枇杷试管苗限制生长保存过程中叶肉细胞超微结构变化的研究
- 格式:pdf
- 大小:589.49 KB
- 文档页数:4
空间诱变育种摘要:随着科技的进展,我们对于地球外的探究越来越多,宇宙空间存在着微重力、高真空、地球上的环境条件大不相同。
讨论和采用这些特殊条件对地球生物的影响, 是各国科学家们关注的问题之一。
采用空间条件进行物种的诱变选育,也成为热门的科题之一。
关键词:太空育种,诱变选育,高新技术。
自开头太空探究以来,人们始终致力于讨论太空特殊的环境条件,如微重力、辐射等对各种生物系统的影响。
其缘由不仅仅是由于这些讨论的结果可增加人类对太空环境因素作用特点的了解,从而有助于解决一些生物学上的基本问题,更重要的是这些结果将为保障制服宇宙太空的宇航人员的平安和健康供应必要的生物学基础和依据。
20世纪60年月以来,国内外纷纷把动物、植物、微生物置于卫星、飞船、航天飞机中,以观看其变化。
随着“神五”、“神六”的胜利飞天,人们对太空育种这个概念也日渐熟识。
1.太空诱变育种太空诱变育种也被称为航天育种,科学的提法则是“空间诱变育种”,也就是将农作物种子送到太空,采用太空特殊的环境诱变作用,使种子产生变异,再返回地面选育新种子、新材料,培育新品种的育种新技术。
它是综合了宇航、遗传、辐射、育种等学科的高新技术。
与传统方法相比,太空诱变育种具有以下优势:部分品种变异频率高,变异幅度大,有益变异增多,育种周期短,诱变后代群体间消失一些有利的特殊变异体,不需要人为设置可污染环境的诱变源等。
2.育种过程简单艰辛太空育种能缩短育种周期,常规育种一般需8年左右,太空育种可缩短一半时间。
但假如你认为只要种子在天上转一圈就变大变好,那就太抱负化了。
实际上,一次完整的太空育种过程应包括“筛选种子、空间诱变、地面选育” 3个阶段。
“筛选种子”就是要进行种子的纯度检测,选择遗传性稳定、综合性能好的种子,一部分搭载上空,另一部分留在地面,将从太空回来的种子和留在地面的种子同时平行对比种植,以便进行外观、抗病等性状对比。
“空间诱变”就是采用卫星和飞船等返回式太空飞行器将种子带上200 km~400 kπι的高空,采用太空特有的各种环境条件及其综合效应对种子染色体进行诱变,产生各式基因变异。
题型专练7实验设计类1.(2023·揭阳高三模拟)竹子属于种群同期一次性开花类型(先零星开花,继而同地域内的竹子全部开花后枯死)。
为研究开花过程中竹子中内源激素的变化情况,选取不同生长发育阶段的叶片,测定其内源赤霉素(GA)、细胞分裂素(CTK)和脱落酸(ABA)的浓度水平,结果如表。
下列分析错误的是()生长阶段GA/(ng·g-1)CTK/ (ng·g-1)ABA/ (ng·g-1)营养生长7.84284.96375.46即将开花 4.81214.86382.36开花10.291339.816563.26A.GA等内源激素的相对含量调控了竹子的开花过程B.即将开花阶段,GA浓度显著下降说明其能抑制开花C.当竹叶内的GA/CTK的比值较大时可以促进竹子开花D.叶片中的ABA浓度升高可能与竹子的开花后枯死有关2.(2023·北京高三质检)某同学为探究去除淀粉的马铃薯提取液中是否含有催化磷酸葡萄糖转化成淀粉的酶,进行了如下实验设计,下列相关叙述错误的是()试管磷酸葡萄糖溶液/mL蒸馏水/mL去除淀粉的马铃薯提取液/mL煮沸后的去除淀粉的马铃薯提取液/mL111——21—1—31——1A.实验前可用碘液检测马铃薯提取液中的淀粉是否完全去除,以保证实验结果的准确B.若用碘液检测,只有试管2出现蓝色,则说明提取液中含有催化磷酸葡萄糖转化成淀粉的酶C.若用斐林试剂检测,3支试管均出现砖红色沉淀,则说明提取液中无催化磷酸葡萄糖转化成淀粉的酶D.试管3为对照组,高温使酶失活,可进一步说明马铃薯提取液中是否含有催化磷酸葡萄糖转化成淀粉的酶3.某研究实验小组用小球藻(一种单细胞绿藻),在适宜温度、光照强度下向小球藻培养液中通入足量14CO2,在不同的时间间隔取出一定量的小球藻杀死,分析放射性物质种类及含量,结果如表。
下列有关实验分析不合理的是()取样时间(s)放射性物质种类2大量3-磷酸甘油酸(三碳化合物)1512种磷酸化糖类50除上述12种磷酸化糖类外,还有氨基酸等A.本实验可用于研究暗反应阶段CO2中碳的转移途径B.降低温度,获得12种磷酸化糖类的取样间隔时间可能会延长C.提高14CO2的浓度,获得放射性氨基酸的间隔时间将会明显缩短D.实验结果可初步判断光合作用产生的有机物还包括氨基酸等4.(2023·南京高三调研)如表是某学生设计的有关实验方案。
细胞工程综合考查一、植物细胞工程的综合考查1.细胞的全能性(1)概念:细胞的全能性是指细胞经分裂和分化后,仍然具有产生完整生物体或分化成其他各种细胞的潜能。
(2)原因:构成生物体的所有体细胞都是由受精卵通过有丝分裂发育而来的,含有相同的遗传物质,都含有本物种的所有遗传信息,因此每个体细胞都有发育成完整个体的潜能。
