直线OT交ME于G,设M(t,),则ME=,G(t,t),OG=t,MG=,sin∠OGE=sin∠MGF=,MF=MG=,ME+MF=,a<0,当t=时,ME+MF的最大值为;(3)如图2,过D作E'F'∥x轴,作PE'⊥E'F'于E',QF'⊥E'F'于F',设D(a,b),P(x1,y1),Q(x2,y2),联立,得x2+2kx﹣4k﹣8=0∴x1+x2=﹣2k,x1x2=﹣4k﹣8,由△PE'D∽△DF'Q得,,∴DE'•DF'=PE'•QF',∴(a﹣x1)(x2﹣a)=(b﹣y1)(b﹣y2),∵b=,y1=,y2=∴(a﹣x1)(x2﹣a)=()()∴(a﹣x1)(x2﹣a)=(a+x1)(a+x2)(x1﹣a)(x2﹣a),∴﹣4=(a+x1)(a+x2),∴x1x2+a(x1+x2)+a2=﹣4,∴﹣4k﹣8+a(﹣2k)+a2=﹣4∴a2﹣4﹣2ak﹣4k=0,∴(a+2)(a﹣2)﹣2k(a+2)=0,∵k为任意实数,∴a+2=0,∴a=﹣2,∴b=﹣2,∴D(﹣2,﹣2).点评:此题是二次函数综合题,主要考查了待定系数法,根与系数的关系,相似三角形的判定和性质,得出(a﹣x1)(x2﹣a)=(a+x1)(a+x2)(x1﹣a)(x2﹣a)是解本题的关键.跟踪训练:1.如图,抛物线与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于C,M为此抛物线的顶点.(1)求此抛物线的函数解析式;(2)动直线l从与直线AC重合的位置出发,绕点A顺时针旋转,与直线AB重合时终止运动,直线l与BC交于点D,P是线段AD的中点.①直接写出点P所经过的路线长为;②点D与B、C不重合时,过点D作DE⊥AC于点E,作DF⊥AB于点F,连接PE、PF、EF,在旋转过程中,求EF的最小值;(3)将抛物线C1平移得到抛物线C2,已知抛物线C2的顶点为N,与直线AC交于E、F两点,若EF=AC,求直线MN的解析式.2.如图1,抛物线的顶点为点A,与x轴的负半轴交于点D,直线AB交抛物线W于另一点C,点B的坐标为(1,0).(1)求直线AB的解析式;(2)求tan∠BDC的值;(3)将抛物线W向下平移m(m>0)个单位得到抛物线W1,如图2,记抛物线W1的顶点为A1,与x轴负半轴的交点为D1,与射线BC的交点为C1.问:在平移的过程中,tan∠D1C1B是否恒为定值?若是,请求出tan∠D1C1B的值;若不是,请说明理由.3.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P 是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)点M在抛物线上,点N在x轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标:若不存在,请说明理由;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动时,点P到直线AB的距离为d,求d最大时点P的坐标.4.如图1.已知直线l:y=﹣1和抛物线L:y=ax2+bx+c(a≠0),抛物线L的顶点为原点,且经过点A(2,)直线y=kx+1与y轴交于点F,与跑抛物线L交于点B(x1,y1),C(x2,y2),且x1<x2.(1)求抛物线L的解析式;(2)求证:无论k为何值,直线l总是与以BC为直径的圆相切;(3)①如图2,点P是抛物线L上的一个动点,过点P作PM⊥l于点M,试判断PM 与PF之间的数量关系,并说明理由;②将抛物线L和点F都向右平移2个单位后,得到抛物线L1和点F1,Q是抛物线L1上的一动点,且点Q在L1的对称轴的右侧,过点Q作QN⊥l于点N,连接QA.求|QA﹣QN|的最大值,并直接写出此时点Q的坐标.5.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)交轴于A、B两点(A在B 的左侧),与y轴交于点C,抛物线的顶点D的纵坐标为4(1)求抛物线的解析式;(2)已知点M在抛物线y=ax2+2ax﹣3a的图象上,点N在x轴上,当以A、C、M、N 为顶点的四边形是平行四边形时,求点M的坐标;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B,D两点间的一个动点(点P不与B,D两点重合),P A、PB与直线DE分别交于点F,G,当点P运动时,EF+EG 是否为定值?若是,试求出该定值;若不是,请说明理由.6.【定义】函数图象上的任意一点P(x,y),y﹣x称为该点的“坐标差”,函数图象上所有点的“坐标差”的最大值称为该函数的“特征值”【感悟】根据你的阅读理解回答问题:(1)点P(2,1)的“坐标差”为;(直接写出答案)(2)求一次函数y=2x+1(﹣2≤x≤3)的“特征值”;【应用】(3)二次函数y=﹣x2+bx+c(bc≠0)交x轴于点A,交y轴于点B,点A与点B的“坐标差”相等,若此二次函数的“特征值”为﹣1,当m≤x≤m+3时,此函数的最大值为﹣2m,求m.7.若一次函数y=kx+m的图象经过二次函数y=ax2+bx+c的顶点,我们则称这两个函数为“丘比特函数组”(1)请判断一次函数y=﹣3x+5和二次函数y=x2﹣4x+5是否为“丘比特函数组”,并说明理由.(2)若一次函数y=x+2和二次函数y=ax2+bx+c为“丘比特函数组”,已知二次函数y =ax2+bx+c顶点在二次函数y=2x2﹣3x﹣4图象上并且二次函数y=ax2+bx+c经过一次函数y=x+2与y轴的交点,求二次函数y=ax2+bx+c的解析式;(3)当﹣3≤x≤﹣1时,二次函数y=x2﹣2x﹣4的最小值为a,若“丘比特函数组”中的一次函数y=2x+3和二次函数y=ax2+bx+c(b、c为参数)相交于PQ两点请问PQ的长度为定值吗?若是,请求出该定值;若不是,请说明理由.8.如图,在平面直角坐标系中,已知点A的坐标是(﹣1,0),且OB=OC=3OA,动点P 在过A、B、C三点的抛物线上(1)求抛物线的解析式(2)如图1,抛物线上是否存在点P,使得△BCP是以BC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由(3)如图2,过动点P作PE⊥y轴于点E,交直线BC于点D,过点D作x轴的垂线,垂足为F,连结EF,当点P在什么位置时,线段EF最短,求出EF长的最小值.9.如图,抛物线y=ax2﹣2x+c与x轴交于点A,B两点,与y轴交于点C,直线y=x+3经过A,C两点.(1)求抛物线的解析式;(2)点N是x轴上的动点,过点N作x轴的垂线,交抛物线于点M,交直线AC于点H.①点D在线段OC上,连接AD、BD,当AH=BD时,求AD+AH的最小值;②当OC=3OD时将直线AD绕点A旋转45°,使直线AD与y轴交于点P,请直接写出点P的坐标.10.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP 为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标.11.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过原点,与x轴交于另一点A,对称轴x=﹣2交x轴于点C,直线l过点N(0,﹣2),且与x轴平行,过点P作PM⊥l 于点M,△AOB的面积为2.(1)求抛物线的解析式;(2)当∠MPN=∠BAC时,求P点坐标;(3)①求证PM=PC;②若点Q坐标为(0,2),直接写出PQ+PC的最小值.12.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D,G,H,F四点所围成的四边形周长最小?若存在,求出这个最小值及点G,H的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,且抛物线经过点D(2,3).(1)求这条抛物线的表达式;(2)将该抛物线向下平移,使得新抛物线的顶点G在x轴上.原抛物线上一点M平移后的对应点为点N,如果△AMN是以MN为底边的等腰三角形,求点N的坐标;(3)若点P为抛物线上第一象限内的动点,过点B作BE⊥OP,垂足为E,点Q为y轴上的一个动点,连接QE、QD,试求QE+QD的最小值.参考答案1.解:(1)∵抛物线与x轴交于A(﹣4,0)、B(2,0)两点,∴,解得,∴抛物线的解析式为y=﹣x2﹣x+4;(2)①在Rt△BOC中,BC===2.∵点D是线段BC一点,P是线段AD的中点,∴点P运动的路径是△ABC的中位线P1P2,如图1,则P1P2=BC=.故答案为:;②如图2,∵DE⊥AC,DF⊥AB,P是线段AD的中点,∴PE=P A=PD=PF,∴点A、E、D、F在以点P为圆心,AD为半径的圆上,∴∠EPF=2∠EAF.∵OA=OC=4,∠AOC=90°,∴∠CAO=∠ACO=45°,∴∠EPF=90°,∴EF==PE=AD.根据“点到直线之间,垂线段最短”可得:当AD⊥BC时,AD最小,此时EF最小,此时,S△ABC=BC•AD=×2•AD=12,解得:AD=,此时EF=,则EF的最小值为;(3)如图3,设直线AC的解析式为y=mx+n,则有,解得:,∴直线AC的解析式为y=x+4.由EF=AC可得MN∥AC.可设直线MN的解析式为y=x+t.∵点M是抛物线y=﹣x2﹣x+4的顶点,∴点M的坐标为(﹣1,),把M(﹣1,)代入y=x+t,得﹣1+t=,解得t=,∴直线MN的解析式为y=x+.2.解:(1)在中,当x=0时,有y=﹣2,∴A(0,﹣2),∵点B的坐标为(1,0),可设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=2x﹣2;(2)在中,当y=0时,有,解得:x1=﹣2,x2=2,∵抛物线与x轴的负半轴交于点D,∴D(﹣2,0),∵点C是直线AB与抛物线W的交点,∴联立方程组,解得,,由此可知,C(4,6),过点C作CE⊥x轴于点E,∴CE=6,OE=4,∴DE=DO+OE=6,∴△CDE为等腰直角三角形,∴∠CDE=45°,∴tan∠CDE=1,∴tan∠BDC=1;(3)tan∠D1C1B恒为定值,理由如下:由题意,抛物线W1的解析式为,设点D1的坐标为(t,0),其中t<0,∴,∴,∴,∵点C1是直线BC与抛物线W1的交点,∴,解得,,∵点C1是直线BC与抛物线W1的交点,且t<0,∴点C1的坐标为(2﹣t,2﹣2t),过C1作C1E1⊥x轴于点E1,∴C1E1=2﹣2t,OE1=2﹣t,∴D1E1=D1O+OE1=2﹣t+(﹣t)=2﹣2t,∴C1E1=D1E1,∴Rt△C1D1E1为等腰直角三角形,∴∠C1D1E1=45°,由(2)知∠BDC=45°.