小升初数学试卷:奥数题及答案
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
小升初奥数题及答案(经典版)小升初奥数题及答案(经典版)一、选择题1.某数除以6,商是4,余数是多少?A. 3B. 4C. 5D. 6答案:B2.甲数的3倍等于乙数的5倍,则甲数是乙数的几分之几?A. 3/5B. 4/5C. 5/4D. 5/3答案:C3.某数的两倍增加60等于90,这个数是多少?A. 15B. 20C. 45D. 60答案:A4.下一个“完全平方数”是什么?A. 64B. 81C. 88D. 100答案:B5.质数是指只能被1和自己整除的自然数,以下哪个数是质数?A. 1B. 10C. 17D. 27答案:C二、填空题1.现在是星期三,10天后是星期几?答案:星期六2.一个四位数,千位数是2,个位数是4,十位数比个位数多1,百位数比十位数多4,这个数是多少?答案:21443.一个大于1的自然数除以2,商是5,余数是4,这个数是多少?答案:14三、解答题1.小明家附近有一片矩形草坪,长20米,宽15米。
他想在草坪四周围上一圈木栅栏,每段木栅栏的长度都相等。
请问每段木栅栏的长度是多少米?答案:每条木栅栏的长度是20+15+20+15=70米。
2.某书店新到一批数学书籍,分为4个等分。
如果每个等分有55本书,那么这批书共有多少本?答案:这批书共有4 × 55 = 220本。
3.有20个小球,其中16个重量一样,其他4个也重量一样,但比那16个重的小球更重。
请问,至少需要用天平称几次可以找出重的小球?答案:只需要用天平称2次。
首先,我们将20个小球平分成两组,每组10个小球,然后只需要用天平比较这两组小球的重量,就可以确定出重的小球所在的一组。
接下来,我们再将这一组里的10个小球平分成两组,每组5个小球,再次用天平比较,就可确定出重的小球所在的一组。
最后,将这一组的5个小球中任意两个拿出来比较,就能找到重的小球。
总结:小升初奥数题及答案(经典版)涵盖了选择题、填空题和解答题。
小升初奥数考试题及答案1. 题目:一个数列,前三项分别是1,2,4,从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:根据题意,数列的前几项为1,2,4,7(1+2+4),13(2+4+7),24(4+7+13),44(7+13+24),81(13+24+44),149(24+44+81),274(44+81+149),504(81+149+274)。
因此,第10项的值为504。
2. 题目:一个长方形的长是宽的两倍,如果宽增加5米,长减少3米,面积就增加35平方米。
求原来长方形的长和宽。
答案:设原来长方形的宽为x米,则长为2x米。
根据题意,有方程:(x+5)(2x-3) - x*2x = 35。
解得x=7,所以原来的宽为7米,长为14米。
3. 题目:一个自然数,除以3余1,除以5余2,除以7余3,求这个数。
答案:根据中国剩余定理,设这个数为x,则有以下同余方程组:x ≡ 1 (mod 3)x ≡ 2 (mod 5)x ≡ 3 (mod 7)解得x=53。
因此,这个自然数是53。
4. 题目:一个工厂有100个工人,每个工人每天可以生产10个零件。
现在工厂接到一个订单,需要在30天内完成1000个零件的生产。
如果工厂每天增加5个工人,那么需要多少天完成这个订单?答案:设需要x天完成这个订单,则有方程:(100+5x)*10x = 1000。
解得x=5。
因此,需要5天完成这个订单。
5. 题目:一个数的平方减去这个数本身再减去1等于0,求这个数。
答案:设这个数为x,则有方程:x^2 - x - 1 = 0。
解得x=(1±√5)/2。
因此,这个数是(1±√5)/2。
结束语:通过以上题目的练习,可以有效地提高学生的逻辑思维能力和数学解题技巧,为小升初的数学考试打下坚实的基础。
小升初奥数试题题及答案1. 题目:一个数列的前三项是2,4,6,从第四项开始,每一项都是它前三项的和。
求这个数列的第10项是多少?答案:首先,我们已知数列的前三项是2,4,6。
根据题目描述,我们可以计算出接下来的几项:- 第四项:2 + 4 + 6 = 12- 第五项:4 + 6 + 12 = 22- 第六项:6 + 12 + 22 = 40- 第七项:12 + 22 + 40 = 74- 第八项:22 + 40 + 74 = 136- 第九项:40 + 74 + 136 = 250- 第十项:74 + 136 + 250 = 470所以,这个数列的第10项是470。
2. 题目:一个水池,有甲乙两个水管,甲水管单独注水需要6小时,乙水管单独注水需要8小时。
现在甲乙两个水管同时注水,需要多少时间才能将水池注满?答案:设水池的容量为1,甲水管的注水速度为1/6,乙水管的注水速度为1/8。