生物的生殖细胞在一定条件下也具有全能性,是因为生殖细胞中含有本物种生长发育的全套遗传信息,尽管其遗传物质是体细胞的一半。
(3)表达的条件:由于基因的选择性表达,细胞的全能性在植物体内受到限制不能表达,只有在离体条件下,在营养、激素和其他条件适宜的情况下,细胞才能表达其全能性。
动物细胞难以表达其全能性,但是通过核移植后,细胞核仍可表达其全能性。
(4)表达的难易程度:植物细胞的全能性易表达,而动物细胞的全能性不易表达,但动物细胞核的全能性可以表达。
在所有细胞中,受精卵可直接发育为个体,有的生殖细胞也可在一定条件下表达其全能性。
(5)意义:细胞的全能性是植物组织培养和植物体细胞杂交的理论基础,也是现代动物体细胞克隆技术的理论基础。
2.植物激素在组织培养过程中的重要作用生长素和细胞分裂素是启动细胞分裂、脱分化和再分化的关键激素,其作用及特点如表:激素使用实验结果使用顺序先使用生长素,后使用细胞分裂素有利于细胞分裂,但细胞不分化先使用细胞分裂素,后使用生长素细胞既分裂也分化生长素与细胞分裂素同时使用分化频率提高生长素用量/细胞分裂素用量的比值该比值高时有利于根的分化,抑制芽的形成该比值低时有利于芽的分化,抑制根的形成该比值适中时促进愈伤组织的形成例1(2023·黑龙江哈尔滨高二月考)水竹是单子叶禾本科植物,易管理和培植,干净而雅致。
水竹配上假山奇石,制作成小盆景,极具自然之美感。
如图为通过植物组织培养大量获得水竹幼苗的过程。
回答下列问题:(1)通过植物组织培养获得水竹幼苗的原理是;尽量选择分裂旺盛、带有分生区的部位作为外植体,原因是。
河北巨鹿中学2009级高二下学期生物学案编号:1 编写人:吉令格审核人:张耀龙备课组长:吉令格课题专题3 的专项总结教师备课(学生笔记)学案内容一、学习指导技术要项:1、培养基制备2、外植体消毒3、接种4、培养5、移栽6、栽培知识掌握1、组培的应用2、组培过程3、影响组培的因素二、基础知识1、植物组织培养的基本原理是:。
2、细胞具有全能性的物质基础是:。
3、细胞分化是的结果。
4、实现全能性的条件有。
5、愈伤组织形成的过程是离体的植物细胞的结果。
6、进行植物组织培养的基本流程是。
7、植物激素中__________ 和__________ 是启动细胞分裂、脱分化和再分化的关键性因素。
植物激素的、以及等都会影响实验结果。
8、进行菊花组织培养,一般讲PH控制在左右,温度控制在,并且每日用日光灯照射。
9、愈伤组织的特点是。
10、由__________的植物组织或细胞产生__________的过程,称为脱分化,又叫去分化。
脱分化产生的愈伤组织继续进行培养,又可以重新分化成__________,这个过程叫做再分化.11、激素使用实验结果使用顺序有利于细胞分裂细胞即分裂也分化分化频率较高生长素用量与细胞分裂素用量的比例利于根的分化,抑制芽的形成利于芽的分化,抑制根的形成促进愈伤组织的生长12、组织培养中常用的是__________ 培养基,其主要成分包括: __________,如_____________________________;__________ ,如______________________________ ;__________ 等。
13、.制备MS 固体培养基,配制母液时,大量元素浓缩__________ ,微量元素浓缩__________ 。
温保存。
激素类、维生素类以及用量比较小的有机物可以按照 的质量浓度单独配制母液。
配制1LMS 培养基时,将称量好的琼脂加入800mL 蒸馏水,加热熔化,然后加入蔗糖30g,依次加入母液,定容至1000mL 。
“现代生物科技”专题高考命题分析“现代生物科技”以专题的形式介绍现代生物科学技术一些重要领域的研究热点、发展趋势和应用前景,以拓展学生的视野,增强学生的科技意识,为学生进一步学习生物科学奠定基础。
近两年的高考试题在这部分的考查内容与形式上越来越贴近课程标准的要求,对学生的综合能力要求越来越高。
本文通过对两道高考题的命题特点进行分析,以期对高中生物教师理解高考命题特点,更好地备战高考,提供一定的依据。
一、高考试题分析1.2010年高考新课标卷(辽宁卷)第38题请回答:(1)植物微型繁殖技术属于植物组织培养的范畴。
该技术可以保持品种的,繁殖种苗的速度。
离体的叶肉细胞在适宜的条件下培养,最终能够形成完整的植株,说明该叶肉细胞具有该植物的全部。
(2)把试管苗转接到新的培养基上时,需要在超净工作台上进行,其原因是避免的污染。
(3)微型繁殖过程中,适宜浓度的生长素单独使用可诱导试管苗,而与配比适宜时可促进芽的增殖。
若要抑制试管苗的生长,促使愈伤组织产生和生长,需要使用的生长调节剂是(脱落酸、2,4-d)。
(4)将某植物试管苗培养在含不同浓度蔗糖的培养基上一段时间后,单株鲜重和光合作用强度的变化如图。