∴∠C1D1E1=∠BDC,∴D1C1∥DC,∴∠D1C1B=∠DCB,∴tan∠D1C1B=tan∠DCB,∴tan∠D1C1B恒为定值.如图2,过B作BF⊥DC于点F,∵∠BDC=45°,∴Rt△BDF为等腰直角三角形,∵BD=OD+OB=3,DF=BF=,由(1)知,DC=6,FC=DC﹣DF=,∴在Rt△BFC中,有tan FCB==,∴tan∠D1C1B=.3.解:(1)物线y=ax2+2x+c与y轴交于点A(0,6),则c=6,将点B(6,0)代入函数表达式得:0=36a+12+6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,∴函数的对称轴为:x=2,顶点坐标为(2,8);(2)设点M(m,n),n=﹣m2+2m+6,点N(s,0),①当AB是平行四边形的一条边时,点A向右、向下均平移6个单位得到B,同理点N右、向下均平移6个单位得到M,故:s+6=m,0﹣6=n,解得:m=2±2,故点M的坐标为(2﹣2,﹣6)或(2+2,﹣6);②当AB是平行四边形的对角线时,则AB的中点即为MN的中点,则s+m=6,n+0=6,解得:m=4,故点M的坐标为(4,6),综上,点M的坐标为(2﹣2,﹣6)或(2+2,﹣6)或(4,6).(3)如下图,过点P作PG∥y轴交AB于点G,作PH⊥AB交于点H,∵OA=OB=6,则∠OAB=∠OBA=45°,∵PG∥y轴,则∠PGH=∠OAB=45°,直线AB的表达式为:y=﹣x+6,设点P(x,﹣x2+2x+6),则G(x,﹣x+6),d=PH=PG=(﹣x2+2x+6+x﹣6)=(﹣x2+3x),当x=3时,d取得最大值,此时点P(3,).4.解:(1)抛物线的表达式为:y=ax2,将点A坐标代入上式得:=a(2)2,解得:a=,故抛物线的表达式为:y=x2;(2)将抛物线的表达式与直线y=kx+1联立并整理得:x2﹣4kx﹣4=0,则x1+x2=4k,x1x2=﹣4,则y1+y2=k(x1+x2)+2=4k2+2,则x2﹣x1==4,设直线BC的倾斜角为α,则tanα=k,则cosα=,则BC==4(k2+1),BC=2k2+2,设BC的中点为M(2k,2k2+1),则点M到直线l的距离为:2k2+2,故直线l总是与以BC为直径的圆相切;(3)①设点P(m,m2)、点M(m,﹣1),点F(0,1),则PF2=m2+(m2﹣1)2=(m2+4)2,PM=m2+1=(m2+4)=PF,即:PM与PF之间的数量关系为:PM=PF;②抛物线新抛物线的表达式为:y=(x﹣2)2…①,如图2,设平移后点F的对应点为F′(2,1),由①知:PM=PF,同理QN=QF′,故当A、F′、Q三点共线时,|QA﹣QN|有最大值,|QA﹣QN|的最大值=|QA﹣QF′|=AF′,则AF′==;将点A、F′的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AF′的表达式为:y=x﹣…②,联立①②并解得:x=1或6(舍去1),故点Q(6,4);故:|QA﹣QN|的最大值为,此时点Q的坐标为(6,4).5.解:(1)y=ax2+2ax﹣3a=a(x+1)2﹣4a,∵抛物线的顶点D的纵坐标为4,∴﹣4a=4,解得a=﹣1.故抛物线的解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)∵当x=0时,y=3,∴C(0,3),①以AC为对角线,∵点M在抛物线y=ax2+2ax﹣3a的图象上,点N在x轴上,以A、C、M、N为顶点的四边形是平行四边形,∴点M的纵坐标为3,∴﹣x2﹣2x+3=3,解得x1=0,x2=﹣2.故点M的坐标为(﹣2,3);②以AC为对角线,点M的坐标为(﹣2,3);③以AN为对角线,点M的坐标为(﹣1﹣,﹣3),(﹣1+,﹣3).综上所述,点M的坐标为(﹣2,3),(﹣1﹣,﹣3),(﹣1+,﹣3);(3)EF+EG=8(或EF+EG是定值),理由如下:过点P作PQ∥y轴交x轴于Q,如图.设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,AQ=3+t,QB=1﹣t,∵PQ∥EF,∴△AEF∽△AQP,∴=,∴EF===×(﹣t2﹣2t+3)=2(1﹣t);又∵PQ∥EG,∴△BEG∽△BQP,∴=,∴EG===2(t+3),∴EF+EG=2(1﹣t)+2(t+3)=8.6.解:(1)点P(2,1)的“坐标差”=1﹣2=﹣1,故答案为:﹣1.(2)一次函数y=2x+1的图象上点的坐标差为:y﹣x=2x+1﹣x=x+1,函数y=x+1是增函数,当﹣2≤x≤3时,x=3,y的最大值=4,∴一次函数y=2x+1(﹣2≤x≤3)的“特征值”:4.(3)y=﹣x2+bx+c(bc≠0)交y轴于点B,∴点B(0,c)点A与点B的“坐标差”相等,∴点A(﹣c,0),∴﹣(﹣c)2+b(﹣c)+c=0,∵bc≠0,∴c+b=1,∵y=﹣x2+bx+c(bc≠0)“特征值”为﹣1即函数y=﹣x2+bx+1﹣b﹣x═﹣x2+(b﹣1)x+(1﹣b)的最大值为﹣1∴解得b=3,∴c=﹣2∴y=﹣x2+3x﹣2,∴.∴当m≤x≤m+3时,此函数的最大值为﹣2m,Ⅰ.若m≤≤m+3时,则x=时,函数的最大值为,依题意得:﹣2m=,解得m=;Ⅱ.若m>时,x=m,函数取最大值为:y=﹣m2+3m﹣2,依题意得:﹣m2+3m﹣2=﹣2m,解得:m=<(舍去),m=,Ⅲ.若m+3<,即m<﹣时,x=m+3,函数取最大值为:y=﹣(m+3)2+3(m+3)﹣2=﹣m2﹣3m﹣2.依题意得:﹣m2﹣3m﹣2=﹣2m,此方程无实数解.综上所述:m=或m=,7.解:(1)y=x2﹣4x+5=(x﹣2)2+1,即顶点坐标为(2,1),当x=2时,y=﹣3x+5=﹣1≠1,故一次函数y=﹣3x+5和二次函数y=x2﹣4x+5不是“丘比特函数组”;(2)设:二次函数的顶点为:(m,m+2),将顶点坐标代入二次函数y=2x2﹣3x﹣4得:m+2=2m2﹣3m﹣4,解得:m=3或﹣1,当m=3时,函数顶点为(3,5),一次函数y=x+2与y轴的交点为:(0,2),则二次函数表达式为:y=a(x﹣3)2+5=a(x2﹣6x+9)+5,即:9a+5=2,解得:a=﹣,故:抛物线的表达式为:y=﹣x2+2x+2;同理当m=﹣1时,抛物线的表达式为:y=x2+2x+2,综上,抛物线的表达式为:y=﹣x2+2x+2或y=x2+2x+2;(3)是定值,理由:令y=x2﹣2x﹣4=0,则x=1±,故当﹣3≤x≤﹣1时,x=﹣1时函数取得最小值,即a=1+2﹣4=﹣1,设抛物线的顶点为P(m,2m+3),则“丘比特函数组”另外一个交点为Q(x,y),则抛物线的表达式为:y=a(x﹣m)2+(2m+3)=﹣(x﹣m)2+(2m+3),由题意得:﹣(x﹣m)2+(2m+3)=2x+3,整理得:x2+(2﹣2m)x+(m2﹣2m)=0,由韦达定理得:x+m=2m﹣2,解得:x=m﹣2,故点Q(m﹣2,2m﹣1),则PQ==2,为定值.8.解:(1)由A(﹣1,0)可知OA=1,∵OB=OC=3OA,∴OB=OC=3,∴C(0,﹣3),B(3,0).设抛物线的解析式(交点式)为y=a(x+1)(x﹣3),则﹣3a=﹣3,解得:a=1,则抛物线的解析式是y=(x+1)(x﹣3)=x2﹣2x﹣3,(2)存在.①当以C为直角顶点时,过点C作CP1⊥BC,交抛物线于点P1,过点P1作y轴的垂线,垂足是M,如图1.∵∠BCP1=90°,∴∠MCP1+∠BCO=90°.∵∠BCO+∠OBC=90°,∴∠MCP1=∠OBC.∵OA=OC,∴∠MCP1=∠OBC=45°,∴∠MCP1=∠MP1C,∴MC=MP1,设P(m,m2﹣2m﹣3),则﹣3﹣m=m2﹣2m﹣3,解得:m1=0(舍去),m2=1.∴m=1,此时m2﹣2m﹣3=﹣4,∴P1的坐标是(1,﹣4).②当点B为直角顶点时,过B作BP2⊥BC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,BP交y轴于点F,如图1.∴P2N∥x轴,由∠CBO=45°得∠OBP2=45°,∴∠FP2N=45°,BO=OF.∴P2N=NF,设P2(﹣n,n2+2n﹣3),则3+n=n2+2n﹣3解得:n1=2,n2=﹣3(舍去),∴n=2,此时n2+2n﹣3=5,∴P2的坐标是(﹣2,5).综上所述:P的坐标是(1,﹣4)或(﹣2,5);(3)当EF最短时,点P的坐标是(,﹣)或(,﹣).解题过程如下:连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短可得:当OD⊥BC时,OD(即EF)最短.由(1)可知,在直角△BOC中,OC=OB=3.根据等腰三角形的性质可得:D是BC的中点.∴EF=OD===,又∵DF∥OC,∴△BFD∽△BOC,∴,∴DF=OC=,∴点D的纵坐标是﹣,∴点P的纵坐标也是,解x2﹣2x﹣3=﹣得,x1=,x2=,∴点P的坐标为(,﹣)或(,﹣).此时EF长为最小值=.9.解:(1)直线y=x+3经过A,C两点,则点A、C的坐标分别为(﹣3,0)、(0,3),将点A、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2﹣2x+3;(2)①令y=﹣x2﹣2x+3=0,则x=﹣3或1,即点B(1,0),当AH=BD时,AD+AH=AD+BD,当A、B、D三点共线时,AD+AH=AD+BD最小,最小值为:AB=1﹣(﹣3)=4,答:AD+AH的最小值为4;②当OC=3OD时,OD=1,AD=,则tan∠ADO=,则sinα=,当点P在y轴上方时,如下图,过点P作△APD的高PH,交AD的延长线与点H,设:PH=m,∵∠P AD=45°,则AH=m,tan∠PDH==tanα=3,解得:m=,PD===5,故点P(0,6);当点P在y轴下方时,如下图所示,同理可得:DP′=故:点P(0,﹣);综上,点P(0,6)或(0,﹣)10.