当甲乙两个水管同时注水时,它们的注水速度相加,即1/6 + 1/8 = 7/24。
因此,注满水池需要的时间为1 / (7/24) = 24/7小时。
3. 题目:一个长方体的长、宽、高分别为2,3,4。
求这个长方体的表面积。
答案:长方体的表面积计算公式为:2 * (长*宽 + 长*高 + 宽*高)。
将题目中给出的长、宽、高代入公式,我们可以得到:表面积 = 2 * (2*3 + 2*4 + 3*4) = 2 * (6 + 8 + 12) = 2 * 26 = 52所以,这个长方体的表面积是52平方单位。
4. 题目:一个数列的前四项是1,2,4,8,求这个数列的第五项。
答案:观察数列的前四项,我们可以发现每一项都是前一项的两倍。
因此,这个数列是一个等比数列,公比为2。
根据等比数列的性质,第五项是第四项的两倍,即8 * 2 = 16。
5. 题目:一个班级有40名学生,其中有20%的学生喜欢足球,30%的学生喜欢篮球,剩下的学生喜欢乒乓球。
使用办法:题目后面有答案,但是要遮住答案完成,把题目完成在笔记本,自行核对,一天一题小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)} 左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
1、某次数学测验共20题,作对1题得5分,做错1题扣1分,不做得0分,小华得了76分,他对了多少题?20-(20×5-76)÷(5+1)=16(道)2、一班有学生45人,男生2/5和女生的1/4参加了数学竞赛,参赛的共有15人,男女生各几人解:设男生有x人,则女生有(45-x)。
2/5x+1/4 (45-x)=152/5x + 4/45 -4/x =15x=25女生:45-25=20 (人)3、一列火车长200米,通过一条长430的隧道用了42秒,以同样的速度通过某站台用25秒,这个站台长多少米?(200+430)÷42×25-200=375-200=175米4、一项工作,甲单独做需15天完成,乙单独做需12天完成。
这项工作由甲乙两人合做,并且施工期间乙休息7天,问几天完成?解:设完成工作要X天,所以甲乙一起工作(X-6)天,甲单独工作6天。
根据题意可得甲单独一天可完成1/15.乙1/12,由此得式子:(1/15 +1/12)(X-6) +1/15*6=1解得X=105、本骑车前往一座城市,去时的速度为x,回来时的速度为y。
他整个行程的平均速度是多少?(答案是2xy/x+y,为什么?)解:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y那么平均速度为2S/(S/X+S/Y)=2/(1/X+1/Y)=2XY/(X+Y)6、游泳池里,参加游泳的学生,小学生占30%,又来一批学生后,学生总数增加20%,小学生占学生总数的40%,小学7、将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数多12,求甲、乙、丙各是几?解:把1440分解质因数:1440= 12×12×10=2×2×3×2×2×3×2×5=(2×2×2)×(3×3)×(2×2×5)=8×9×20如果甲、乙二数分别是8、9,丙数是20,则:8×9=72,20×3+12=72正符合题中条件。
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
下⾯是⽆忧考为⼤家带来的“⼩升初奥数试题及答案解析”,欢迎⼤家阅读。
【篇⼀】 【篇⼀】 1.王刚、李强和⼩莉、⼩芳是两对夫妻,四⼈的年龄和是132岁。
丈夫都⽐⾃⼰的妻⼦⼤5岁,李强⽐⼩芳⼤6岁。
⼩莉多少岁? 解答: 若妻⼦都增加5岁,那么四⼈的年龄和为132+5×2=142岁,因此两个丈夫的年龄和是142÷2=71岁。
由条件可以知道,李强的妻⼦是⼩莉,王刚的妻⼦是⼩芳。
李强⽐⼩芳⼤6岁,王刚⽐⼩芳⼤5岁,所以李强⽐王刚⼤1岁,因此李强的年龄为(71+1)÷2=36岁,⼩莉是36-5=31岁。
2.第⼀个图形由4根⽕柴棍组成,第⼆个图形由12根⽕柴棍组成,第三个图形由24根⽕柴棍组成,依此类推,第100个图形由多少根⽕柴棍组成? 解答: 横向与纵向的⽕柴棍根数⼀样。
4=2×1×2,12=2×2×3,24=2×3×4,依此类推,第100个图形共有2×100×101=20200根。
【篇⼆】 【篇⼆】 1.将15拆成若⼲个互不相同的⾃然数之和,要求这些⾃然数的乘积尽量⼤,那么积是多少? 解答: 15=2+3+4+6,2×3×4×6=144 2.将各位数字都不⼤于5的⾮0⾃然数,从⼩到⼤排列,第2010个数是多少? 解答: 实际就是将六进制的数从⼩到⼤排列。
将2010转化为六进制。
(2010)10=(13150)6 第2010个数就是13150。