据图分析,随着培养基中蔗糖浓度的增加,光合作用强度的变化趋势是,单株鲜重的变化趋势是。
据图判断,培养基中不含蔗糖时,试管苗光合作用产生的有机物的量(能、不能)满足自身最佳生长的需要。
(5)据图推测,若要在诱导试管苗生根的过程中提高其光合作用能力,应(降低,增加)培养基中蔗糖浓度,以便提高试管苗的自养能力。
评析:整体上分析试题,具体考查了植物组织培养的特点和原理,这些是基础知识,体现了高考的人文性。
然后试题难度逐渐加大,如题(3)考查关于激素杠杆的相关内容,该题的一个显著特点是改变以往单纯的考查现代生物科技的内容,将其与必修教材中的相关知识联系在一起,考查学生阅读信息的能力。
如题(4)考查了光合作用的相关内容,由图中信息分析得出光合作用强度和植物单株鲜重与蔗糖浓度的关系,且要明确植物的生长从代谢水平看主要是同化作用大于异化作用,即植物的光合作用强度大于呼吸作用强度。
藏躲市安详阳光实验学校专题05 混淆光合作用的过程、场所及总光合作用与净光合作用1.如图甲表示A、B两种植物光合速率随光照强度改变的变化曲线,图乙表示将A植物放在不同浓度CO2环境条件下,A植物光合速率受光照强度影响的变化曲线。
请分析回答:(1)在较长时间连续阴雨的环境中,生长受到显著影响的植物是______。
(2)图甲中的“a”点表示______。
如果以缺镁的完全营养液培养A植物幼苗,则b点的移动方向是______。
(3)在c点时,叶绿体中ADP的移动方向是从______向______方向移动.如图所示中与c点相符合的是______。
(4)e点与d点相比较,e点时叶肉细胞中C3的含量______;e点与f点相比较,e点时叶肉细胞中C3的含量______。
(填“高”、“低”或“基本一致”)(5)当光照强度为g时,比较植物A、B的有机物积累速率M1、M2的大小和有机物合成速率N1、N2的大小,结果应分别为M1______M2、N1______N2。
(6)增施农家肥可以提高光合效率的原因是:①;②。
【答案】(1)A(2)A植物的呼吸速率向右(3)叶绿体基质类囊体薄膜 D (4)低高(5)= >(6)①农家肥被微生物分解后为农作物提供二氧化碳②农家肥被微生物分解后为农作物提供矿质元素2.为探究不同波长的光和CO 2浓度对葡萄试管苗光合作用的影响,用40W 的白色、红色和黄色灯管做光源,设置不同CO 2浓度,处理试管苗。
培养一段时间后,测定试管苗的净光合速率(净光合速率=真光合速率一呼吸速率),结果如如图,回答问题:(1)光合作用中,催化C 3还原的酶存在于__________中。
(2)实验结果表明,大棚种植葡萄时应选用_________色塑料薄膜搭建顶棚。
(3)依上图,在红光条件下,CO 2浓度为300 μl·L -1时,对葡萄试管苗的叶肉细胞来说,叶绿体消耗的CO 2量_________(填“大于”、“等于”或“小于”)细胞呼吸产生的CO 2量。
1.下列有关核糖体的叙述正确的是A.电子显微镜下,核糖体呈小球状,悬浮在细胞质基质中B.核糖体是氨基酸脱水缩合反应的场所,在其中形成了肽键C.核糖体是由蛋白质和DNA构成的,它的形成与细胞核内的核仁有关D.核糖体与基因的表达密切相关,是转录和翻译的场所2.图中曲线Ⅰ、Ⅱ分别表示物质A在无催化条件和有酶催化条件下生成物质P所需的能量变化过程。
下列相关叙述正确的是A.ad段表示在无催化剂条件下,物质A生成物质P需要的活化能B.若将酶催化改为无机催化剂催化该反应,则b在纵轴上将向下移动C.若曲线Ⅱ为最适酶促条件下的曲线,改变酶促条件后,则b在纵轴上将向上移动D.若仅增加反应物A的量,则图中曲线的原有形状均发生改变3. 下列关于现代生物进化理论的说法中不正确的是A.对于自然选择作用的研究是以种群为基本单位的B.隔离是所有新物种形成的必要条件C.生物与生物、生物与环境的共同进化导致生物多样性的形成D.突变和基因重组使种群产生不定向的变异,因而造成种群的基因频率发生定向改变4.下列有关生物学实验的叙述,正确的是A.在“观察洋葱根尖有丝分裂”和“观察细胞中RNA和DNA分布”的实验中加入盐酸的浓度和目的都不相同B.在色素的提取和分离实验中,胡萝卜素在层析液中的溶解度最低,扩散速度最快C.探索淀粉酶对淀粉和蔗糖作用的专一性时,可用碘液替代斐林试剂进行鉴定D.探究酵母菌的呼吸方式可以用是否产生二氧化碳来予以确定5.下图为某细胞内基因表达的调控示意图,相关叙述错误的是A.上图不能表示蓝藻基因表达过程B. RNA聚合酶与mRNA结合启动过程①C.过程②遵循碱基互补配对原则D.过程②短时间内能合成较多的肽链6.某植物花瓣的大小受一对等位基因A、a控制,基因型AA的植株表现为大花瓣,Aa 的植株表现为小花瓣,aa的植株表现为无花瓣。
花瓣颜色受另一对等位基因R、r控制,基因型为RR和Rr的花瓣是红色,rr的为黄色。
两对基因独立遗传。