解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,把A(﹣1,0),C(0,3)代入解析式得,∴,解得b=2,c=3.故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,则,解得:,故直线BC的解析式为y=﹣x+3;∴设P(t,3﹣t),∴D(t,﹣t2+2t+3),∴PD=(﹣t2+2t+3)﹣(3﹣t)=﹣t2+3t,∵OB=OC=3,∴△BOC是等腰直角三角形,∴∠OCB=45°,当CD=PC时,则∠CPD=∠CDP,∵PD∥y轴,∴∠CPD=∠OCB=45°,∴∠CDP=45°,∴∠PCD=90°,∴直线CD的解析式为y=x+3,解得或,∴D(1,4),此时P(1,2);当CD=PD时,则∠DCP=∠CPD=45°,∴∠CDP=90°,∴CD∥x轴,∴D点的纵坐标为3,代入y=﹣x2+2x+3得,3=﹣x2+2x+3,解得x=0或x=2,此时P(2,1);当PC=PD时,∵PC=t,∴t=﹣t2+3t,解得t=0或t=3﹣,此时P(3﹣,);综上,当△CDP为等腰三角形时,点P的坐标为(1,2)或(2,1)或(3﹣,).(3)CN+MN+MB的最小值为,N坐标为(1,3﹣),M坐标为(,0).理由如下:如图,取G点坐标为(0,﹣),连接BG,∵B(3,0),∴直线BG解析式为:y=,∴tan∠GBO=,∴∠GBO=30°,过M点作MB′⊥BG,∴,∴CN+MN+MB=CN+MN+B′M,∴CN+MN+MB取最小值时,C、M、N、B′在同一条直线上,即CB′⊥BG,设直线CB′解析式为,∵C(0,3)故直线CB′解析式为为,∵抛物线的顶点为E坐标为(1,4),EF⊥x轴,N在EF、CB′上,∴N坐标为(1,3﹣),M(m,0)是x轴一个动点,也是CB′与x轴交点,∴M(,0).∵CG=3+,∠CGB=60°,∴CB′=CG sin∠CGB=(3+)×=,综上所述:CN+MN+MB的最小值为,N坐标为(1,3﹣),M坐标为(,0).11.解:(1)∵抛物线y=ax2+bx+c经过原点,且对称轴为x=﹣2,∴c=0,OA=4,又△AOB的面积为2,∴BC=1,即顶点B的坐标为(﹣2,﹣1),∴,,解得a=,b=1,∴抛物线的解析式为;(2)∵BC=1,AC=2,∴tan∠BAC=,设P点坐标为(x,),如图1,当点P在y轴右侧,PM=﹣(﹣2)=,MN=x,∴tan∠MPN==,即x2﹣4x+8=0,此方程无解;如图2,当点P在y轴左侧,此时PM=,MN=﹣x,∴tan∠MPN==,即x2+12x+8=0,解得,,则,,∴点P坐标为(,)或(,);(3)①如图3,过点P作PD⊥BC于点D,则PD=x+2,DC=,由(2)知PM=,在Rt△PCD中,PC2===PM2,∴PM=PC;②由①知,PM=PC,∴PQ+PC的最小值为PQ+PM的最小值,当Q、P、M三点共线时,PQ+PM有最小值为4.∴PQ+PC的最小值为4.12.解:(1)∵抛物线顶点为(1,4)∴设顶点式y=a(x﹣1)2+4∵点B(3,0)在抛物线上∴a(3﹣1)2+4=0解得:a=﹣1∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3(2)x轴上存在点H使D,G,H,F四点所围成的四边形周长最小.如图,作点F关于x轴对称的对称点F',连接EF'∵x=0时,y=﹣x2+2x+3=3∴D(0,3)∵当y=0时,﹣x2+2x+3=0解得:x1=﹣1,x2=3∴A(﹣1,0)∵点E在抛物线上且横坐标为2∴y E=﹣22+2×2+3=3∴E(2,3)∴点D、E关于对称轴对称∴DG=EG设直线AE解析式为y=kx+e∴解得:∴直线AE:y=x+1∴F(0,1)∴F'(0,﹣1),HF=HF',DF=3﹣1=2∴C四边形DGHF=DF+DG+GH+FH=DF+EG+GH+F'H∴当点E、G、H、F'在同一直线上时,C四边形DGHF=DF+EF'最小∵EF'=∴C四边形DGHF=2+2设直线EF'解析式为y=mx﹣1∴2m﹣1=3∴m=2∴直线EF':y=2x﹣1当y=0时,解得x=∴H(,0)当x=1时,y=2﹣1=1∴G(1,1)∴四边形DGHF周长最小值为2+2,点G坐标为(1,1),点H坐标为(,0).13.解:(1)抛物线与x轴交于A(﹣1,0)、B(3,0)∴设交点式为y=a(x+1)(x﹣3)∵抛物线经过点D(2,3)∴a(x+1)(x﹣3)=3解得:a=﹣1∴抛物线表达式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴向下平移后新抛物线为y=﹣(x﹣1)2,顶点G(1,0),即抛物线向下平移4个单位∵原抛物线上一点M平移后的对应点为点N∴MN=4,MN⊥x轴∵△AMN是以MN为底边的等腰三角形,且点A在x轴上∴x轴垂直平分MN∴N的纵坐标为﹣2∴﹣(x﹣1)2=﹣2解得:x1=1+,x2=1﹣∴点N坐标为(1+,﹣2)或(1﹣,﹣2)(3)作点D关于y轴的对称点点D',连接D'Q,取OB中点F,连接D'F∵D(2,3),点Q为y轴上的动点∴D'(﹣2,3),QD=QD'∴当点D'、Q、E在同一直线上时,QE+QD=QE+QD'=ED'最小∵BE⊥OP于点E,P为抛物线上第一象限内的动点∴∠OEB=90°∴点E在以OB为直径的圆在第一象限内的弧上运动∵圆心F(,0),r=∴当点E在线段D'F上时,D'E=D'F﹣EF=﹣=最小∴QE+QD的最小值为.。
专题14 动点最值之胡不归模型例题1. 如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD BD 的最小值是_______.例2.如图,△ABC 在直角坐标系中,AB =AC,C (1,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A→D→C ,点P 在AD 上的运动速度是在CD 上的3倍,要使整个运动时间最少,则点D 的坐标应为( )A .(0,) B .(0) C .(0) D .(0)例3.如图,抛物线y =x 2﹣2x ﹣3与x 轴交于A 、B 两点,过B 的直线交抛物线于E ,且tan ∠EBA=,有一只蚂蚁从A 出发,先以1单位/s 的速度爬到线段BE 上的点D 处,再以1.25单位/s 的速度沿着DE 爬到E 点处觅食,则蚂蚁从A 到E 的最短时间是 s .AB CDE【变式训练1】如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB的最小值等于________.【变式训练2】如图,在△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是.【变式训练3】如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则的最小值等于________.A BCDP课后训练1.如图,在Rt△ABC中,△ACB=90°,△B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE△CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A.B.C.D.2.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+BD的最小值为()A.B.C.D.3.如图,在平面直角坐标系中,二次函数y=ax2+bx+cC(2,0),其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接PD,则+PD的最小值为;(3)M(x,t)为抛物线对称轴上一动点①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有个;②连接MA,MB,若∠AMB不小于60°,求t的取值范围.4.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)证明:CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,CD+OD的最小值为6时,求⊙O的直径AB的长.5.如图,已知抛物线y=x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?。
2023年中考数学高频考点专题训练--二次函数与动态几何综合题1.如图,已知抛物线y=−43x2+bx+c经过A(0,4),B(3,0)两点,与x轴负半轴交于点C,连接AC、AB.(1)求该抛物线的解析式;(2)D、E分别为AC、AB的中点,连接DE,P为DE上的动点,PQ⊥BC,垂足为Q,QN⊥AB,垂足为N,连接PN.①当△PQN与△ABC相似时,求点P的坐标;②是否存在点P,使得PQ=NQ,若存在,直接写出点P的坐标,若不存在,请说明理由.2.如图,抛物线y= 12x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A、B,且B点的坐标为(2,0).(1)求抛物线的解析式;(2)若点P是AB上的一个动点,过点P作PE∥AC交BC于点E,连接CP,求∥PCE面积最大时P点的坐标;(3)在(2)的条件下,若点D为OA的中点,点M是线段AC上一点,当∥OMD为等腰三角形时,连接MP、ME,把∥MPE沿着PE翻折,点M的对应点为点N,直接写出点N的坐标.3.已知抛物线y=−12x2+mx+m+12与x轴交于点A,B(点A在点B的左侧),与y轴交于点C(0,−52),点P为抛物线在直线AC上方图象上一动点.(1)求抛物线的解析式;(2)求∥PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线y=−12x2+mx+m+12在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个交点,求图象M的顶点横坐标n的取值范围.4.如图,抛物线y= −14x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,52).