3.⼀条马路长200⽶,在马路两侧每隔4⽶种⼀棵树,则⼀共要种多少棵树? 解答: 200÷4+1=51(棵)51×2=102(棵) 【篇三】【篇三】 1.中午12时,校准A、B、C三钟。
小升初奥数考试题及答案1. 题目:一个数列的前三项是1,2,3,从第四项开始,每一项都是它前三项的和。
求数列的第10项是多少?答案:根据题意,数列的前几项为1,2,3,6,10,15,21,28,36,45。
因此,数列的第10项是45。
2. 题目:一个长方体的长、宽、高分别为5厘米、4厘米、3厘米,求这个长方体的表面积。
答案:长方体的表面积公式为2(长×宽+长×高+宽×高)。
代入数据得:2(5×4+5×3+4×3)=2(20+15+12)=2×47=94平方厘米。
3. 题目:一个正整数除以3余1,除以5余2,除以7余3,求这个数。
答案:满足条件的数是3、5、7的最小公倍数减去1,即3×5×7-1=104。
4. 题目:一个数的平方减去这个数等于48,求这个数。
答案:设这个数为x,则有x^2 - x = 48。
解这个一元二次方程,得到x=8或x=-6。
5. 题目:一个数列的前三项是2,4,6,从第四项开始,每一项都是它前三项的和。
求数列的第10项是多少?答案:根据题意,数列的前几项为2,4,6,12,18,28,42,60,84,114。
因此,数列的第10项是114。
6. 题目:一个长方体的长、宽、高分别为6厘米、5厘米、4厘米,求这个长方体的体积。
答案:长方体的体积公式为长×宽×高。
代入数据得:6×5×4=120立方厘米。
7. 题目:一个正整数除以4余2,除以5余3,除以6余4,求这个数。
答案:满足条件的数是4、5、6的最小公倍数减去2,即4×5×6-2=118。
8. 题目:一个数的立方减去这个数等于216,求这个数。
答案:设这个数为y,则有y^3 - y = 216。
解这个一元三次方程,得到y=6。
9. 题目:一个数列的前三项是3,5,7,从第四项开始,每一项都是它前三项的和。
小升初奥数数学试卷及答案小升初奥数数学试卷及答案小升初考试对于身处其中的家长和学生来说是一场战役。
考验着家长和孩子的智力、体力、耐力、毅力、抗压力。
下面是小编为大家整理的小升初奥数数学试卷及答案,欢迎参考~小升初奥数数学试卷及答案【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?【详解】要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?(1)每小时耕地多少公顷?40÷5=8(公顷)(2)需要多少小时?72÷8=9(小时)答:耕72公顷地需要9小时。
【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。
如果每天烧1000千克,可以多烧几天?【详解】要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。
(1)这堆煤一共有多少千克?1500×6=9000(千克)(2)可以烧多少天?9000÷1000=9(天)(3)可以多烧多少天?9-6=3(天)。
【试题】把7本相同的书摞起来,高42毫米2017小学三年级奥数试题及答案2017小学三年级奥数试题及答案。
如果把28本这样的书摞起来,高多少毫米?(用不同的.方法解答)【详解】方法1:(1)每本书多少毫米?42÷7=6(毫米)(2)28本书高多少毫米?6×28=168(毫米)方法2:(1)28本书是7本书的多少倍?28÷7=4(2)28本书高多少毫米?42×4=168(毫米)【试题】两个车间装配电视机。
第一车间每天装配35台,第二车间每天装配37台。
照这样计算,这两个车间15天一共可以装配电视机多少台?【详解】方法1:(1)两个车间一天共装配多少台?35+37=72(台)(2)15天共可以装配多少台?72×15=1080(台)方法2:(1)第一车间15天装配多少台?35×15=525(台)(2)第二车间15天装配多少台?37×15=555(台)(3)两个车间一共可以装配多少台?555+525=1080(台)答:15天两个车间一共可以装配1080台。
小升初数学必考奥数题100道附答案(完整版)题目1:有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄乘积是360。
他们中年龄最大的是多少岁?答案:将360 分解因数,360 = 2×2×2×3×3×5 = 3×4×5×6,所以年龄最大的是6 岁。