2010年普通高等学校招生统一考试理科综合能力测试(新课标)一、选择题:本题包括13小题,每小题6分,共78分,在每小题给出的四个选项中,只有一项是符合题目要求的1.下列有关细胞的叙述,正确的是A.病毒是一类具有细胞结构的生物B.蓝藻细胞具有细胞核且DNA分子呈环状C.人体所有细胞的细胞周期持续时间相同D.内质网膜和高尔基体膜都具有流动性【答案】D2.下列关于呼吸作用的叙述,正确的是A.无氧呼吸的终产物是丙酮酸B.有氧呼吸产生的【H】在线粒体基质中与氧结合生成水C.无氧呼吸不需要O2的参与,该过程最终有【H】的积累D.质量相同时,脂肪比糖原有氧氧化释放的能量多【答案】D3.若要在普通显微镜下观察到质壁分离、RNA和脂肪,下列四组材料中应选择的一组是A.水稻胚乳和花生子叶B.天竺葵叶和水稻胚乳C.紫色洋葱和花生子叶D.天竺葵叶和紫色洋葱【答案】C4.水中氧含量随水温的升高而下降。
生活在寒温带湖泊中的某动物,其血液中的血红蛋白含量与其生活的水温有关。
右图中能正确表示一定温度范围内该动物血液中血红蛋白含量随水温变化趋势的曲线是A.甲B.乙C.丙D.丁【答案】A5.将神经细胞置于相当于细胞外液的溶液(溶液S)中,可测得静息电位。
给予细胞一个适宜的刺激,膜两侧出现一个暂时性的电位变化,这种膜电位变化称为动作电位。
适当降低溶液S中的Na+浓度,测量该细胞的静息电位和动作电位,可观察到A.静息电位值减小B.静息电位值增大C.动作电位峰值升高D.动作电位峰值降低【答案】D6.在白花豌豆品种栽培园中,偶然发现了一株开红花的豌豆植株,推测该红花表现型的出现是花色基因突变的结果。
为了确定该推测是否正确,应检测和比较红花植株与白花植株中A.花色基因的碱基组成B.花色基因的DNA序列C.细胞的DNA含量D.细胞的RNA含量【答案】B29.(9分)将同种大鼠分为A、B两组,A组大鼠除去淋巴细胞后,产生抗体的能力丧失;从B组大鼠中获得淋巴细胞并转移到A组大鼠后,发现A组大鼠能够重新获得产生抗体的能力。
内蒙古鄂尔多斯市准格尔旗2023-2024学年毕业升学考试模拟卷生物卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
1、观察如图,当你伸肘时,肱二头肌、肱三头肌如何运动()A.肱二头肌收缩,肱三头肌舒张B.肱二头肌舒张,肱三头肌舒张C.肱二头肌收缩,肱三头肌收缩D.肱二头肌舒张,肱三头肌收缩2、已知两株高茎豌豆的基因组成都是Dd,把二者相互杂交,后代的性状表现和比例为()A.高茎:矮茎=1:1 B.高茎:矮茎=2:1C.高茎:矮茎=3:1 D.高茎:矮茎=4:03、制作口腔上皮细胞临时装片时,在载玻片中央滴一滴生理盐水的作用是()A.保持细胞的形态B.避免细胞皱缩C.避免细胞涨破D.离散口腔上皮细胞4、下列有关血管的叙述,正确的是()A.直接与心室相连的血管一定是静脉B.静脉一般分布较深,管壁厚C.人体内数量最多的血管是毛细血管D.人打点滴时,针头需刺入毛细血管5、我们吃甘蔗时,先要削去坚硬的外皮,咀嚼甘蔗时会有许多甜汁,咀嚼后把蔗渣吐掉。
从结构层次的角度分析,构成甘蔗茎的组织有()A.上皮组织、营养组织、输导组织B.上皮组织、营养组织、分生组织D.保护组织、营养组织、输导组织6、同学们在中考考试中,先要仔细审题,认真思考,然后书写作答.完成审题、思考、作答等活动的神经中枢位于()A.大脑B.小脑C.脑干D.脊髓7、生物个体的寿命是有限的,但是生物个体死亡并不会导致物种灭绝,是因为生物在生存期间进行了A.进化B.生殖C.遗传D.变异8、科技人员助力“精准扶贫”,指导农户养殖彩色桑蚕。
蚕大量食用桑叶的阶段是()A.卵B.幼虫C.蛹D.成虫9、鲫鱼生活在水中,其呼吸器官是()A.鳃B.鳔C.侧线D.鳍10、探究的一般过程,其正确顺序是( )①发现问题、提出问题②作出假设③表达交流④设计方案⑤实施实验⑥得出结论A.①②③④⑤⑥B.①②④⑤⑥③C.①②④③⑤⑥D.①②④⑤③⑥11、父母与后代个体间遗传物质传递的“桥梁”是()A.生殖细胞B.DNA C.染色体D.受精卵12、能促使人体出现第二性征的激素是()A.甲状腺激素B.生长激素C.胰岛素D.性激素13、如图是某同学用显微镜观察人的口腔上皮细胞与洋葱鳞片叶内表皮细胞时,看到的两个视野。
叶肉的造句导读:叶肉拼音【注音】:yerou叶肉解释【意思】:叶片表皮里面除去叶脉以外所剩下的部分,主要由薄壁的细胞构成。
叶肉造句:1、栅栏叶肉组织:在叶的上层,细胞紧密排列,含有许多叶绿体。
2、从龙胆试管苗的叶肉细胞分离得原生质体。
3、由于叶肉细胞可进行光呼吸,故突变型之光合作用能力不受到影响。
4、叶片的厚度、主脉、叶肉、盐腺等抗盐结构进行了比对研究。
5、海绵叶肉组织:细胞松散排列和有很大的气间,容许气体快速扩散以促进光合作用。
6、叶肉组织的分化,气孔的类型,茎中厚壁组织的有无,反应出各自适应不同自然环境的独特结构。
7、在一些双子叶植物的叶肉细胞中发现的一种不规则的分枝状的石细胞。
