中考数学动点专题复习教案
- 格式:docx
- 大小:54.06 KB
- 文档页数:5
中考数学复习(一)动点型问题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的A....A.BA.B.C.D.对应训练2.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.(二)线动问题例3如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A.B.C.D..C....A.B.C.D.考点三:动点综合题动态问题是近几年来中考数学的热点题型,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.(一)因动点产生的等腰三角形问题例1如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB 上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED 、EC 的长; (2)若BP =2,求CQ 的长;(3)记线段PQ 与线段DE 的交点为F ,若△PDF 为等腰三角形,求BP 的长.图1备用图例2如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.图1例3如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;((P 例4(1(O —C —A R ,交线段BA 达点t 秒.例5DE ,作(((例6B =60°.((PN ,设EP =x .理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足条件的x 的值;若不存在,请说明理由.图1图2图3因动点产生的直角三角形问题 例1如图1,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.图1例2如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.例3(((例4(和_______是点C (上一点,设过B 、P例5和点A ,点B (2,n )((到点D ,使得ED =O 作匀个单位(当点Q AB 交于点F ,以M 、N 也随例6B 为中心(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图1例7如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .①求S 与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当△MON 为直角三角形时,求t 的值.图1例8如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .①求S 与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当△MON 为直角三角形时,求t 的值.4.5.B 4.如图,在平面直角坐标系xOy 中,A (0,2),B (0,6),动点C 在直线y=x 上.若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数是( ) A .2B .3C .4D .55.如图,在平面直角坐标系中,O 为坐标原点,点A 、B 的坐标分别为(8,0)、(0,6).动点Q 从点O 、动点P 从点A 同时出发,分别沿着OA 方向、AB 方向均以1个单位长度/秒的速度匀速运动,运动时间为t (秒)(0<t≤5).以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连接CD 、QC . (1)求当t 为何值时,点Q 与点D 重合?(2)设△QCD 的面积为S ,试求S 与t 之间的函数关系式,并求S 的最大值; (3)若⊙P 与线段QC 只有一个交点,请直接写出t 的取值范围.2=60°,A运动,两点同时出发,速度都为每秒⑴将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为S,S关于t 的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4。
中考数学复习考点知识专题讲解动点型问题归类解析点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.一、点动问题例1 如图1,梯形ABCD中,AB∥DC,DE上AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止,设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是( )思路分析分三段考虑:①点P在AD上运动;②点P在DC上运动;③点P在BC上运动.分别求出y与t的函数表达式,继而可得出函数图象.解在Rt△ADE中,综上可得,选项A的图象符合,故选A.点评解答本题的关键是分段讨论y与t的函数关系式,在具体解题中,可直接判断是一次函数还是二次函数,不需要求出解析式.二、线动问题例2 如图2所示,已知等腰梯形ABCD,AD∥BC,若动直线l 垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是( )分析与解分三段考虑:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;综合选项可得,选A.点评解答类似问题,有时候只要我们能判断面积增大的快慢速度就能选出答案.三、面动问题例3 如图3所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为( )分析与解根据题意,设小正方形运动的速度为V,分三个阶段:①小正方形向右未完全穿入大正方形,S=2×2-V t×1=4-Vt;②小正方形穿人大正方形,但未穿出大正方形,S=2×2-1×1=3;③小正方形穿出大正方形,S=Vt×1.分析选项可得,选A.四、双动点问题双动点问题对同学们获取信息和处理信息的能力要求更高,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系.例4 如图4,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=2.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q 从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P 作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为_______,直线l的解析式为_______;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.思路分析 (1)利用梯形性质确定点D的坐标,利用sin∠DAB=2,得到△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D 的坐标,利用待定系数法求出直线l的解析式;(2)解答本小题,需要弄清动点在各阶段运动过程中的状态.(3)本小题考查二次函数与一次函数在指定区间上的极值,根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值;(4)△QMN为等腰三角形的情形有两种,需要分类讨论.过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC =5.过点Q作QE⊥x轴于点E,②当1<t≤2时,如图6所示.过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t-5, PE=AF-AP-EF=11-2t-(5t-5)=16-7t,③当点M与点Q相遇时,DM+CQ=CD=1,即(2t-4)+(5t-5)=7,.解得t=167时,如图7所示.当2<t<167.∵a=-5<0,∴抛物线开口向下,对称轴为直线t=75∵当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;②当1<t≤2时,②如图9所示,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.故当t=209,或t=125时,△QMN为等腰三角形.点评本题是典型的运动型综合题,难度较大,解题的关键仍然是要对动点运动过程有清晰的理解.。