题目2:计算:1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +…+ 2014 - 2015 - 2016 + 2017 + 2018答案:原式= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +…+ (2013 + 2014 - 2015 - 2016) + 2017 + 2018 = 2017 + 2018 = 4035题目3:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成?答案:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要6 天完成。
题目4:在一个比例中,两个外项互为倒数,其中一个内项是2.5,另一个内项是多少?答案:两个外项互为倒数,乘积为1。
根据比例的性质,两个内项的积也为1,所以另一个内项是1÷2.5 = 0.4题目5:一个数除以8 余5,除以9 余6,这个数最小是多少?答案:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数最小是72 - 3 = 69题目6:一个圆形花坛的周长是25.12 米,在它的周围加宽1 米,加宽后的面积比原来增加了多少平方米?答案:原来花坛的半径为25.12÷3.14÷2 = 4 米,加宽后的半径为5 米。
增加的面积为3.14×(5²- 4²) = 28.26 平方米题目7:一个长方体的棱长总和是120 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少立方厘米?答案:120÷4 = 30 厘米,3 + 2 + 1 = 6,长为15 厘米,宽为10 厘米,高为5 厘米,体积为750 立方厘米题目8:甲乙两车同时从A、B 两地相对开出,4 小时后相遇。
小升初奥数题及答案五篇第一篇:数与代数1. 某数的三倍加上5等于20,求这个数。
解答:设这个数为x,则根据题意,可以列出方程3x + 5 = 20。
解这个一次方程可以得到x = 5。
2. 一个数增加20%后得到30,求这个数。
解答:设这个数为x,则根据题意,可以列出方程x + 0.2x = 30。
解这个一次方程可以得到x = 25。
第二篇:几何与图形1. 已知长方形的长是5cm,宽是3cm,求其面积和周长。
解答:长方形的面积可以通过长度乘以宽度来计算,即5cm × 3cm = 15cm²。
周长可以通过将长度和宽度相加再乘以2来计算,即(5cm + 3cm) × 2 = 16cm。
2. 在平面直角坐标系中,点A(2,3)和点B(5,1)连线,求线段AB的长度。
解答:根据坐标系中两点间的距离公式,线段AB的长度可以计算为√[(5-2)²+(1-3)²] = √[(3)²+(-2)²] = √(9+4) = √13。
第三篇:概率与统计1. 从1至15中随机抽取一个整数,求这个整数是偶数的概率。
解答:在1至15中,一共有8个偶数(2, 4, 6, 8, 10, 12, 14, 15)和7个奇数(1, 3, 5, 7, 9, 11, 13)。
因此,抽取的整数是偶数的概率为8/15。
2. 一个骰子中的每个面都标有1至6的数字,投掷骰子一次,求投掷结果是5或6的概率。
解答:骰子共有6个面,其中有2个面标有5和6。
因此,投掷结果是5或6的概率为2/6 = 1/3。
第四篇:逻辑与推理1. 小明说他有7本书,其中一半给了朋友,又借了5本回来,这时他还有多少本书?解答:小明有7本书,一半给了朋友,剩下的数量是7/2 = 3.5本。
因为书的数量不能为小数,所以小明实际上只剩下3本书。
2. 汤姆比杰克大三岁,而杰克比肯尼大两岁。
如果汤姆今年10岁,那么肯尼的年龄是多少?解答:根据题意,杰克比肯尼大两岁,汤姆比杰克大三岁,所以汤姆与肯尼之间的年龄差是5岁。
小升初最常考的奥数题100道及答案(完整版)1. 已知一张桌子的价钱是一把椅子的10 倍,又知一张桌子比一把椅子多288 元,一张桌子和一把椅子各多少元?答案:桌子320 元,椅子32 元。
解析:设一把椅子的价格为x 元,则一张桌子的价格为10x 元。
根据一张桌子比一把椅子多288 元,可列出方程:10x - x = 288,解得x = 32,那么桌子的价格为10x = 320 元。
2. 3 箱苹果重45 千克。
一箱梨比一箱苹果多5 千克,3 箱梨重多少千克?答案:60 千克。
解析:一箱苹果的重量为45÷3 = 15 千克,一箱梨比一箱苹果多5 千克,所以一箱梨重15 + 5 = 20 千克,3 箱梨的重量为20×3 = 60 千克。
3. 甲乙二人从两地同时相对而行,经过4 小时,在距离中点4 千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?答案:2 千米。
解析:甲比乙在4 小时内多走了4×2 = 8 千米,那么甲每小时比乙快8÷4 = 2 千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13 支,张强要了7 支,李军又给张强0.6 元钱。
每支铅笔多少钱?答案:0.15 元。