8、在叶片的分化过程中,首先分化出来的是表皮,其次是叶肉,最后是叶脉;9、结果表明,培养初期,先以外层少数叶肉细胞开始RNA和蛋白质的合成,接着DNA也开始合成。
10、并利用原位RT-PCR技术做进一步检测,证明苹果叶片中有苹果皱果类病毒存在,主要分布在叶肉细胞的细胞核中。
11、幼叶中层既可由亚边缘原始细胞或远轴层叶肉的第一个细胞单独产生,也可由它们二者共同产生。
12、利用透射电镜对经水杨酸(SA)和高温锻炼处理过的葡萄幼苗叶肉细胞进行了超微结构观察。
13、叶肉细胞排列紧密有序,细胞间隙少;14、异面叶,叶肉组织中含有晶体,韧皮部内富含含盐液泡泡,机械组织发达。
15、结果表明,祁连圆柏和圆柏叶片的上下表皮细胞外覆盖一层角质膜,叶肉细胞间隙大,形成发达的通气组织。
16、细胞学观察表明,培养后叶肉细胞明显增大,细胞分裂形成分生组织,由之形成芽原基。
17、结果表明,品种间在表皮、叶肉和叶脉上的构造基本相似;18、叶肉细胞分化为栅栏组织和海绵组织;19、叶片为同形叶肉细胞组成的较均匀的结构。
20、叶片都包括表皮、叶肉和叶脉,且为等面叶。
21、叶肉不分化,细胞不含叶绿体。
22、叶缘直接产生的不定芽主要由叶片表皮下叶肉细胞单独分裂形成分生组织细胞团,并进一步分化从而发育而成。
第一章引言1枇杷的概述1.1枇杷的营养价值和医疗保健功能枇杷系蔷薇科苹果亚科枇杷属,是我国南方主要果树之一。
目前,我国枇杷产量占世界总产量的70%以上,现有五大产区:浙江杭州塘栖、江苏吴县洞庭、安徽歙县、浙江黄岩和福建莆田。
其中福建莆田发展很快,已成为闻名世界的枇杷大产区。
枇杷清香鲜甜,略带酸味,产自我国淮河以南地区,以安徽“三潭”最为著名。
在徽州民间有“天上王母蟠桃,地上三潭枇杷”之说,与樱桃、梅子并称为“三友”。
4~5月采收,剥去外皮,取果肉鲜用。
枇杷果肉营养较多,每100克果肉中含维生素A原(胡萝卜素)高达1.52毫克,为鲜果中含量较多的果品之一,维生素C、B族维生素的含量也较丰富,还含有糖类、蛋白质、脂肪、纤维素、果酸、无机盐、钠、钾、钙、磷、铁以及苹果酸。
枇杷中所含的有机酸,能刺激消化腺分泌,对增进食欲、帮助消化吸收、止渴解暑有相当的作用;枇杷果实及叶有抑制流感病毒作用,常吃可以预防四时感冒;枇杷富含纤维素、果胶、胡萝卜素、苹果酸、柠檬酸、钾、磷、铁、钙及维生素A、B、C。
丰富的维生素B、胡萝卜素,具有保护视力、保持皮肤健康润泽、促进儿童的身体发育的功用,其中所含的维生素B17,还是防癌的营养素呢!因此,枇杷也被称为“果之冠”,可促进食欲、帮助消化;也可预防癌症、防止老化。
中医认为,枇杷味甘、酸,性平,有润肺止咳、止渴和胃、利尿清热等功效,用于肺痿咳嗽、胸闷多痰。
除果实外,枇杷叶及枇杷核也是常用的中药材,枇杷叶具清肺胃热、降气化痰功能,用于肺热干咳、胃痛、流鼻血、胃热呕秽;枇杷核则用于治疗疝气,消除水肿,利关节。
枇杷果除鲜食和加工制成果汁、果酱、果酒、果脯、罐头等食品外,还可入药。
《本草纲目》说它“气味甘、酸、平,无毒,具有止咳、止渴、止吐、利肺,主上焦热,调五脏”之功。
枇杷叶可清肺和胃、降气化痰,多用于治疗因风热燥火、劳伤虚损而引起的咳嗽、呕呃、饮食不下及夏季消暑。
枇杷花可治伤风感冒。
不同固定条件对几种植物样品超微结构的影响李叶;黄华平;邓睿;张新春;崔艳梅;卢雪莲;林培群【摘要】为比较几种固定条件对不同植物材料样品电镜超微结构图像清晰度的影响.以3个不同科属4种植物[油棕(Elaeis gineansis Jacq.)、拟南芥(Arabidopsis thalina.)、花生(Arachis hypogaea Linn.)、柱花草(Stylosanthes guianensias Sw.)]为研究主体代表,探讨了2.5%戊二醛与4%戊二醛固定过夜、锇酸固定2h及过夜的制备方法对其叶片超微结构的影响,并成功观察了柱花草接种胶苞炭疽野生型菌株CH008后的病菌侵入过程.结果表明:油棕、拟南芥、花生及柱花草叶片经4%戊二醛与1%锇酸固定液固定过夜,其组织成像的效果均较为理想,各种细胞器整体信息丰富、结构组织完好、线条清晰.表明,此制备方法能够较好的保存植物叶片和细胞组织,提高制样的成功率及观察分辨率.【期刊名称】《热带作物学报》【年(卷),期】2016(037)011【总页数】6页(P2100-2105)【关键词】透射电镜;植物样品;制备方法;超薄切片;分辨率【作者】李叶;黄华平;邓睿;张新春;崔艳梅;卢雪莲;林培群【作者单位】中国热带农业科学院环境与植物保护研究所,海南海口571101;农业部热带农林有害生物入侵监测与控制重点开放实验室,海南海口 571101;中国热带农业科学院环境与植物保护研究所,海南海口571101;农业部热带农林有害生物入侵监测与控制重点开放实验室,海南海口 571101;中国热带农业科学院环境与植物保护研究所,海南海口571101;中国热带农业科学院环境与植物保护研究所,海南海口571101;农业部热带农林有害生物入侵监测与控制重点开放实验室,海南海口571101;中国热带农业科学院环境与植物保护研究所,海南海口571101;农业部热带农林有害生物入侵监测与控制重点开放实验室,海南海口 571101;中国热带农业科学院环境与植物保护研究所,海南海口571101;中国热带农业科学院环境与植物保护研究所,海南海口571101;农业部热带农林有害生物入侵监测与控制重点开放实验室,海南海口 571101【正文语种】中文【中图分类】Q944透射电镜具有的高分辨率,直观性的特点,是研究微观组织结构的强有力工具,在农、林等科研上越来越得到重视和广泛应用。
