基于单片机的函数信号发生器开题报告 长江大学版
- 格式:ppt
- 大小:741.50 KB
- 文档页数:10
唐山师范学院题目基于单片机的信号发生器的设计院系名称:电子信息科学与技术学号:摘要波形发生器即简易函数信号发生器,是一个能够产生多种波形,如三角波、锯齿波、方波、正弦波等波形电路。
函数信号发生器在电路实验和设备仪器中具有十分广泛的用途。
通过对函数发生器的原理以及构成分析,可设计一个能变换出三角波、锯齿波、方波、正弦波的函数波形发生器。
在工业生产和科研中利用函数信号发生器发出的信号,可以对元器件的性能及参数进行测量,还可以对电工和电子产品进行指数验证、参数调整及性能鉴定。
常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不仅参数准确度难以保证,而且体积和功耗都很大,而由数字电路构成的低频信号发生器,虽然其性能好但体积较大,价格较贵,因此,高精度,宽调幅将成为数字量信号发生器的趋势。
本文介绍的是利用89C52单片机和数模转换器件DAC0832产生所需不同信号的低频信号源,其信号幅度和频率都是可以按要求控制的。
文中简要介绍了DAC0832数模转换器的结构原理和使用方法,89C52的基础理论,以及与设计电路有关的各种芯片。
文中着重介绍了如何利用单片机控制D/A转换器产生上述信号的硬件电路和软件编程。
信号频率幅度也按要求可调。
本设计核心任务是:以AT89C52为核心,结合D/A转换器和DAC0832等器件,用仿真软件设计硬件电路,用C语言编写驱动程序,以实现程序控制产生正弦波、三角波、方波、三种常用低频信号。
可以通过键盘选择波形和输入任意频率值。
关键词: AT89C52单片机函数波形发生器 DAC0832 方波三角波正弦波目次1 引言 (4)2 系统设计 (6)方案 (6)器件选择 (6)总体系统设计 (6)硬件实现及单元电路设计 (7)单片机最小系统设计 (7)D/A转换器 (8)运算放大器电路 (10)LED显示器接口电路 (11)波形产生原理及模块设计 (11)显示模块设计 (13)键盘显示模块设计 (14)软件设计流程 (14)软件中的重点模块设计 (14)3 输出波形种类与频率的测试 (18)测量仪器及调试说明 (18)调试过程 (18)调试结果 (22)结论 (23)致谢 (25)参考文献 (26)附录A 源程序 (27)附录B仿真图 (34)1 引言单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。
基于单片机的信号发生器的设计WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】唐山师范学院题目基于单片机的信号发生器的设计院系名称:电子信息科学与技术学号:摘要波形发生器即简易函数信号发生器,是一个能够产生多种波形,如三角波、锯齿波、方波、正弦波等波形电路。
函数信号发生器在电路实验和设备仪器中具有十分广泛的用途。
通过对函数发生器的原理以及构成分析,可设计一个能变换出三角波、锯齿波、方波、正弦波的函数波形发生器。
在工业生产和科研中利用函数信号发生器发出的信号,可以对元器件的性能及参数进行测量,还可以对电工和电子产品进行指数验证、参数调整及性能鉴定。
常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不仅参数准确度难以保证,而且体积和功耗都很大,而由数字电路构成的低频信号发生器,虽然其性能好但体积较大,价格较贵,因此,高精度,宽调幅将成为数字量信号发生器的趋势。
本文介绍的是利用89C52单片机和数模转换器件DAC0832产生所需不同信号的低频信号源,其信号幅度和频率都是可以按要求控制的。
文中简要介绍了DAC0832数模转换器的结构原理和使用方法,89C52的基础理论,以及与设计电路有关的各种芯片。
文中着重介绍了如何利用单片机控制D/A转换器产生上述信号的硬件电路和软件编程。
信号频率幅度也按要求可调。
本设计核心任务是:以AT89C52为核心,结合D/A转换器和DAC0832等器件,用仿真软件设计硬件电路,用C语言编写驱动程序,以实现程序控制产生正弦波、三角波、方波、三种常用低频信号。
可以通过键盘选择波形和输入任意频率值。
关键词: AT89C52单片机函数波形发生器 DAC0832 方波三角波正弦波目次1 引言 (4)2 系统设计 (6)方案 (6)器件选择 (6)总体系统设计 (6)硬件实现及单元电路设计 (7)单片机最小系统设计 (7)D/A转换器 (8)运算放大器电路 (10)LED显示器接口电路 (11)波形产生原理及模块设计 (11)显示模块设计 (13)键盘显示模块设计 (14)软件设计流程 (14)软件中的重点模块设计 (14)3 输出波形种类与频率的测试 (18)测量仪器及调试说明 (18)调试过程 (18)调试结果 (22)结论 (23)致谢 (25)参考文献 (26)附录A 源程序 (27)附录B仿真图 (34)1 引言单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。
