高中数学第一章立体几何初步1.6.2垂直关系的性质第二课时平面与平面垂直的性质课件
- 格式:pptx
- 大小:13.09 MB
- 文档页数:44
2018-2019学年高中数学第1章立体几何初步1.2 点、线、面之间的位置关系1.2.4 第二课时两平面垂直课时作业苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第1章立体几何初步1.2 点、线、面之间的位置关系1.2.4 第二课时两平面垂直课时作业苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第1章立体几何初步1.2 点、线、面之间的位置关系1.2.4 第二课时两平面垂直课时作业苏教版必修2的全部内容。
1。
2.4 第二课时两平面垂直[学业水平训练]1。
已知PA⊥矩形ABCD所在的平面,如图所示,图中互相垂直的平面有________对.解析:∵DA⊥AB,DA⊥PA,AB∩PA=A,∴DA⊥平面PAB,同理BC⊥平面PAB,AB⊥平面PAD,DC⊥平面PAD,∴平面AC⊥平面PAD,平面AC⊥平面PAB,平面PBC⊥平面PAB,平面PDC⊥平面PAD,平面PAB⊥平面PAD,共5对.答案:52.如图,四面体P—ABC中,PA=PB=错误!,平面PAB⊥平面ABC,∠ABC=90°,AC=8,BC=6,则PC=________.解析:取AB的中点E,连结PE,PA=PB,∴PE⊥AB.又平面PAB⊥平面ABC,∴PE⊥平面ABC,连结CE,所以PE⊥CE.∠ABC=90°,AC=8,BC=6,∴AB=2错误!,PE=错误!=错误!,CE=BE2+BC2=错误!,PC=PE2+CE2=7.答案:73.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,PA=错误!,那么二面角P—BC-A的大小为________.解析:取BC的中点O,连结OA,OP(图略),则∠POA为二面角P-BC-A的平面角,OP=OA=3,PA=错误!,所以△POA为直角三角形,∠POA=90°.答案:90°4。
二课时平面与平面垂直的性质高效测评北师大版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第一章立体几何初步1.6.2 垂直关系的性质第二课时平面与平面垂直的性质高效测评北师大版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第一章立体几何初步1.6.2 垂直关系的性质第二课时平面与平面垂直的性质高效测评北师大版必修2的全部内容。
第二课时平面与平面垂直的性质高效测评北师大版必修2一、选择题(每小题5分,共20分)1.下列推理中错误的是( )A.如果α⊥β,那么α内所有直线都垂直于平面βB.如果α⊥β,那么α内一定存在直线平行于平面βC.如果α不垂直于β,那么α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ解析: 因为当α⊥β时,α内垂直于α与β的交线的直线垂直于β,不是α内所有直线都垂直于β。
答案:A2.设平面α⊥平面β,在平面α内的一条直线a垂直于平面β内的一条直线b,则( ) A.直线a必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面都垂直解析:因为直线a垂直于直线b,b不一定是平面β与α的交线,所以a不一定垂直于平面β。
答案:C3.平面α∩平面β=l,平面γ⊥α,γ⊥β,则()A.l∥γB.lγC.l与γ斜交D.l⊥γ解析:在γ面内取一点O,作OE⊥m,OF⊥n,由于β⊥γ,γ∩β=m,所以OE⊥面β,所以OE⊥l,同理OF⊥l,OE∩OF=O,所以l⊥γ.答案:D4.若平面α与平面β不垂直,那么平面α内能与平面β垂直的直线有( )A.0条B.1条C.2条D.无数条解析: 若存在1条,则α⊥β,与已知矛盾.答案:A二、填空题(每小题5分,共10分)5.若α⊥β,α∩β=l,点P∈α,P∉l,则下列结论中正确的为________.(只填序号)①过P垂直于l的平面垂直于β;②过P垂直于l的直线垂直于β;③过P垂直于α的直线平行于β;④过P垂直于β的直线在α内.解析:由面面垂直的性质定理可知,只有②不正确.答案:①③④6.若构成教室墙角的三个墙面记为α,β,γ,交线记为BA,BC,BD,教室内一点P到三墙面α,β,γ的距离分别为3 m,4 m,1 m,则P与墙角B的距离为________m.解析:过点P向各面作垂线,构成以BP为体对角线的长方体.答案: 26三、解答题(每小题10分,共20分)7.如图所示,α⊥β,CDβ,CD⊥AB,ECα,EFα,∠FEC=90°。
2017-2018学年高中数学第一章立体几何初步1.6垂直关系1.6.2垂直关系的性质学案北师大版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章立体几何初步1.6 垂直关系 1.6.2 垂直关系的性质学案北师大版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章立体几何初步 1.6 垂直关系1.6.2 垂直关系的性质学案北师大版必修2的全部内容。
6.2 垂直关系的性质1.理解直线与平面、平面与平面垂直的性质定理。
(重点)2.理解并掌握空间“平行”与“垂直”之间的相互转化.(难点、易错点)3.能灵活地应用线面与面面垂直的性质定理证明有关问题。
(难点)[基础·初探]教材整理1 直线与平面垂直的性质定理阅读教材P39“练习2”以下至P40“例3”以上部分,完成下列问题。
1.文字语言:如果两条直线同垂直于一个平面,那么这两条直线平行.2.符号语言:l⊥α,m⊥α⇒l∥m.3。
图形语言:如图16。
18所示.图16。
184。
作用:证明两直线平行.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一个底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( )A.相交B。
平行C。
异面D。
相交或平行【解析】圆柱的母线垂直于圆柱的底面,由线面垂直的性质知B正确。
【答案】B教材整理2 平面与平面垂直的性质定理阅读教材P40“例3"以下至P41“例4"以上部分,完成下列问题。
1.文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈α B ∈α(2符号表示为:A 、B 、C 三点不共线=> 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。
公理(3公理1 异面直线: 不同在任何一个平面内,没有公共点。
2 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
3 4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点L A · α C · B· A · α =>a ∥c2π(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。