1.2019年宁夏 [生物——选修3现代生物科技专题] 现有A和B两个肉牛品种, A品种牛的细胞组成可表示为A细胞核、A细胞质, B品种牛则为B细胞核、B细胞质。
(1)如果要获得一头克隆牛, 使其细胞由A细胞核和B细胞质组成, 基本步骤是, 从A品种牛体内取出体细胞, 进行体外培养。
然后再从培养细胞中取出_______注入B品种牛的_________卵母细胞, 经过某处刺激和培养后, 可形成胚胎, 该胚胎被称为_______, 将该胚胎移入代孕母牛的_______中, 通过培育可达到目的。
(2)一般来说, 要想大量获得这种克隆牛比较难, 原因之一是卵母细胞的数量______, 为解决这一问题, 可以用______激素处理B品种母牛。
(3)克隆牛的产生说明_____具有全能性。
克隆牛的性状主要表现____品种牛的特征。
由A、B两品种杂交得到的牛及克隆牛相比, 杂交牛细胞核的遗传物质来自______个亲本, 细胞质来自______性亲本, 克隆牛和杂交牛的遗传物质组成______(相同, 不同)。
【答案】(1)细胞核去核重组胚胎子宫(2)不足促性腺(3)动物体细胞核 A 两雌不同2019宁夏试题.[ 生物──选修3现代生物科技专题](15分)回答下列有关动物细胞培养的问题:(1)在动物细胞培养过程中, 当贴壁细胞分裂长到细胞表面时, 细胞会停止分裂增增殖, 这种现象称为细胞的。
此时, 瓶壁上形成的细胞层数是。
要使贴壁细胞从瓶壁上分离下来, 需要用酶处理, 可用的酶是。
(2)随首细胞传代次数的增多, 绝大部分细胞分裂停止, 进而出现的现象;但极少数细胞可以连续增殖, 其中有些细胞会因遗传物质发生改变面变成细胞, 该种细胞的黏着性 , 细胞膜表面蛋白质(糖蛋白)的量。
(3)现用某种大分子染料, 对细胞进行染色时, 观察到死细胞被污色, 而活细胞不染色, 原因是。
(4) 检查某种毒物是否能改变细胞染一的数目, 最好选用细胞分裂到期的细胞用显微镜进行观察。
第47卷㊀第6期2023年11月南京林业大学学报(自然科学版)JournalofNanjingForestryUniversity(NaturalSciencesEdition)Vol.47,No.6Nov.,2023㊀收稿日期Received:2023⁃02⁃18㊀㊀㊀㊀修回日期Accepted:2023⁃06⁃21㊀基金项目:国家自然科学基金项目(32171826);江苏省自然科学基金项目(BK20220411)㊂㊀第一作者:国颖(yingguo@njfu.edu.cn),讲师,负责论文撰写与修改;杨港归(ygg@njfu.edu.cn),负责文献收集与整理㊂∗通信作者:薛良交(lxue@njfu.edu.cn),教授㊂㊀引文格式:国颖,杨港归,吴雨涵,等.DNA甲基化调控植物组织培养过程的分子机制研究进展[J].南京林业大学学报(自然科学版),2023,47(6):1-8.GUOY,YANGGG,WUYH,etal.RecentadvancesinmolecularregulatorymechanismsofDNAmethy⁃lationinplanttissueculture[J].JournalofNanjingForestryUniversity(NaturalSciencesEdition),2023,47(6):1-8.DOI:10.12302/j.issn.1000-2006.202302020.DNA甲基化调控植物组织培养过程的分子机制研究进展国㊀颖,杨港归,吴雨涵,何㊀杰,何玉洁,廖浩然,薛良交∗(林木遗传育种全国重点实验室,南方现代林业协同创新中心,江苏省杨树种质创新与品种改良重点实验室,南京林业大学林草学院,江苏㊀南京㊀210037)摘要:植物细胞具有全能性,创伤和外源激素能够诱导已分化细胞的重编程来再生新的植株,发展的植物组织培养技术已广泛应用于植物快速繁殖㊁种质保存和性状改良等多个方面㊂然而,对植物组织培养过程中细胞如何保持分化状态和发育可塑性的分子调控机制仍知之甚少,尤其是在表观遗传学水平上㊂DNA甲基化是一种进化上保守的表观遗传修饰,能够复杂地协调植物细胞全能性建立和影响其命运转变㊂在此,以组织培养过