单片机课程设计报告系部:电子通信工程系专业:电子信息工程课程设计报告前言:本文以8051f410单片机为核心设计了一个低频函数信号发生器。
信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、锯齿、三角波、及其他任意波形,波形的频率和幅度在一定范围内可任意改变。
波形和频率的改变通过软件控制,幅度的改变通过硬件实现。
介绍了波形的生成原理、硬件电路和软件部分的设计原理。
本系统可以产生最高频率99999HZ的波形。
该信号发生器具有体积小、价格低、性能稳定、功能齐全的优点。
设计报告:一、工作原理数字信号可以通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模拟信号的方法来获得所需要的波形。
8051f410单片机本身就是一个完整的微型计算机,具有组成微型计算机的各部分部件:中央处理器CPU、随机存取存储器RAM、只读存储器ROM、I/O接口电路、定时器/计数器以及串行通讯接口等,只要将8051f410再配置键盘及、及波形输出、放大电路等部分,即可构成所需的波形发生器。
经过考虑,我们确定方案如下:利用F410单片机采用程序设计方法产生锯齿波、三角波、正弦波、方波四种波形,再通过D/A转换器将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,通过键盘来控制四种波形的类型选择、频率变化,最终输出显示其各自的类型以及数值。
1.1、设计要求1)、利用单片机采用软件设计方法产生四种波形2)、四种波形可通过键盘选择3)、波形频率可调4)、需显示波形的种类及其频率二、主程序思路主程序先是进行一些初始化的工作,然后根据波形标志代码的值,使其形成多个数组,每个数组都是一个波形代码。
这样写的好处是输出的波形频率也可以有定时常数决定,找到定时常数和输出频率的关系。
在按键设置波形转换状态的循环中,波形的转换状态在按键上可以一一看出,把四种波形设置成0、1、2、3、在数码管的最高位设置成循环显示,然后把每个波形的代码值通过单片机自带的AD 转换赋给输出的数据口,确定每个数组然后确定数组的列是否为数组中最后行的一个元素,若是则运行下一行的元素(另一个波形),并通过端口输出P0.0。
基于单片机的多功能函数信号发生器设计学生:xxx,电子信息学院指导教师:xxx,电子信息学院一、课题来源为了实现输出多种波形的功能,基于单片机的控制及各电子器件与单片机间的联合,编写相应的软件,设计一种信号发生器。
以适应各种理论研究。
二、研究的目的和意义函数发生器亦称信号发生器,主要作为实验用信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。
目前,市场上常见的波形发生器多为纯硬件的搭接而成,波形种类多为锯齿、正弦、方波、三角等波形。
用分立元件组成的函数发生器,通常是单函数发生器且频率不高,其工作不很稳定,不易调试;用集成芯片的函数发生器,可达到较高的频率和产生多种波形信号,但电路较为复杂且不易调试。
利用单片集成芯片的函数发生器,能产生多种波形,达到较高的频率,且易于调试;利用专用直接数字合成DDS 芯片的函数发生器,能产生任意波形并达到很高的频率,但成本较高。
函数发生器作为一种常见的应用电子仪器设备,传统的一般可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。
但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。
在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。
而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC要很大。
大电阻,大电容在制作上有困难,参数的精度亦难以保证。
体积大,漏电,损耗显著更是其致命的弱点。
一旦工作需求功能有增加,则电路复杂程度会大大增加。
利用单片机采用程序设计方法来产生低频信号,其频率底线很低。
具有线路相对简单,结构紧凑,价格低廉,频率稳定度高,抗干扰能力强,用途广泛等优点,并且能够对波形进行细微调整,改良波形,使其满足系统的要求。
只要对电路稍加修改,调整程序,即可完成功能升级。