解析:两人付同样多的钱,应得到同样多的铅笔,一共买了13 + 7 = 20 支铅笔,平均每人10 支。
李军多要了13 - 10 = 3 支,给张强0.6 元,所以每支铅笔的价格为0.6÷3 = 0.2 元。
5. 甲乙两辆客车上午8 时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2 点。
甲车每小时行40 千米,乙车每小时行45 千米,两地相距多少千米?(交换乘客的时间略去不计)答案:250 千米。
解析:下午2 点即14 点,从上午8 点到下午2 点经过了6 小时。
小升初奥数试题题及答案小升初奥数试题及答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的1/4加上它的1/2,和是多少?A. 1/2B. 3/4C. 9/4D. 1答案:D3. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 120B. 240C. 180D. 100答案:A二、填空题4. 一个数比20大10,这个数是_________。
答案:305. 一本书的价格是35元,如果打8折,那么现价是多少元?答案:28元三、解答题6. 一块长方形草地的长是40米,宽是25米,现在要在其四周等距离地种上树,每个间隔5米种一棵。
请问四周共种了多少棵树?解答:首先计算长方形草地的周长,周长= 2 × (长 + 宽) = 2× (40米 + 25米) = 2 × 65米 = 130米。
由于每个间隔5米种一棵树,所以总共可以种植的树的数量是周长除以间隔距离,即 130米÷ 5米 = 26棵。
答案:四周共种了26棵树。
7. 小明和小红合作完成一项工作,小明单独完成需要4小时,小红单独完成需要6小时。
现在他们合作,共同完成这项工作需要多少时间?解答:小明每小时完成工作的1/4,小红每小时完成工作的1/6。
他们合作时,每小时完成的工作量是1/4 + 1/6 = 5/12。
要计算他们合作完成工作所需的时间,我们可以用工作总量1除以他们合作的工作效率,即1 ÷ (5/12) = 12/5 = 2.4小时。
答案:小明和小红合作完成这项工作需要2.4小时。
四、应用题8. 一辆汽车从甲地开往乙地,如果车速提高20%,可以比原定时间提前1小时到达。
如果车速提高30%,可以比原定时间提前1.5小时到达。
问甲乙两地之间的距离是多少公里?解答:设原车速为v公里/小时,原定时间为t小时,甲乙两地之间的距离为d公里。
小升初奥数测试题及答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的1/4加上它的1/2,和是多少?A. 1/4B. 3/4C. 9/4D. 1答案:D3. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 28元B. 30元C. 35元D. 42元答案:A二、填空题4. 一个长方形的长是15厘米,宽是10厘米,它的周长是________厘米。
答案:50厘米5. 一本书有120页,小明第一天看了总页数的1/4,第二天看了总页数的1/2,小明两天共看了________页。
答案:90页三、解答题6. 小明和小红共有100张邮票,如果小明给小红10张邮票,那么小红的邮票数将是小明的2倍。
小明和小红原来各有多少张邮票?解答:设小明原来有x张邮票,小红原来有(100-x)张邮票。
根据题意,2(x-10) = (100-x) + 10解得:2x - 20 = 110 - x3x = 130x = 40所以,小明原来有40张邮票,小红原来有60张邮票。
7. 一个水池有A、B、C三个进水管,A管单独注满水池需要10小时,B管需要12小时,C管需要15小时。
如果三个管子同时工作,那么需要多少时间才能注满水池?解答:设三个管子同时工作需要t小时注满水池。
A管每小时注水1/10,B管每小时注水1/12,C管每小时注水1/15。
三个管子同时工作,每小时注水量为1/10 + 1/12 + 1/15。
根据题意,(1/10 + 1/12 + 1/15) * t = 1解得:t = (1/10 + 1/12 + 1/15)^(-1)t = 4 (小时)四、应用题8. 一辆汽车从甲地到乙地,如果速度提高20%,可以比原定时间提前1小时到达。
如果速度降低20%,则会比原定时间晚1小时到达。
请问甲地到乙地的原定行驶时间是多少?解答:设原定速度为v,原定时间为t。
根据题意,v * t = (1.2v) * (t - 1) = (0.8v) * (t + 1)解得:t = 5 (小时)答案:甲地到乙地的原定行驶时间是5小时。
1 / 3 xx数学试卷:奥数题及答案(二) 1、三个村修路,甲乙丙三村路程比是8:7:5,丙没参加,拿出1350元,甲派出60人,乙派出40人,问甲乙各分得多少?