中考专题复习——动点问题【学情分析】动点一般在中考都是压轴题,步骤不重要,重要的是思路。
动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论【教学目标】知识与技能:1、利用特殊三角形的性质和定理解决动点问题;2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动);3、结合图形和题目,得出已知或能间接求出的数据。
过程与方法:1、利用分类讨论的方法分析并解决问题;2、数形结合、方程思想的运用。
情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。
【教学重点】根据动点中的移动距离,找出等量列方程。
【教学难点】1、两点同时运动时的距离变化;2、运动题型中的分类讨论【教学方法】教师引导、自主思考【教学过程】一、动点问题的近况:1、动态几何图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)它通常分为三种类型:动点问题、动线问题、动形问题。
在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。
本节课重点来探究动态几何中的第一种类型----动点问题。
所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。
2、动点问题所用的数学思想:解决运动型问题常用的数学思想是方程思想,数学建模思想,函数思想,转化思想等;常用的数学方法有:分类讨论法,数形结合法等。
教学设计教学准备学案、课件板书设计2.4拓展综合类—动点问题(1)学生展示1.2.3 1.表示线段的方法:书写必要的步骤勾股定理、相似、三角函数。
2.解决问题的方法:数形结合定相似,比例线段构方程3.数学思想:分类讨论,数形结合、建模思想。
教学过程教学环节及内容教师活动学生活动一、【课前热身】1.如图,已知在Rt△ACB中,∠C=90°,AC=8cm,BC=6cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t≤4),解答下列问题:(1)当t= 何值时,PQ∥CB?(2)当t= 为何值时,PQ⊥CB?(3)当t= 何值时,△APQ为直角三角形?思考:当t为何值时,△APQ为等腰三角形?方法小结:1. .2. .设计意图:将24题的考点进行分层,这3个题目很简单,通过课后合学,都能解决。
这样既可以增强学生的信心,消除恐惧感,也可以让学生体会到参与的快乐。
教学策略:学生课前已经完成,教师上课时引导学生展示解决这3个题目的方法.【基础探究】例1. 接上题.(4)当t为何值时,△APQ为等腰三角形.方法小结: .变式:连接PC将△PQC沿着AC翻折得到△P’QC,问当t= 何值时,若四边形PQP’C是菱形.设计意图:1.落实步骤的规范性,注意方法多样化和最优化,关注不同的思维方式.2.从图形的角度引导学生要时刻关注动态过程中的静态图形,从而降低题目难度,突出重点,突破难点,真正的理解数形结合的含义。
出示动点问题的考题分析,让学生了解此题的分值,内容等,然后结合课后的合学成果,选择学生进行讲述。
并给予学生恰当的评价。
引导学生归纳解题步骤及方法。
引导学生分析题意:并提出三个问题:1.当△APQ为等腰三角形时,有几种情况?2.画出这一时刻的静态图形?3.结合图形,找出等量关系解决学生结合课后的合学,小组推荐人员讲解,并板书必要的解题过程。
动点及动图形的专题复习教案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. 2222233621419x x x MH PH MP +=-+=+= AEDCB 图2HM NGPOAB图1x y(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 如三、应用求图形面积的方法建立函数关系式例4()如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学动点专题复习教案
1、如图,边长为1的正方形OABC 的顶点A 在x 轴正半轴上,将正方形OABC 绕
点O 顺时针旋转30°,使点A 落在抛物线2
ax y =(0<a )图像上。
(1)求
抛物线方程。
(2)正方形OABC 继续顺时针旋转多少度时,点A 再次落在抛
物线2
ax y =的图像上?并求这个点的坐标。
解:(1)设旋转后点A 落在抛物线上点A 1处,OA 1=1,过A 1作A 1M ⊥x 轴
于M ,则OM=23
,
21
1=
M A ,)21,23(1-A ,由A 1在
2
ax y =上得
2)23(21a =-
,解得
32
-
=a ∴
2
32x y -
=
(2)由抛物线关于y 轴对称,再次旋转后A 落在抛物线上的点A 2处,点A 2与
点A 1关于y 轴对称,易见继续旋转120°,点A 2的坐标为
)21,23(--
2、如图,矩形ABCD 中,AB=8,BC=6,对角线AC 上有一个动点P (不包括A 和C ),设AP=x ,四边形PBCD 的面积为y ,
(1)写出y 与x 的函数关系,并确定自变量x 的范围。
(2)有人提出一个判断“关于动点P ,△PBC 面积与
△PAD 面积之和为常。
” 请说明此判断是否正确,并说明理由。
(3)将题目中的矩形改为平行四边形,且已知平行四边形的面积为S ,对角线上一动点P ,是否有“△PBC 面积与△PAD 面积之和为常”,并说明理由。
解:(1)过点P 作PE ⊥BC 于点E ,在Rt △ABC 中,AC=10,PC=AC-AP=10-x ,
∵PE ⊥BC,AB ⊥BC ,∴△PEC ∽△ABC ,则AC PC AB PE =,即
10108x
PE -=,PE=8-x 54
,∴△PBC 面积=x BC PE 5122421-=•,又△PCD 面积=△PBC 面积,∴y=
x
524
48-
(0<x<10)
S
(2)这个判断是正确的,S
△PBC +S
△PAD
=24;(3)有,S
△PBC
+S
△PAD
=2
3、如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A(3,0),B(0,3
)
两点,点C 为线段AB 上的一动点,过点C 作CD⊥x 轴于点D 。
(1) 写直线AB 的解析式; (2) 若S 梯形OBCD =
3
3
4,求点C 的坐标;
(3) 在第一象限内是否存在点P ,使得以P ,O ,B 为顶点
的三角形与△OBA 相似。
若存在,请求出所有符合条件的点P 的坐标;若不存在;请说明理由。
解:(1)直线AB 解析式为:y=
3
3-
x+
3
(2)∵
233OB OA 21S AOB
=⨯=∆,OBCD S 梯形=33
4,∴
6
3
S ACD =∆
由OA=
3
OB ,得∠BAO=30°,AD=
3
CD 。
∴ACD S ∆=21
CD×AD=
2
CD 2
3=
6
3
,可得CD =3
3。
∴AD=1,OD =2.∴C(2,
3
3)。
(3)当∠OBP=Rt∠时,如图
①若△BOP∽△OBA,则∠BOP=∠BAO=30°,BP=3
OB=3,
∴1P (3,
3
3)。
② 若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=3
3OB=1,
∴2P (1,3)。
当∠OPB=Rt∠时,
③ 过点P 作OP⊥BC 于点P(如图),此时△PBO∽△OBA, ∠BOP=∠BAO=30°。
过点P 作PM⊥OA 于点M 。
在Rt△PBO 中,BP =2
1OB =
2
3,OP =
3
BP =2
3。
∵ 在Rt△P MO 中,∠OPM=30°, ∴ OM=2
1OP =4
3;PM =
3OM =4
3
3.∴3P (
4
3,4
33).