直线y=kx−32过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y= −14x2+bx+c与直线y=kx −32的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE∥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN∥AD于点N,设∥PMN的周长为l,点P的横坐标为x,求l与x 的函数关系式,并求出l的最大值.5.如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)当点P是直线BC下方的抛物线上一点,且S∥PBC=2S∥ABC时,求点P的坐标;(3)点P(﹣2,﹣3),点E是抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点E和点F,使得以点B、P、E、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.6.如图,抛物线y=ax2+bx+2交x轴于点A(-3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(-1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使∥MNO为等腰直角三角形,且∥MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.7.已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,点O为坐标原点,点A在第一象限,点B在x轴正半轴上,AO=AB,OB=4,tan∥AOB=2,点C是线段OA的中点.(1)求点C的坐标;(2)若点P是x轴上的一个动点,使得∥APO=∥CBO,抛物线y=ax2+bx经过点A、点P,求这条抛物线的函数解析式;(3)在(2)的条件下,点M是抛物线图象上的一个动点,以M为圆心的圆与直线OA相切,切点为点N,点A关于直线MN的对称点为点D.请你探索:是否存在这样的点M,使得∥MAD∥∥AOB?若存在,请直接写出点M的坐标;若不存在,请说明理由.9.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中点A在y轴的左侧,点C 在x轴的下方,且OA=OC=5.(1)求抛物线对应的函数解析式;(2)点P为抛物线对称轴上的一动点,当PB+PC的值最小时,求点P的坐标;(3)在(2)条件下,点E为抛物线的对称轴上的动点,点F为抛物线上的动点,以点P、E、F 为顶点作四边形PEFM,当四边形PEFM为正方形时,请直接写出坐标为整数的点M的坐标.10.综合与探究如图,已知抛物线y=ax2+2x+c(a≠0)与x轴负半轴交于点A(−1,0),与y轴交于点C(0,3),抛物线的顶点为D,直线y=x+b与抛物线交于A,F两点,过点D作DE∥y轴交直线AF于点E.(1)求抛物线和直线AF的解析式;(2)在直线AF上方的抛物线上有一点P,使S△PAE=3S△PDE,求点P的坐标;(3)若点M为抛物线上一动点,试探究在直线AF上是否存在一点N,使得以D,E,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的对称轴为x=2,与y轴交于点A与x轴交于点E、B,且点A(0,5),B(5,0),过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的点,且在AC的上方,作PD平行于y轴交AB于点D.(1)求二次函数的解析式;(2)当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)在抛物线上是否存在点Q,使得以点A、C、D、Q为顶点的四边形为平行四边形,如果存在,请写出点Q,D的坐标,如果不存在,请说明理由.12.如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.13.已知抛物线y=−12x2+32x+2,与x轴交于两点A,B(点A在点B的左侧),与y轴交于点C.(1)求点A,B和点C的坐标;(2)已知P是线段BC上的一个动点.①若PQ⊥x轴,交抛物线于点Q,当BP+PQ取最大值时,求点P的坐标;②求√2AP+PB的最小值.14.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DE ⊥x轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.15.如图,抛物线y=12x2+32x+2与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求点A、B、C的坐标.(2)点P为AB上的动点(点A、O、B除外),过点P作直线PN∥x轴,交抛物线于点N,交直线BC于点M.设点P到原点的值为t,MN的长度为s,求s与t的函数关系式.(3)在(2)的条件下,试求出在点P运动的过程中,由点O、P、N围成的三角形与Rt∥COB 相似时点P的坐标.16.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM∥x轴,垂足为点M,PM交BC于点Q.(1)求此抛物线的表达式:(2)过点P作PN∥BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由.答案解析部分1.【答案】(1)解:将A(0,4),B(3,0)代入抛物线的解析式得:{c=4−12+3b+c=0,解得:b=83,c=4.∴抛物线的解析式为:y=−43x2+83x+4.(2)解:①如图1所示:∵令y=0,−43x2+83x+4=0解得:x1=−1,x2=3,∴C(−1,0).∴BC=4,AB=√32+42=5.∵D、E分别为AC、AB的中点,∴DE//BC.∴ADDC=AFFO=1.∴PQ=FO=2.∵PQ⊥BC,QN⊥AB,∴∠PQN+∠NQB=90°,∠NQB+∠QBN=90°.∴∠PQN=∠QBN.∴当PQQN=ABCB或POQN=CBAB时,△PQN与△ABC相似.∵当PQQN=ABCB时,2QN=54,解得:QN=8 5.∵QNQB=OAAB=45,∴QB=54QN=54×85=2.∴OQ=3−2=1.∴点P的坐标为(1,2).当PQQN=CBAB时,2QN=45,解得:QN=2.5.∵QNQB=OAAB=45,∴QB=54QN=54×52=258.∴OB−BQ=−1 8,∴点P的坐标为(−18,2).综上所述点P的坐标为:(1,2)或(−18,2).②如图2所示:∵PQ=QN,PQ=2,∴QN=2.∵QN⊥AB,∴∠QNB=90°,∵由(2)可知OA=4,AB=5,∴sin∠ABO=4 5.∴QNQB=45,即2QB=45,解得:QB=52.∴OQ =OB −QB =3−52=12. ∴P(12,2) .2.【答案】(1)解:根据题意得:{c =−42+2b +c =0 , 解得: {b =1c =−4,所以该抛物线的解析式为:y= 12x 2+x ﹣4;(2)解:令y=0,即 12 x 2+x ﹣4=0,解得x 1=﹣4,x 2=2,∴A (﹣4,0),S ∥ABC = 12 AB•OC=12设P 点坐标为(x ,0),则PB=2﹣x . ∵PE∥BC ,∴∥BPE=∥BAC ,∥BEP=∥BCA , ∴∥PBE∥∥BAC ,∴S △PBE S △ABC=( PB AB )2,即 S△PBE 12 =( 2−x 6 )2,化简得:S ∥PBE = 13(2﹣x )2. S ∥PCE =S ∥PCB ﹣S ∥PBE = 12 PB•OC ﹣S ∥PBE = 12 ×(2﹣x )×4﹣ 13 (2﹣x )2=﹣ 13 x 2﹣ 23 x+ 83 =﹣ 13 (x+1)2+3∴当x=﹣1时,S ∥PCE 的最大值为3. (3)解:由(2)已知A (﹣4,0), ∵点D 为0A 中点, ∴D (﹣2,0),设直线AC 的解析式为y=mx+n ,把A (﹣4,0)、C (0,﹣4)分别代入得: {−4m +n =0n =−4 ,解得 {m =−1n =−4 ,∴直线AC 的解析式为y=﹣x ﹣4.∵PE∥AC ,所以可设直线PE 的解析式为y=﹣x+a , 将P (﹣1,0)代入y=﹣x ﹣a 得a=﹣1,所以直线PE 的解析式为y=﹣x ﹣1. 设直线BC 的解析式为y=kx+a′,将B (2,0)、C (0,﹣4)代入y=kx+a′得 {2k +a′=0a′=−4 ,解得k=2,a′=﹣4.所以直线BC 的解析式为y=2x ﹣4.由2x ﹣4=﹣x ﹣1得x=1,将x=1代入y=2x ﹣4得y=﹣2, ∴E 点坐标为(1,﹣2). ①当MD=OD 时,如图1:∵AD=MD=AD ,OA=OC ,∥DAM=∥OAC , ∴∥ADM∥∥AOC ,∴∥ADM=∥AOC=90°,即DM∥x 轴,∴M 的横坐标为﹣2,将x=﹣2代入y=﹣x ﹣4,得y=﹣2. 所以此时M 的坐标为(﹣2,﹣2); ∵M 和E 点纵坐标相等, ∴ME∥x 轴, ∴∥PEM=45°.由翻折得∥ENM=2∥PEM=90°,即NE∥y 轴, ∴EN=ME=3, ∵E (1,﹣2), ∴N (1,1).②当DM=OM 时,过点M 作MG∥x 轴交于点,如图2:易知DG=OG=1,即G点与P点重合,M的横坐标为﹣1,将x=﹣1代入y=﹣x﹣4,得y=﹣3.∴M(﹣1,﹣3).∵ME= √(−1−1)2+(−3+2)2= √5,EB= √(1−2)2+22= √5,∴ME=EB,∵PB=3,PM=3,即PB=PM,又∵PE=PE,∴∥BPE∥∥MPE,∴∥BEP=∥MEP,∴点N与点B重合,∴N(2,0);③当OD=OM时,设点O到AC的最短距离为h,则OA•OC=h•AC∵AC= √OA2+OC2= √42+42=4 √2,∴h= 4×44√2=2 √2,∵h>OD,∴OD≠OM.此时等腰∥OMD不存在.综上所述,N点的坐标分别为(1,1)或(2,0).3.