三、参考文献及资料名称【1】徐爱钧,智能化测量控制仪表原理与设计,北京航空航天大学出版社,2004【2】徐爱钧,单片机原理实用教程-基于Proteus虚拟仿真(第2版),电子工业出版社,2011【3】周润景等,基于PROTEUS的电路的及单片机系统设计与仿真,北京航空航天大学出版社,2006【4】余永权等,单片机在控制系统中的应用,电子工业出版社,2006【5】周灵彬,PROTEUS的单片机教学与应用仿真,单片机与嵌入式系统应用,2008【6】沙占友,单片机外围电路设计,电子工业出版社,2005【7】沈红卫,基于单片机的智能系统设计与实现,电子工业大学出版社,2005【8】朱善君等,单片机接口技术与应用,清华大学出版社,2005【9】张靖武等,单片机系统的PROTEUS设计与仿真,电子工业大学,2007【10】宁成军等,基于Proteus和Keil接口的单片机外围硬件电路仿真,现代电子技术,2006【11】孙德文,微型计算机技术,高等教育出版社,2005(7)【12】汪文等,单片机原理及应用,华中科技大出版社,2007四、国内外发展趋势及研究主攻方向我国的单片机应用始于80年代,虽然发展迅速,但相对于世界市场我国的占有率还很低。
基于单片机的函数信号发生器设计引言:函数信号发生器是一种能够产生各种不同波形的仪器,广泛应用于电子实验、仪器仪表测试等领域。
传统的函数信号发生器通常由模拟电路实现,但使用单片机来设计函数信号发生器具有灵活性高、可编程性强的优点。
本文将介绍一种基于单片机的函数信号发生器的设计。
一、设计原理单片机函数信号发生器的设计基于数字信号处理技术,通过使用单片机的计时器和IO口来产生各种不同形状和频率的波形。
其主要步骤如下:1.选择适当的单片机选择一款拥有足够IO口和计时器功能的单片机作为控制核心。
可以使用常见的单片机如ATmega16、STM32等。
2.设计时钟电路通过外部晶振或者内部时钟源,提供稳定的时钟信号。
3.波形生成算法选择合适的波形生成算法,根据算法设计相应的程序来生成正弦、方波、三角波等不同波形。
4.输出接口设计设计输出接口,可以使用模拟输出电路将数字信号转化为模拟信号输出到外部设备,也可以使用DAC芯片来实现模拟输出。
二、硬件设计1.单片机选型在选择单片机时,需要考虑到所需的IO口数量、计时器数量和存储器容量等因素。
对于初学者来说,可以选择ATmega16单片机,它拥有足够的IO口和计时器资源。
2.时钟电路设计为了使单片机能够稳定工作,需要提供合适的时钟信号。
可以使用外部晶振电路或者内部时钟源。
同时,还需要添加滤波电路来排除干扰。
3.输入电路设计如果需要通过键盘或者旋钮来调节频率和幅度等参数,可以设计相应的输入电路。
可以使用AD转换器来将模拟信号转化为数字信号输入到单片机。
4.输出电路设计为了将数字信号转化为模拟信号输出到外部设备,可以使用RC电路或者声音音箱等输出装置。
三、软件设计1.程序框架设计设计程序框架,包括初始化配置、波形生成循环、参数调整等部分。
2.波形生成算法编写根据所选的波形生成算法,编写相应的程序代码。
可以使用数学函数来生成正弦波、三角波等形状,也可以采用查表法。
3.输入参数处理根据设计要求,编写处理输入参数的程序代码,实现参数调整、频率设置等功能。
基于单片机的函数信号发生器毕业设计完整版本毕业设计旨在设计一个基于单片机的函数信号发生器,以满足工程实践需求。
设计的信号发生器将具有以下特点:能够输出多种波形、具备可调频率和幅度的功能、具备稳定性和高精度等。
首先,信号发生器的硬件设计包括信号源、滤波电路、放大电路和输出电路。
信号源负责产生基本的信号波形,可以通过设置单片机的IO口电平高低来控制信号的波形。
滤波电路和放大电路主要负责对信号进行滤波和放大处理,以确保输出的波形质量和幅度稳定性。
输出电路则是将放大后的信号输出到外部设备上。
其次,信号发生器的软件设计主要是通过编程控制单片机的IO口来实现波形的生成和调节。
编程方面,可以使用C语言或者汇编语言来编写程序,实现波形的输出、频率和幅度的调节等功能。
在程序的运行过程中,需要通过控制IO口电平的高低来控制信号的形状。
同时,可以使用按键或旋钮等外部输入设备来实现对频率和幅度的调节,以满足用户的实际需求。
最后,在设计的过程中需要注意信号发生器的稳定性和精度。
稳定性主要包括信号的频率稳定性和幅度稳定性。
频率稳定性可以通过使用高精度的时钟源和精确的频率分频电路来实现。
幅度稳定性可以通过使用高精度的放大电路和自动增益控制电路来实现。
精度方面,则可以通过使用高精度的模拟数字转换芯片和时钟源来实现。
总的来说,基于单片机的函数信号发生器在工程实践中具有重要意义。
本设计旨在结合硬件和软件技术,实现一个功能完善、稳定性好、精度高的信号发生器。
通过合理的设计和优化,该信号发生器能够满足工程实践的需求,为相关领域的研究提供信号源支持。
基于单片机的函数信号发生器设计引言函数信号发生器是一种能够产生各种类型的电信号的仪器。
在电子学、通信工程等领域,函数信号发生器被广泛应用于信号测试、频率测量、波形生成等实验和工程应用中。
本文将介绍一种基于单片机的函数信号发生器设计方案。
一、设计目标本设计的目标是实现一个功能齐全、稳定可靠的函数信号发生器。
主要功能包括产生常见的波形,如正弦波、方波、三角波等;能够调节频率和幅度,以满足不同的实验需求;具备稳定性好、误差小等特点。