④ 若△POB∽△OBA(如图),则∠OBP=∠BAO=30°,∠POM=30°。
∴PM=
3
3
OM =
4
3。
∴4P (4
3,
4
3)(由对称性也可得到点4P 的坐标)。
当∠OPB=Rt∠时,点P 在x 轴上,不符合要求。
综合得,符合条件的点有四个,分别是:1P (3,3
3
),2P (1,
3
),3
P (
4
3,4
33),4P (4
3,
4
3)。
4、如图,在直角梯形ABCD 中,AD ∥BC ,∠C=90°,BC=16,CD=12,DA=21。
动点P 从点D 出发,沿射线DA 的方向以每秒2个单位长度的速度运动;动点Q 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动。
点P ,Q 分别从点D ,C 同时出发,当Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式; (2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是 等腰三角形?
(3)当线段PQ 与线段AB 相交于点O ,且2AO=OB 时, 求∠BQP 的正切值;
(4)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的 值;若不存在,请说明理由。
解:(1)首先0≤t ≤16,如图,过点P 作PM ⊥BC ,垂足为M , 则四边形PDCM 为矩形,PM=DC=12。
∵QB=16-t , ∴S=12×(16-t )÷2=96-t ,0≤t ≤16。
(2)设△BPQ 是等腰三角形,分三种情况:①PQ=BQ ,
在Rt △PMQ 中,PQ 2=t 2+122=BQ 2=(16-t )2,解得t=3.5;②BP=BQ ,在Rt △PMB 中,BP 2=(16-2t )2+122=BQ 2=(16-t )2,即3t 2-32t+144=0,无解。
③PB=PQ ,由PB 2=PQ 2,得t 2+122=(16-2t)2+122,整理得3t 2-64t+256=0,解得
16,31621==
t t (不合题意,舍去)。
综上可知,答案为t=3.5或316秒。
(3)如图,由△OAP ∽△OBQ ,得
21
==OB AO BQ AP .
∵AP=2t-21,BQ=16-t, ∴2(2t-21)=16-t,
558=
t ,
过点Q 作QE ⊥AD ,垂足为E 。
∵PD=2t ,ED=QC=t , ∴PE=t 。
在Rt △PEQ 中,
(4)设存在时刻t ,使得PQ ⊥BD ,如图,过点Q 作QE ⊥AD ,
垂足为E ,易见Rt △BDC ∽Rt △QPE, QE PE
BC
DC =
,即 121612t
=
,解得t=9。
所以当t=9秒时,PQ ⊥BD 。
5、如图,在Rt △ABC 和Rt △DEF 中, ∠ABC=90°,AB=4,BC=6,∠DEF=90°, DF=EF=4。
(1)移动△DEF ,使边DE 与AB 重合(如图1),再将△DEF 沿AB 所在的直线向左平移,使点F 落在AC 上(如图2),求BE 的长。
(2)将图2中的△DEF 绕点A 顺时针旋转,使点F 落在BC 上,连接AF (如图3),请找出图中的全等三角形,并说明它们全等的理由(不再添加辅助线和标注其它字母)
解:(1)∵EF ∥BC ∴∠FEA=∠B=90°,∠CAB=∠FAE 。
∴△AEF ∽△ABC ,
BC EF
AB AE =。
∵AB=4,BC=6,DE=EF=4,∴644
=
AE ,AE=38,∴BE=AB-AE=4-38=34
(2)Rt △AEF ≌Rt △FBA ,在Rt △AEF 和Rt △FBA 中,EF=BA ,AF=FA ,∠B=∠E=90°
∴Rt △AEF ≌Rt △FBA。