【答案】(1)解:将点C(0,−52)代入抛物线解析式得:m+12=−52,解得:m=−3,∴抛物线解析式为:y=−12x2−3x−52;(2)解:∵抛物线与x轴交于A、B两点,∴令0=−12x2−3x−52,解得:x1=−5,x2=−1,∴A、B坐标分别为:A(−5,0),B(−1,0),设直线AC的解析式为:y=kx+b(k≠0),将A(−5,0)和C(0,−52)代入得:{−5k+b=0b=−52,解得:{k=−12b=−52,∴直线AC的解析式为:y=−12x−52,如图所示,过P点作PQ∥x轴,交AC于Q点,∵P点在位于直线AC上方的抛物线上,∴设P(a,−12a2−3a−52),则Q(a,−12a−52),其中−5<a<0,∴PQ=y P−y Q=−12a2−3a−52−(−12a−52)=−12a2−52a,∵S△PAC=12PQ(x C−x A),∴S△PAC=12(−12a2−52a)×[0−(−5)]=−54(a+52)2+12516,∵−54<0,∴抛物线开口向下,当a=−52时,S△PAC取得的最大值,最大值为12516,此时,将a=−52代入抛物线解析式得:y=158,∴当P(−52,158)时,S△PAC取得的最大值,最大值为12516;(3)解:如图所示,抛物线y=−12x2+mx+m+12在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G .由(1)可知,原抛物线顶点坐标为(−3,2),∴沿x 轴向下翻折后,图象G 的顶点坐标为(−3,−2),图象G 的解析式为:y =12x 2+3x +52;∵图象G 沿着直线AC 平移,∴作直线BS∥AC ,交PC 于S 点,则随着平移过程,点B 在直线BS 上运动, 分如下情况讨论:①当图象G 沿直线AC 平移至B 点恰好经过S 点时,如图中M 1所示, 此时,平移后的图象M 恰好与线段PC 有一个交点,即为S 点,由(2)知,P(−52,158),以及直线AC 的解析式为y =−12x −52,∴设直线BS 的解析式为:y =−12x +b ,将B(−1,0)代入得:b =−12,∴直线BS 的解析式为:y =−12x −12;设直线PC 的解析式为:y =kx +b(k ≠0),将P(−52,158),C(0,−52)代入得:{−52k +b =158b =−52,解得:{k =−74b =−52,∴直线PC 的解析式为:y =−74x −52;联立{y =−12x −12y =−74x −52,解得:{x =−85y =310,即:S 点的坐标为S(−85,310),∴此时点B(−1,0)平移至S(−85,310),等同于向左平移35个单位,向上平移310个单位,即:当平移后的图象M 与线段PC 恰好仅有一个交点时,可由原图像G 向左平移35个单位,向上平移310个单位, ∵原图像G 的顶点坐标为:(−3,−2), ∴平移后图象M 1的顶点的横坐标n =−3−35=−185; ②当图象G 沿直线AC 平移至恰好经过C 点时,如图中M 2所示,设图象G 与直线AC 的交点为R ,联立{y =12x 2+3x +52y =−12x −52,解得:{x =−5y =0或{x =−2y =−32, ∴点R 的坐标为:R(−2,−32),由R(−2,−32)平移至C(0,−52),等同于向右平移2个单位,向下平移1个单位,∴当平移后的图象M 与线段PC 恰好仅有一个交点时,可由原图像G 向右平移2个单位,向下平移1各单位,∵原图像G 的顶点坐标为:(−3,−2),∴平移后图象M 2的顶点的横坐标n =−3+2=−1;∴当图象G 在M 1和M 2之间平移时,均能满足与线段PC 有且仅有一个交点, 此时,图象M 的顶点横坐标n 的取值范围为:−185≤n ≤−1; ③当图象G 沿直线AC 平移至A 点恰好经过C 点时,如图中M 3所示,此时,由A(−5,0)平移至C(0,−52),等同于向右平移5个单位,向下平移52个单位,即:原图像G 向右平移5个单位,向下平移52个单位,得到图象M 3,∵原图像G 的顶点坐标为:(−3,−2),∴平移后图象M 3的顶点的横坐标n =−3+5=2;综上所述,当新的图象M 与线段PC 只有一个交点时,图象M 的顶点横坐标n 的取值范围为:−185≤n ≤−1或n =2. 4.【答案】(1)解:∵y= −14x 2+bx+c 经过点A (2,0)和B (0, 52 ),∴由此得 {−1+2b +c =0c =52, 解得 {b =−34c =52. ∴抛物线的解析式是y= −14x 2﹣ 34 x+ 52 ,∵直线y=kx ﹣ 32 经过点A (2,0)∴2k ﹣ 32 =0,解得:k= 34,∴直线的解析式是y= 34 x ﹣ 32(2)解:设P 的坐标是(x , −14 x 2﹣ 34 x+ 52 ),则M 的坐标是(x , 34 x ﹣ 32 )∴PM=( −14 x 2﹣ 34 x+ 52 )﹣( 34 x ﹣ 32 )=﹣ 14 x 2﹣ 32 x+4,解方程 {y =−14x 2−34x +52y =34x −32得: {x =−8y =−712, {x =2y =0 , ∵点D 在第三象限,则点D 的坐标是(﹣8,﹣7 12 ),由y= 34 x ﹣ 32得点C 的坐标是(0,﹣32), ∴CE=﹣ 32 ﹣(﹣7 12)=6,由于PM∥y 轴,要使四边形PMEC 是平行四边形,必有PM=CE ,即﹣ 14 x 2﹣ 32 x+4=6解这个方程得:x 1=﹣2,x 2=﹣4, 符合﹣8<x <2,当x=﹣2时,y=﹣ 14 ×(﹣2)2﹣ 34 ×(﹣2)+ 52=3,当x=﹣4时,y=﹣ 14 ×(﹣4)2﹣ 34 ×(﹣4)+ 52= 32 ,因此,直线AD 上方的抛物线上存在这样的点P ,使四边形PMEC 是平行四边形,点P 的坐标是(﹣2,3)和(﹣4, 32) (3)解:在Rt∥CDE 中,DE=8,CE=6 由勾股定理得:DC= √82+62 ∴∥CDE 的周长是24, ∵PM∥y 轴, ∵∥PMN=∥DCE , ∵∥PNM=∥DEC , ∴∥PMN∥∥CDE ,∴△PMN 的周长△CDE 的周长 = PM DC ,即 l 24 = −14x 2−32x+410, 化简整理得:l 与x 的函数关系式是:l=﹣ 35 x 2﹣ 185 x+ 485,l=﹣ 35 x 2﹣ 185 x+ 485 =﹣ 35(x+3)2+15,∵﹣ 35<0,∴l 有最大值,当x=﹣3时,l 的最大值是15.5.【答案】(1)解:∵y =ax 2+bx+2(a≠0)与x 轴交于A (﹣1,0)、B (4,0), ∴{a −b +2=016a +4b +2=0 ,解得 {a =−12b =32 , ∴抛物线的解析式为:y =−12 x 2+32x+2.(2)解:∵A (﹣1,0)、B (4,0), ∴AB =5,由抛物线的解析式可得,C (0,2),∴OC =2,l BC :y =−12x+2.∴S ∥PBC =2S ∥ABC =2 ×12•AB•OC =5×2=10.在x 轴上取点M (﹣6,0),则MB =10,∴S ∥MBC =12 •MB•OC =12×2×10= 10.过点M 作BC 的平行线MN ,交抛物线于点P 1,P 2,∴l MN :y =−12 x ﹣3.联立 {y =−12x 2+32x +2y =−12x −3, 解得 {x =2+√14y =−4−√142 ,或 {x =2−√14y =−4+√142,∴P 1(2 +√14 ,﹣4 −√142 ),P 2(2 −√14 ,﹣4 +√142).(3)解:由抛物线解析式可得,抛物线对称轴为直线x =32.∵点F 是抛物线对称轴上一点, ∴设点F 的坐标为( 32,t ).若以点B 、P 、E 、F 为顶点的四边形是平行四边形,需要分以下两种情况: ①当BP 为边时,如图,由平行四边形的性质可知,E1(32+6,t+3),E2(32−6,t﹣3),∵点E在抛物线y =−12x2+32x+2上,∴t+3 =−12×(32+6)2+32×(32+6)+2,解得t =−1438,t﹣3 =−12×(32−6)2+32×(32−6)+2,解得t =−1378,∴F的坐标为(32,−1438)或(32,−1378).②当BP为对角线时,BP的中点为(1,−3 2),∵F(32,t),∴E(−12,﹣t﹣3),∴﹣t﹣3 =−12×(−12)2+32×(−12)+2,解得t =−338,∴F(32,−338).综上,点F的坐标为(32,−1438)或(32,−1378)或(32,−338).6.【答案】(1)解:抛物线的表达式为:y=a(x+3)(x-1)=a(x2+2x-3)=ax2+2ax-3a,即-3a=2,解得:a=- 2 3,故抛物线的表达式为:y=- 23x2- 43x+2,则点C(0,2),函数的对称轴为:x=1(2)解:连接OP,设点P(x,- 23x2- 43x+2),则S=S四边形ADCP=S∥APO+S∥CPO-S∥ODC= 12×AO×y P+ 12×OC×|x P|- 12×CO×OD = 12×3×(- 23x2- 43x+2) +12×2×(-x)- 12×2×1=-x2-3x+2,∵-1<0,故S有最大值,当x=- 32时,S的最大值为174(3)解:存在,理由:∥MNO为等腰直角三角形,且∥MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N1的情况(∥M1N1O):设点N1的坐标为(x,- 23x2- 43x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∥FN1O+∥M1N1E=90°,∥M1N1E+∥EM1N1=90°,∴∥EM1N1=∥FN1O,∥M1N1E=∥N1OF=90°,ON1=M1N1,∴∥M1N1E∥∥N1OF(AAS),∴M1E=N1F,即:x+1=- 23x2- 43x+2,解得:x=−7±√734(舍去负值),则点N1( −7+√734,−3+√734);N2的情况(∥M2N2O):同理可得:点N 2( −1−√734 , −3+√734); ②当点N 在x 轴下方时,点N 的位置为N 3、N 4,同理可得:点N 3、N 4的坐标分别为:( −7−√734 , −3−√734 )、( −1+√734 , −3−√734); 综上,点N 的坐标为:( −7+√734 , −3+√734 )或( −1−√734 , −3+√734 )或( −7−√734, −3−√734 )或( −1+√734 , −3−√734). 7.