5份路程1350元,1份路程270元 人数比: 甲:乙=60:40=3:2 路程8:7:5共20份。 甲修份,多修12-8=4份应得270x4=1080元乙修份,多修8-7=1份应得1x270=270元2、共有4人进行跳远、百米、铅球、跳高四项比赛(每人四项均参加),规定每个单项第一名记5分,单项第二名记3分,单项第三名记2分,单项第四名记1分,每一单项比赛中四人得分互不相同。总分第一名共获得17分,其中跳高得分低于其他项得分。总分第三名共获得11分,其中跳高得分高于其他项得分。总分第二名的铅球这项的得分是()。(请写出分析过程)
解析: 17=5+5+5+2, 11=1+2+3+5=2+2+2+5,如果取1+2+3+5的话,就还剩3个3和2个2及3个1,取最大的3个3和1个2就等于11,第二名的分数不可能与第三名相同,所以1+2+3+5的答案排除,就只有取2+2+2+5的答案,最后还剩4个3和
4个1,取其中最大值有4个3为12,大于11,所以第二名的铅球得分是3;
如果平面上共有n个点(n是不小于3的整数),其中任意三点不在同一条直线上,连接任意两点画线段,可以画几条?n+{[(n-3)×n]÷2}
3、两人从两地相向而行,甲每分钟52米,乙每分钟70,在A点相遇;如果甲先走4分钟,然后甲速度仍为每分钟52米,乙的速度变为每分钟90米,恰好还在A点相遇,问两地相距多远? 2 / 3
分析: 如果甲先走4分钟,他后来时间没有变,仍然还是在A点相遇,说明乙两种情况下和甲相遇也是相差4分钟,即乙以每分钟70米和每分钟90米的速度行完同样路程相差4分钟。
那么这个问题可以看作一个盈亏问题,则有90*4/(90-70)=18,说明甲每分钟52米,乙每分钟70米,则18分钟行完全程,所以全程应为
小升初小学奥数试题及答案**试题一:计算题**1. 小明去商店买了5本书,每本书的价格都是7元。
请问他一共花了多少钱?答案:5 × 7 = 35元2. 一个果园里有8棵橘子树,每棵树上都结了9个橘子。
请问共有多少个橘子?答案:8 × 9 = 72个橘子3. 爸爸带小明去超市购物,他们买了6瓶牛奶,每瓶牛奶的容量是250毫升。
请问他们购买了多少毫升的牛奶?答案:6 × 250 = 1500毫升**试题二:逻辑推理题**阅读下面的问题,然后选择正确的答案。
1. 小明有5个红色的小球和3个蓝色的小球,他把这些小球放到一个箱子里,然后闭上了眼睛。
请问,他从箱子中随机取出一个小球,这个小球是红色的概率是多少?a) 1/4 b) 2/3 c) 1/2 d) 3/8答案:c) 1/22. 在一场比赛中,小红比小明跑得快,小明又比小绿跑得快。
请问以下哪个说法是正确的?a) 小红是最快的 b) 小明是最快的 c) 小绿是最快的 d) 不确定答案:d) 不确定**试题三:几何题**1. 如图所示,一个正方形的边长是4厘米,求它的周长。
(图:正方形)答案:边长 × 4 = 4厘米 × 4 = 16厘米2. 如图所示,一个长方形的长是5厘米,宽是3厘米,求它的面积。
(图:长方形)答案:长 ×宽 = 5厘米 × 3厘米 = 15平方厘米以上是小升初小学奥数的一些练习题,希望能帮助同学们提高数学能力。
答案也已经在题目后给出,同学们可以自行核对答案。
数学是一门需要不断练习和思考的学科,通过解题能够培养学生的逻辑思维和分析能力。
希望大家能够持续努力,取得更好的成绩。
祝愿大家能够在小升初的数学考试中取得好成绩!(字数:243字)。
第1页/共4页
小升初数学试卷:奥数题及答案
1、三个村修路,甲乙丙三村路程比是8:7:5,丙没参加,
拿出1350元,
甲派出60人,乙派出40人,问甲乙各分得多少
5份路程1350元,1份路程270元
人数比:
甲:乙=60:40=3:2
路程8:7:5共20份。 北京小升初
甲修20x3/5=12份,多修12-8=4份 应得270x4=1080元
乙修20x2/5=8份, 多修8-7=1份 应得1x270=270元
2、共有4人进行跳远、百米、铅球、跳高四项比赛(每人
四项均参加),规定每个单项第一名记5分,单项第二名记
3分,单项第三名记2分,单项第四名记1分,每一单项比