二、硬件设计1.单片机选择单片机作为该设计的核心,需要选择性能稳定、功能强大的型号。
常用的单片机型号有AT89C51、ATmega328P等。
选择单片机时,需要考虑到其定时器、ADC等外设功能是否满足要求,以及是否能够方便地编程和调试。
2.信号输出电路设计信号输出电路是函数信号发生器的重要组成部分。
一种常见的设计方案是使用DAC芯片将数字信号转换为模拟信号输出。
选择合适的DAC芯片时,需要考虑其分辨率、采样率、失真度等参数,以及是否支持SPI或I2C等通信接口。
除此之外,还需要考虑输出电路的放大和滤波设计,以确保信号质量。
3.控制电路设计函数信号发生器需要能够通过按键或旋钮控制参数,如频率、幅度等。
因此,设计中需要考虑如何选择合适的控制器件,如按钮开关、数码旋钮或触摸屏等,并设计相应的电路以实现参数调节功能。
4.电源设计函数信号发生器需要一个稳定可靠的电源供电。
一种常见的选择是使用交流电源适配器提供稳定的直流电源。
此外,还需要考虑到功耗问题,选择适当的电源容量以满足整个系统的工作需求。
三、软件设计1.程序框架设计函数信号发生器的软件设计需要考虑到以下几个方面:初始化、参数设置、波形生成和输出等。
程序的框架设计可以遵循一般的流程,如初始化硬件、获取用户输入、生成波形、输出信号等。
2.参数设置功能函数信号发生器需要具备参数设置功能,用户可以通过按键或旋钮调节频率、幅度等参数。
因此,在软件设计中需要考虑到相应的数值输入和显示界面设计。
基于单片机的函数信号发生器的设计摘要本课题是采用低成本的MCS-51系列单片机构成具有高可靠性的函数信号发生器的应用设计。
本设计通过单片机运算产生二进制控制信号去控制AD9850进而实现函数波形的产生。
基于单片机的函数信号发生器抗干扰性强、功耗低、成本低、易实现,具有很高的实用价值。
本系统以51单片机为控制核心,由电源模块、单片机AT89S52最小系统模块、中断键盘模块、函数信号发生模块、MAX7219显示模块组成。
采用中断键盘扫描方式计算所需频率,用数控的方法控制DDS芯片AD9850产生100Hz-40MHz正弦信号,100Hz-5MHz方波信号,波形输出较稳定,且精度较高。
采用MAX7219驱动两个四位一体的八段LED数码管,显示出当前波形的频率。
系统用C语言编写模块化程序,增强可读性,便于AT89S52对各模块的控制,实现各功能的设置。
关键词:单片机、直接数字频率合成(DDS)、 AD9850 、函数信号、正弦波、方波MCU-based Function Signal Generator DesignABSTRACTThis issue is low-cost microcontroller MCS-51 family of highly reliable functions constitute a signal generator applications. This design generates a binary control signal MCU operation to control the AD9850 to realize the function of waveform generation. Function Generator based on single chip and strong anti-interference, low power consumption, low cost, easy to implement, has high practical value.The system control microcontroller core 51 by the power supply module, MCU AT89S52 minimum system module, the keyboard interrupt module, function signal generator module, MAX7219 display module. Calculated by scanning the keyboard interrupt the required frequency, using numerical methods to control DDS chip AD9850 produced 100Hz-40MHz sinusoidal signal, 100Hz-5MHz square wave signal, the waveform output is stable and high precision. Use of MAX7219 drives four in one of eight out of two LED digital tube, showing the frequency of the current waveform. Modular system with