【答案】(1)解:令 4x −12=2x 2−8x +6 ,解得 x 1=x 2=3 ,当 x =3 时, 4x −12=2x 2−8x +6=0 ,∴y =ax 2+bx +c 必过 (3,0) ,又∵y =ax 2+bx +c 必过 (−1,0) ,∴{a −b +c =09a +3b +c =0,⇒,{b =−2a c =−3a, ∴y =ax 2−2ax −3a ,即 4x −12≤ax 2−2ax −3a ,即可看成二次函数 y =ax 2−2ax −3a 与一次函数 y =4x −12 仅有一个交点,且整体位于 y =4x −12 的上方∴a >0 ,∴ 4x −12=ax 2−2ax −3a 有两个相等的实数根∴ Δ=0∴(2a +4)2−4a(12−3a)=0 ,∴(a −1)2=0 ,∴a =1 ,∴b =−2 , c =−3 ,∴y =x 2−2x −3 .(2)解:由(1)可知: A(3,0) , C(0,−3) ,设 M(m ,m 2−2m −3),N(n ,0) ,①当 AC 为对角线时, {x A +x C =x M +x N y A +y C =y n +y N∴{3+0=m +n 0+(−3)=m 2−2m −3+0,解得 m 1=0 (舍), m 2=2 , ∴n =1 ,即 N 1(1,0) .②当AM为对角线时,{x A+x M=x C+x Ny A +yM=yC+yN∴{3+m=0+n0+m2−2m−3=−3+0,解得m1=0(舍)m2=2,∴n=5,即N2(5,0).③当AN为对角线时,{x A+x N=x C+x My A +yN=yC+yM∴{3+n=0+m0+0=−3+m2−2m−3,解得m1=1+√7,m2=1−√7,∴n=√7−2或n=−2−√7,∴N3(√7−2,0),N4(−2−√7,0).综上所述:N点坐标为(1,0)或(5,0)或(√7−2,0)或(−2−√7,0).8.【答案】(1)解:过点A作AD∥OB于点D,过点C作CE∥OB于点E,∵AO=AB,∴AD是∥AOB的中线,∴OD= 12OB=2,∵tan∥AOB=2,∴ADOD=2,∴AD=4,∵CE∥AD,点C是AO的中点,∴CE是∥AOD的中位线,∴CE= 12AD=2,OE=12OD=1,∴C的坐标为(1,2);(2)解:由(1)可知:CE=2,BE=3,A的坐标为(2,4),∴tan∥CBE= CEBE=23,∵∥APO=∥CBO,∴tan∥APO=tan∥CBO= 23, ∴AD PD = 23, ∴PD=6,设P 的坐标为(x ,0),∵D (2,0),∴PD=|x ﹣2|,∴|x ﹣2|=6,∴x=8或x=﹣4,∴P (8,0)或(﹣4,0);当P 的坐标为(8,0)时,把A (2,4)和(8,0)代入y=ax 2+bx ,∴{4=4a +b 0=64a +8b, 解得: {a =−13b =83, ∴抛物线的解析式为:y=﹣ 13 x 2+ 83x , 当P 的坐标为(﹣4,0)时,把A (2,4)和P (﹣4,0)代入y=ax 2+bx ,∴{4=4a +2b 0=16a −4b ,解得: {a =13b =43, ∴抛物线的解析式为:y= 13 x 2+ 43x , 综上所述,抛物线的解析式为:y=﹣ 13 x 2+ 83 x 或y= 13 x 2+ 43x ; (3)解:∵M 为圆心,N 为切点,∴MN∥OA ,∵D 点是A 点关于MN 的对称点,∴∥MAD 是等腰三角形,MA=MD当∥MAD∥∥AOB 时,∵∥AOB 是等腰三角形,∴∥MAD=∥AOB ,当抛物线的解析式为y=﹣ 13 x 2+ 83x 时,如图2,①若点N在A的上方时,此时∥MAN=∥AOB,∴AM∥x轴,∴M的纵坐标为4,∴把y=4代入y=﹣13x2+ 83x,解得:x=2(舍去)或x=6,∴M的坐标为(6,4),②当点N在点A的下方时,此时∥MDA=∥AOB,∴DM∥x轴,过点A作AE∥DM于点E,交于x轴于点F,设D点横坐标为a,∴DE=2-a,∵tan∥MDA=tan∥AOB=2,∴AE=2DE=4-2a,∴点M的纵坐标为2a,∴由勾股定理可知:AD= √5(2-a),OA=2 √5,∴OADM=OBAD,解2√5DM=4√5(2−a),∴DM= 5(2−a)2,设M的横坐标为x,∴x-a= 5(2−a)2∴x= 10−3a2,∴M(10−3a2,2a)把M(10−3a2,2a)代入y=﹣13x2+ 83x,得:2a=- 13×(10−3a2)2+ 83×(10−3a2)解得:a=2或a=- 10 3,∴当a=2时,M(2,4)舍去当a=- 103时,M(10,-203)当抛物线的解析式为y= 13x2+ 43x时,如图4,若点N在点A的上方时,此时∥MAN=∥AOB,延长MA交x轴于点F,∵∥MAN=∥OAF,∴∥AOB=∥OAF,∴FA=FO,过点F作FG∥OA于点G,∵A(2,4),∴由勾股定理可求得:AO=2 √5,∴OG= 12AO= √5 , ∵tan∥AOB= CF OG∴GF=2 √5 ,∴由勾股定理可求得:OF=5,∴F 的坐标为(5,0),设直线MA 的解析式为:y=mx+n ,把A (2,4)和F (5,0)代入y=mx+n ,∴{4=2m +n 0=5m +n, 解得: {m =−43n =203, ∴直线MA 的解析式为:y=﹣ 43 + 203, 联立 {y =13x 2+43x y =−43x +203, ∴解得:x=2(舍去)或x=﹣10,把x=﹣10代入y=﹣ 43 + 203, ∴y=20,∴M (﹣10,20),若点N 在点A 的下方时,此时∥MAN=∥AOB ,∴AM∥x 轴,∴M 的纵坐标为4,把y=4代入y= 13 x 2+ 43x , ∴x=﹣6或x=2(舍去),∴M (﹣6,4),综上所述,存在这样的点M (6,4)或(10,- 203)或(﹣10,20)或(﹣6,4),使得∥MAD∥∥AOB9.【答案】(1)解:由题意,可得A (﹣5,0),C (0,﹣5).∵抛物线y=x 2+bx+c 过点A ,点C ,∴{25−5b +c =0c =−5,∴抛物线对应的函数解析式为y=x 2+4x ﹣5;(2)解:∵y=x 2+4x ﹣5=(x+2)2﹣9,∴对称轴是直线x=﹣2.∵抛物线y=x 2+4x ﹣5与x 轴交于点A ,B ,∴点A ,B 关于直线x=﹣2对称.连结AC ,交对称轴于点P ,此时PB+PC 的值最小.设直线AC 的解析式为y=mx+n ,则 {−5m +n =0n =−5,解得 {m =−1n =−5 , ∴直线AC 的解析式为y=﹣x ﹣5,当x=﹣2时,y=﹣3,∴点P 的坐标为(﹣2,﹣3)(3)解:在(2)条件下,点P 的坐标为(﹣2,﹣3).设F (x ,x 2+4x ﹣5),∵四边形PEFM 为正方形,∴E (﹣2,x 2+4x ﹣5),M (x ,﹣3),PM=PE ,∴|x+2|=|x 2+4x ﹣5+3|,∴x 2+4x ﹣2=x+2,或x 2+4x ﹣2=﹣x ﹣2,整理得x 2+3x ﹣4=0,或x 2+5x=0,解得x 1=﹣4,x 2=1,x 3=0,x 4=﹣5,∴M (﹣4,﹣3)或M (1,﹣3)或M (0,﹣3)或M (﹣5,﹣3)10.【答案】(1)解:将A(−1,0)和C(0,3)代入y =ax 2+2x +c(a ≠0),得{a −2+c =0c =3,∴抛物线解析式为y=−x2+2x+3,将A(−1,0)代入y=x+b,得:-1+b=0,解得b=1,∴直线AF的解析式为y=x+1(2)解:y=−x2+2x+3=−(x−1)2+4,∴D(1,4),对于直线y=x+1,令x=1,则y=2,故E(1,2),∴DE=4-2=2.过点P作x轴的垂线,交AF于点H,过点P作PG∥AF于点G,过点P作PK∥DE于点K,连接PA和PD,如图所示:设P(m,−m2+2m+3),则H(m,m+1),∴PH=(−m2+2m+3)−(m+1)=−m2+m+2,对于直线y=x+1,令x=0,则y=1,由交点得出∥FAB=45°,∴∥PHG=45°,即∥PHG为等腰直角三角形,故有PG=√22PH=√22(−m2+m+2),延长DE交x轴于点Q,则Q(1,0),∴AQ=2,即AE=√2AQ=2√2,∴S△PAE=12AE⋅PG=12×2√2×√22(−m2+m+2)=−m2+m+2,∵P(m,−m2+m+3),K(1,−m2+m+3),∴PK=|1−m|,∴S△PDE=12DE⋅PK=12×2×|1−m|=|1−m|,由S△PAE=3S△PDE,得−m2+m+2=3|1−m|,解得m1=2−√3,m2=2+√3(不合题意,舍去),m3=−1+√6,m4=−1−√6(不合题意,舍去),将m1=2−√3代入−m2+2m+3,得−m2+2m+3=2√3,则得点P的坐标为P(2−√3,2√3);将m3=−1+√6代入−m2+2m+3,得−m2+2m+3=4√6−6,则得点P的坐标为P(−1+√6,4√6−6);综上所述,点P的坐标为P(2−√3,2√3)或P(−1+√6,4√6−6)(3)解:存在,N1(0,1),N2(2,3),N3(1+√172,3+√172),N4(1−√172,3−√172)11.【答案】(1)解:∵抛物线y=ax2+bx+c的对称轴为x=2,∴−b2a=2,∴b=−4a,∴抛物线解析式为y=ax2−4ax+c,∵点A(0,5),B(5,0),∴{c=525a−5b+c=0,∴{a=−1c=5,∴二次函数的解析式为y=−x2+4x+5;(2)解:∵AC//x轴,点A(0,5),当y=5时,−x2+4x+5=5,∴x1=0,x2=4,∴C(4,5),∴AC=4,设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),由点A、B的坐标得,直线AB的解析式为y=−x+5;设P(m,−m2+4m+5),∴D(m,−m+5),∴PD=−m2+4m+5+m−5=−m2+5m,∵AC=4,∴S四边形APCD =12AC⋅PD=2(−m2+5m)=−2(m−52)2+252∴当m=52时,四边形APCD的面积最大,∴即点P(52,354)时,四边形APCD的面积最大为252;(3)解:(3)设P(n,−n2+4n+5)则D(n,−n+5)①当AC为平行四边形的边,如图,∴AC∥DQ,AC=DQ,∴点Q的纵坐标为−n+5,又∵点Q在抛物线上,∴−x2+4x+5=−n+5,解得x=2±√4+n,∴点Q的坐标为(2+√4+n,−n+5)或(2−√4+n,−n+5),当Q点坐标为(2+√4+n,−n+5)时,∵AC =4,∴DQ =2+√4+n −n =4, ∴4+n =(n +2)2, 解得n =0或n =−3,∵点P 在第一象限,且在AC 的上方, ∴0<n <4, ∴此时不符合题意;当Q 点坐标为(2−√4+n ,−n +5)时, ∵AC =4,∴DQ =n −2+√4+n =4,∴4+n =(6−n)2,即n 2−13n +32=0解得n =13+√412或n =13−√412,∵点P 在第一象限,且在AC 的上方, ∴0<n <4,∴n =13−√412∴D 点坐标为(13−√412,√41−32),Q 点坐标为(2−√42−2√412,√41−32)②AC 为平行四边形的对角线时,如图,连接DQ 交AC 于点M , ∴AM =CM ,DM =QM , ∵A(0,5),C(4,5), ∴M 的坐标为(2,5),设点Q 的坐标为(t ,−t 2+4t +5),∴{t+n2=2−t 2+4t+5−n+52=5,解得{t =1n =3或{t =4n =0,同理可得0<n <4, ∴{t =1n =3, ∴点D 的坐标为(3,2),点Q 的坐标为(1,8);综上所述,存在Q 使得以A 、C 、D 、Q 为顶点的四边形为平行四边形,此时D 、Q 的坐标分别为(13−√412,√41−32),(2−√42−2√412,√41−32)或(3,2),(1,8). 