赛中四人得分互不相同。总分第一名共获得17分,其中跳
高得分低于其他项得分。总分第三名共获得11分,其中跳
高得分高于其他项得分。总分第二名的铅球这项的得分是
( )。(请写出分析过程)
解析:
17=5+5+5+2, 11=1+2+3+5=2+2+2+5, 如果取1+2+3+5的话,
就还剩3个3和2个2及3个1,取最大的3个3和1个2
就等于11,第二名的分数不可能与第三名相同,所以1+2+3+5
的答案排除,就只有取2+2+2+5的答案,最后还剩4个3和
第2页/共4页
4个1,取其中最大值有4个3为12,大于11,所以第二名
的铅球得分是3;
如果平面上共有n个点(n是不小于3的整数),其中任意三
点不在同一条直线上,连接任意两点画线段,可以画几条?
n+{[(n-3)×n]÷2}
3、两人从两地相向而行,甲每分钟52米,乙每分钟70,在
A点相遇;如果甲先走4分钟,然后甲速度仍为每分钟52
米,乙的速度变为每分钟90米,恰好还在A点相遇,问两
地相距多远?
分析:
如果甲先走4分钟,他后来时间没有变,仍然还是在A点相
遇,说明乙两种情况下和甲相遇也是相差4分钟,即乙以每
分钟70米和每分钟90米的速度行完同样路程相差4分钟。
那么这个问题可以看作一个盈亏问题,则有90*4/(90-70)
=18,说明甲每分钟52米,乙每分钟70米,则18分钟行完
全程,所以全程应为
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作
文运用到文章中的甚少,即使运用也很难做到恰如其分。为什
么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简
单,每天花3-5分钟左右的时间记一条成语、一则名言警句即
可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课
前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔
第3页/共4页
记本上抄写,教师定期检查等等。这样,一年就可记300多条
成语、300多则名言警句,日积月累,终究会成为一笔不小的财
富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时
便会随心所欲地“提取”出来,使文章增色添辉。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿
阅读训练工作,孩子一入园就召开家长会,给家长提出早期
抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情
况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故
事。我和家长共同配合,一道训练,幼儿的阅读能力提高很
快。(52+70)*18=2196(米)。
语文课本中的文章都是精选的比较优秀的文章,还有不少名
家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、
精彩段落,对提高学生的水平会大有裨益。现在,不少语文教
师在分析课文时,把文章解体的支离破碎,总在文章的技巧方
面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效
甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局
面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,
如果有目的、有计划地引导学生反复阅读课文,或细读、默读、
跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中
自然领悟文章的思想内容和写作技巧,可以在读中自然加强
语感,增强语言的感受力。久而久之,这种思想内容、写作技
巧和语感就会自然渗透到学生的语言意识之中,就会在写作
第4页/共4页
中自觉不自觉地加以运用、创造和发展。