C language programs to enhance readability, ease of AT89S52 on the module controlRealize the function of setting.Key words:Singlechip Direct Digital Synthesizer(DDS)AD9850Function Signal Sine wave Square Wave目录摘要 (I)ABSTRACT ................................................. I I 1 绪论 (1)1.1 设计背景 (1)1.2 设计目的 (2)1.3 设计意义 (2)2 课题设计相关理论知识 (3)2.1 DDS的系统简介 (3)2.1.1 DDS的基本原理 (3)2.1.2 DDS的性能特点 (3)2.2 AD9850简介 (4)2.2.1 AD9850功能概述 (4)2.2.2 AD9850的引脚功能 (5)2.2.3 AD9850工作原理 (5)2.2.4 AD9850应用与设计 (6)3 系统的总体设计 (8)3.1 方案论证 (8)3.2 设计原理框图 (8)4 系统硬件设计 (9)4.1 电源电路 (9)4.2 AT89S52单片机最小系统 (9)4.2.1 AT89S52的资源参数 (9)4.2.2 最小系统与I/O连接情况 (10)4.3 中断键盘设计电路 (11)4.4 MAX7219显示电路 (12)4.5 AD9850函数信号发生模块 (13)4.5.1 AD9850模块主电路 (13)4.5.2 AD9850模块时钟电路 (14)4.5.3 AD9850模块输入输出口定义 (15)4.6 AT89S52单片机ISP下载线 (15)4.6.1 ISP简介 (15)4.6.2 AT89S52单片机ISP下载线原理 (16)4.6.3 电脑并口DB25引脚定义说明 (17)4.7 小结 (17)5 系统软件设计 (18)5.1 单片机MCS-51系列简介 (18)5.2 MAX7219模块驱动程序 (18)5.2.1 初始化程序 (20)5.2.2 送显子程序 (21)5.2.3 数据传送程序 (22)5.3 AD9850的驱动程序设计 (23)5.3.1 初始化程序 (23)5.3.2 写控制字子程序 (24)5.4 主函数程序设计 (26)5.4.1 中断INT0服务函数 (26)5.4.2 主函数 (27)5.5 Keil C51介绍 (29)5.6 ISPlay v1.5介绍 (30)5.7 小结 (31)6 系统调试与分析 (33)6.1 硬件调试 (33)6.2 软件调试 (34)6.3 系统调试 (37)6.3.1 独立按键与显示测试 (37)6.3.2 波形测试 (38)6.3.3 与开题要求对比 (40)6.4 小结 (41)参考文献 (42)附录 1 (43)附录 2 (50)附录 3 (51)附录 4 (52)谢辞 (54)基准时钟 相位累加器 相位/幅度变换 D/A 变换 低通滤波 比较器1 绪论1.1 研究背景近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统函数信号发生器日新月益更新。
基于单片机的函数信号发生器设计
近年来,随着科学技术的飞速发展,计算机的硬件设备和软件程序的逐步完善,信号发生器具有许多优点,如低成本、可靠性高、灵活性强等优点,已经被广泛应用于计算机技术和各种测量仪器中。
而基于单片机的函数信号发生器,则更具有可编程性能和更低的成本优势,深受广大科学家的青睐。
本文的目的是设计一种基于单片机的函数信号发生器,该发生器由一个单片机、一个发射机、一个接收机和一个调制解调组成,以及一个显示器来显示接收的信号。
首先,运用单片机作为控制器,将其与发射机连接,再将各种函数信号(如正弦波、方波、余弦波等)调制到发射机输出端,让发射机发射出各种函数信号。
接着,在接收机方面,我们使用一个调制解调器,接收机接收到发射机发出的函数信号后,将信号解调,重新调制成我们想要的函数信号,然后使用显示器来显示函数信号的波形,以便观察。
最后,在硬件的设计上,我们使用单片机作为控制器,发射机和接收机可以分别使用多种射频技术(如射频调制、无线电调制、数字调制等),发射机的输出功率可以通过改变电容电阻和其它技术来微调,以符合接收机所能处理的范围。
此外,显示器可以采用液晶显示屏,以显示函数信号的波形。
经过上述一系列设计,我们就可以构建一个可用于测量和发射函数信号的发生器,它具有低成本、可编程性高的优点,为科学研究提供了一种有效的发射和测量工具。
因此,我们可以简单总结:本文研究了一种基于单片机的函数信号发生器,它利用发射机发射不同函数信号,使用接收机接收并解调,然后将函数信号显示出来,最终利用发射机和接收机实现了函数信号的发射和接收,实现了低成本、可编程性高、灵活性强、可靠性高的性能。