12.【答案】(1)解:由题意得 {a −b −4a =0−4a =4 ,解得 {a =−1b =3.∴抛物线的解析式:y =﹣x 2+3x+4.(2)解:由B (4,0)、C (0,4)可知,直线BC :y =﹣x+4;如图1,过点P 作PQ//y 轴,交直线BC 于Q ,设P (x ,﹣x 2+3x+4),则Q (x ,﹣x+4);∴PQ =(﹣x 2+3x+4)﹣(﹣x+4)=﹣x 2+4x ;S ∥PCB = 12 PQ•OB = 12 ×(﹣x 2+4x )×4=﹣2(x ﹣2)2+8;∴当P (2,6)时,∥PCB 的面积最大; (3)解:存在.抛物线y =﹣x 2+3x+4的顶点坐标E (32,254) ,直线BC :y =﹣x+4;当 x =32 时,F (32,52) ,∴.EF =154.如图2,过点M 作MN∥EF ,交直线BC 于M ,设N (x ,﹣x 2+3x+4),则M (x ,﹣x+4);由题意点N 在第一象限,∴MN =(﹣x 2+3x+4)﹣(﹣x+4)=﹣x 2+4x ;当EF 与NM 平行且相等时,四边形EFMN 是平行四边形, 由﹣x 2+4x =154时,解得 x 1=52,x 2=32 (不合题意,舍去).当 x =52 时, y =−(52)2+3×52+4=214,∴N ( 52, 214 ).∴点N 坐标为( 52, 214 ).13.【答案】(1)令 y =0 ,则 −12x 2+32x +2=0 ,解得 x 1=−1 , x 2=4 .∴A 点坐标为 (−1,0) ,B 点坐标为 (4,0) . 令 x =0 ,则 y =2 . ∴C 点坐标为 (0,2) .(2)①设: l BC :y =mx +n ,将 B(4,0) , C(0,2) 分别代入得, {0=4m +n 2=n ,解得 {m =−12n =2,故 l BC :y =−12x +2 .可设 P(t,−12t +2) , 0≤t ≤4 ,则 Q(t,−12t 2+32t +2) ,且Q 在P 上方.所以 PQ =−12t 2+32t +2−(−12t +2)=−12t 2+2t .又 BP =√(4−t)2+(−12t +2)2=√52(4−t) .故 BP +PQ =√52(4−t)+(−12t 2+2t)=−12t 2+(2−√52)t +2√5 .当 t =2−√52 时取得最大值,此时 P(2−√52,1+√54) .②如图,延长AC至点D,使得CD=CB,连接BD,作DE⊥y轴于点E,过点P作PH⊥BD于点H.由AC2=12+22=5,BC2=22+42=20,AB2=(−1−4)2=25,所以AC2+BC2=AB2,∠ACB=90°.则△BDC是等腰直角三角形,∠CBD=45°.√2AP+PB=√2(AP+PBsin45°)=√2(AP+PH),由垂线段最短可知,当A,P,H共线时(AP+PH)取得最小值.∵∠BCD=∠DEC=∠COB=90°,∵∠DCE+∠BCO=∠BCO+∠CBO=90°,∴∠DCE=∠CBO.∴△CDE≌△BCO.∴DE=CO=2,CE=BO=4.可得点D的坐标为(2,6).∴BD=√(2−4)2+(6−0)2=2√10,=12BD⋅AH,代入可得12×5×6=12×2√10⋅AH,S△ABD=12AB⋅yD,故有√2AP+PB=√2(AP+PH)≥√2AH=3√5.解得AH=3√102所以√2AP+PB的最小值为3√5.14.【答案】(1)解:当抛物线与x轴有两个交点时,∆>0,即4+4m>0,∴m>-1;(2)解:∵点A(-1,0)在抛物线y=-x2+2x+m上,∴-1-2+m=0,∴m=3,∴抛物线解析式为y=-x 2+2x+3,且C(0,3), 当x=0时,-x 2+2x+3=0, 解得x=-1,或x=3, ∴B (3,0),设直线BC 的解析式为y=kx+b ,将B(3,0),C(0,3)代入y=kx+b 中,得: {3k +b =0b =3 ,解得 {k =−1b =3,∴直线AB 的解析式为y=-x+3;(3)解:点D 在抛物线上,设坐标为(x ,-x 2+2x+3),F 在直线AB 上,坐标为(x ,-x+3) ,∴DF=-x 2+2x+3-(-x+3)=-x 2+3x= −(x −32)2+94,∴当 x =32 时,DF 最大,为 94 ,此时D 的坐标为( 32,154 ).15.【答案】(1)解:∵点A 、B 、C 在二次函数图象上 ∴把x=0代入 y =12x 2+32x +2 ,得y=2把y=0代入 y =12x 2+32x +2 ,得x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0),C (0,2);(2)解:设直线BC 的解析式为y=kx+b (k≠0),把B (4,0),C (0,2)代入,得 {4k +b =0b =2 , {k =−12b =2 ∴直线BC 的解析式为 y =12x +2∵OP=t∴P (t ,0),M (t ,﹣ 12 t+2),N (t ,﹣ 12 t 2+ 32 t+2),如图,∴S 1=N 1P 1﹣M 1P 1=﹣ 12 t 2+ 32 t+2﹣(﹣ 12 t+2)=﹣ 12t 2+2t (0<t <4),S2=M2P2﹣N2P2=﹣12t+2﹣(﹣12t2+ 32t+2)= 12t2﹣2t(﹣1<t<0),(3)解:如图,①若∥OPN∥∥OCB,当OP与OC是对应边时,则OPOC=NPBO,即t2=−12t2+32t+24化简得:t2+t﹣4=0,解得:t1=−1+√172,t2=−1−√172(不合题意,舍去)②若∥OPN∥∥OBC,当OP与OB是对应边时,则OPOB=PNCO,即t4=−12t2+32t+24化简得:t2﹣2t﹣4=0解得:t3=1+ √5,t4=1﹣√5(不合题意,舍去)∴符合题意的点P的坐标为(−1+√172,0)和(1+ √5,0).16.【答案】(1)解:由二次函数交点式表达式得:y=a(x+3)(x﹣4)=a(x2﹣x﹣12)=ax2﹣ax ﹣12a,即:﹣12a=4,解得:a=﹣1 3,则抛物线的表达式为y=−13x2+13x+4,(2)设点P(m,﹣13m2+ 13m+4),则点Q(m,﹣m+4),∵OB=OC,∴∥ABC=∥OCB=45°=∥PQN,PN=PQsin∥PQN=√22(﹣13m2+ 13m+4+m﹣4)=﹣√26(m﹣2)2+ 2√23,∵﹣√26<0,∴PN有最大值,当m=2时,PN的最大值为2√23.(3)存在,理由:点A 、B 、C 的坐标分别为(﹣3,0)、(4,0)、(0,4), 则AC =5,AB =7,BC =4 √2 ,∥OBC =∥OCB =45°, 将点B (4,0)、C (0,4)的坐标代入一次函数表达式:y =kx+b 得 {0=4k +b b =4 解得 {k =−1b =4∴直线BC 的解析式为y =﹣x+4…①, 设直线AC 的解析式为y=mx+n把点A (﹣3,0)、C (0,4)代入得 {0=−3m +n n =4解得 {m =43n =4∴直线AC 的表达式为:y = 43x+4,设直线AC 的中点为K (﹣ 32 ,2),过点M 与CA 垂直直线的表达式中的k 值为﹣ 34 ,设过点K 与直线AC 垂直直线的表达式为y =﹣ 34 x+q把K (﹣ 32 ,2)代入得2=﹣ 34 ×(﹣ 32 )+q解得q= 78∴y =﹣ 34 x+ 78 …②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7﹣n ,由勾股定理得:(7﹣n )2+n 2=25,解得:n =3或4(舍去4), 故点Q (1,3),②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=4 √2﹣5,则QM=MB=8−5√22,故点Q(5√22,8−5√22).③当CQ=AQ时,联立①②,{y=−x+4y=−34x+78,解得,x=252(舍去),综上所述点Q的坐标为:Q(1,3)或Q(5√22,8−5√22).。
中考数学《二次函数-动态几何问题》专项练习题(带答案)一、单选题1.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8B.6≤t≤8C.10<t≤12D.10≤t≤122.在同一平面直角坐标系内,将函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A.(﹣3,﹣6)B.(1,﹣4)C.(1,﹣6)D.(﹣3,﹣4)3.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣34.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为()A.B.C.D.5.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( )A.-3 B.1C.5D.86.抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是()A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>17.如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b垂直于直线l,a 和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t 的函数图象大致为()A.B.C.D.8.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC = DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径9.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A .B .C .D .10.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A .B .C .D .11.如图,抛物线 y =−12x 2+32x +2 与x 轴交于A 、B 两点与y 轴交于点C .若点P 是线段BC 上方的抛物线上一动点,当 △BCP 的面积取得最大值时,点P 的坐标是( )A .(2,3)B .(32,258)C .(1,3)D .(3,2)12.已知点A (0,2),B (2,0),点C 在y=x 2的图象上,若△ABC 的面积为2,则这样的C 点有( ) A .1 个B .2个C .3个D .4个二、填空题13.如图,抛物线与轴交于点C,点D(0,1),点P是抛物线上在第一象限的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.14.如图,已知直线y=﹣34 x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣12 x2+2x+5上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣34 x+3于点Q,则当PQ=BQ时,a的值是.15.已知抛德物线y=14x2 +1有下性质:该抛物线上任意一点到定点F(0,2)的距离与到轴的距离始终相等,如图,点M的坐标为(√2,3),P是抛物线y=14x2 +1上一个动点,则△PMF周长的最小值是.16.把抛物线y=2x2先向左平移3个单位,再向下平移4个单位,所得的抛物线的解析式是。
中考复习函数专题训练(含答案解析)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN 的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C二、填空题 1. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. 如图,已知函数x y 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-3三、解答题1. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。
可编辑 ---------------------------------------------------------------- 中考数学专题训练【动点与抛物线】提升(附参考答案)
一、平行四边形与抛物线 1、(2012•钦州)如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣. (1)求抛物线对应的函数解析式; (2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上; (3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c
(a≠0)的顶点坐标为(﹣,),对称轴是直线x=﹣.)
2、(2012•鸡西)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒. (1)求A、B两点的坐标. (2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.可编辑 ---------------------------------------------------------------- (3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.
3.(2012•恩施州)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D. (1)抛物线及直线AC的函数关系式; (2)设点M(3,m),求使MN+MD的值最小时m的值; (3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由; (4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
二、 梯形与抛物线 1、已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处. (1)求点C的坐标; (2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;可编辑 ---------------------------------------------------------------- (3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
2、(2012•泉州)如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q. (1)求h的值; (2)通过操作、观察,算出△POQ的面积的最小值(不必说理); (3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.
3.(2012•玉林)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2. (1)求点D的坐标,并直接写出t的取值范围.可编辑 ---------------------------------------------------------------- (2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值. (3)在(2)的条件下,t为何值时,四边形APQF是梯形?
三、 等腰三角形、菱形与抛物线 1、(2012•龙岩)在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0). (1)请直接写出点B、C的坐标:B 、C ;并求经过A、B、C三点的抛物线解析式; (2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M. ①设AE=x,当x为何值时,△OCE∽△OBC; ②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由. 可编辑 ---------------------------------------------------------------- 3、(2012•湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0). (1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式; (2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由; (3)当t为何值时,△MNA是一个等腰三角形?
4、如图,直线l1经过点A(﹣1,0),直线l2经过点B(3,0),l1、l2均为与y轴交于点C(0,),抛物线y=ax2+bx+c(a≠0)经过A、B、C三点. (1)求抛物线的函数表达式; (2)抛物线的对称轴依次与x轴交于点D、与l2交于点E、与抛物线交于点F、与l1交于点G.求证:DE=EF=FG;
(3)若l1⊥l2于y轴上的C点处,点P为抛物线上一动点,要使△PCG为等腰三角形,请写出符合条件的点P的坐标,并简述理由. 可编辑 ---------------------------------------------------------------- 5、如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0). (1)求点B的坐标; (2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式; (3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
6、(2012•铁岭)如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F. (1)求m的值及该抛物线对应的解析式; (2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标; (3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.可编辑 ---------------------------------------------------------------- 四、 直角三角形与抛物线 1、(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C. (1)求点A、B的坐标; (2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
2、(2012•河池)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点. (1)写出点A、点B的坐标; (2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;