程中的愈伤组织形成㊁体细胞胚发生为切入点,总结了DNA甲基化参与植物再生过程的最新进展㊂首先,分析了不同植物再生过程中全基因组DNA甲基化变化模式,认为外植体类型和再生阶段均会对DNA甲基化水平产生影响;其次,重点研究了甲基化转移酶(MET1)等在植物再生过程中的作用,以及DNA甲基化调控再生基因表达的分子机制,包括BBM(babyboom),WOX(wuschel⁃relatedhomeobox),WIN(woundinduceddedifferentiation)等基因,最后,讨论了DNA甲基化在植物再生领域的未来研究方向,指出组织培养与基因工程的结合将为农作物和经济㊁用材林木的高效繁殖和精准培育提供机遇㊂关键词:植物组织培养;DNA甲基化;愈伤组织;体细胞胚胎发生中图分类号:Q943;S722㊀㊀㊀㊀㊀文献标志码:A开放科学(资源服务)标识码(OSID):文章编号:1000-2006(2023)06-0001-08RecentadvancesinmolecularregulatorymechanismsofDNAmethylationinplanttissuecultureGUOYing,YANGGanggui,WUYuhan,HEJie,HEYujie,LIAOHaoran,XUELiangjiao∗(StateKeyLaboratoryofTreeGeneticsandBreeding,Co⁃InnovationCenterforSustainableForestryinSouthernChina,JiangsuKeyLaboratoryforPoplarGermplasmEnhancementandVarietyImprovement,CollegeofForestryandGrassland,NanjingForestryUniversity,Nanjing210037,China)Abstract:Exertingremarkablecelltotipotence,plantsareabletoregeneratetissues/organsandevenindividualsfromdifferentiatedcellsactivatedbywoundstressand/orhormonalcues.Basedonthetheoryofplantcelltotipotency,techniquesofplanttissueculturehavebeenwidelyusedinrapidpropagation,germplasmconservation,andplantbreedingasatypeofconservedepigeneticmodification.However,theunderstandingofhowplantcellsretainbothdifferentiatedstatusanddevelopmentalplasticityisstillobscure,especiallyattheepigeneticlevel.DNAmethylationisanevolutionarilyconservedepigeneticmodificationthatcanintricatelycoordinatecellfatetransitionandpluripotencyestablishmentduringtheplantregenerateprocess.Inthework,therecentprogressintheregulationofplantregenerationthroughDNAmethylationwassummarized,startingfromtheformationofcallusandsomaticembryogenesisduringtissueculture.Firstly,thechangepatternsofDNAmethylationindifferentplantregenerationprocesseswereanalyzed,showingthatbothexplantstypeandregenerationphasehadaneffectonDNAmethylationlevels.TheroleofsomeDNA南京林业大学学报(自然科学版)第47卷methyltransferaseinplantregenerationwasstudied,suchasDNAMethyltransferase1(MET1),whosedeletioncanleadtoincreasedWUSexpressionandpromoteshootregeneration.RNA⁃directedDNAmethylation(RdDM)isthemainmolecularpathwayresponsiblefordenovoDNAmethylationinallcontextsandisbelievedtoplayanimportantroleinplantregeneration.Meanwhile,weanalyzedthemolecularregulatorymechanismsofDNAmethylationontheexpressionofregenerativegenes,suchasBBM(babyboom),WOX(wuschel⁃relatedhomeobox),WIN(woundinduceddedifferentiation),etc.Finally,wediscussedthefutureresearchdirectionsofDNAmethylationinthefieldofplantregeneration.Thecombinationoftissuecultureandgeneticengineeringwillprovideopportunitiesforefficientreproductionandprecisecultivationofagriculturalandforestrycrops.Further,theregeneration⁃relatedgenesreportedinthisstudywillprovidecandidatesforplantregenerationresearchofgeneticandmolecularmechanisms.Keywords:planttissueculture;DNAmethylation;callus;somaticembryogenesis㊀㊀植物组织㊁甚至单个植物细胞都具有强大的脱分化和再分化能力,可以将细胞从分化状态恢复为多能性状态;然后,通过创伤或外源激素诱导重新进入细胞周期,并增殖以建立的芽或根顶端分生组织,最终形成新的器官或植株[1]㊂基于这种全能性,植物组织培养技术已在快繁与工厂化育苗㊁细胞培养生产次生代谢产物及基因工程育种等方面得到广泛应用,并在基础生物学㊁农业㊁园艺和林业等领域展现出可观的应用前景[2]㊂然而,对植物细胞如何保持分化状态和发育可塑性的分子调控机制仍知之甚少㊂在植物细胞命运重塑过程中,表观遗传修饰的动态变化影响着植株的再生能力㊂DNA甲基化是一种重要的㊁进化上保守的表观遗传学标记,调控植物的许多生物学过程㊂研究表明DNA甲基化通过多种途径调控再生基因的表达,进而在植物组织培养过程中发挥重要作用[3]㊂笔者综述了DNA甲基化在植物组织培养过程中的调控作用和分子机制,并对通过调节DNA甲基化提高植株再生效率的策略进行展望㊂1㊀DNA甲基化与愈伤组织的诱导形成1.1㊀外植体类型对愈伤组织DNA甲基化的影响DNA甲基化(DNAmethylation)通常指在DNA甲基转移酶的催化下,通过共价键结合的方式,获得S⁃腺苷甲硫氨酸上甲基基团的过程[4]㊂DNA甲基化主要包括3种类型,即5⁃甲基胞嘧啶(5⁃mC)㊁6⁃甲基腺嘌呤(6⁃mA)及7⁃甲基鸟嘌呤(7⁃mG),其中5⁃mC占主要类型㊂在全基因组背景下,胞嘧啶序列有3种存在形式:CG㊁CHG(对称型)和CHH(非对称型,H为A㊁T或C)㊂植物胞嘧啶甲基化可以发生在所有的胞嘧啶序列中[5],是介导基因转录沉默的一种稳定机制,调控愈伤组织发生和形态建成[6]㊂植物愈伤组织是指在组织培养过程中将外植体脱分化所形成的未分化致密细胞结构[7]㊂在离体培养下,植物细胞会发生大规模的全基因组染色质重塑,从而导致植物DNA序列变异和DNA甲基化水平改变[8]㊂各种类型外植体产生的愈伤组织(如叶片愈伤组织㊁茎段愈伤组织等)与相应外植体的DNA甲基化图谱存在差异㊂对草莓(Fragariavesca)[9]㊁蓝莓(Vacciniumstenophyllum)[10]和烟草(Nicotianatabacum)[11]叶片组织和叶片愈伤组织的比较研究发现,叶片愈伤组织在全基因组上具有更高的DNA甲基化水平㊂然而,由毛果杨(Populustrichocarpa)[12]茎段形成的愈伤组织与其外植体茎段组织和再生植株相比,茎段愈伤组织的DNA甲基化水平最低㊂根据愈伤组织再生能力的不同可将其分为胚性和非胚性愈伤组织[13]㊂Karim等[14]对凹唇姜(Boesenbergiaro⁃tunda)研究发现,再生能力更强的胚性愈伤组织的DNA甲基化水平要低于非胚性愈伤组织,以及再生植株和叶片等其他外植体形成的愈伤组织㊂不同类型外植体的生理状况和脱分化能力存在差异,因此诱导愈伤组织过程中也伴随着不同DNA甲基化水平介导的转录调控㊂1.2㊀愈伤组织形成阶段中DNA甲基化水平变化细胞的脱分化过程由遗传和表观遗传机制共同调控,共包括3个阶段:诱导㊁愈伤组织形成和多能性建立,多种植物在脱分化过程中出现全基因组低甲基化[15-16]㊂在水稻(Oryzasativa)愈伤组织形成过程中DNA甲基化水平显著降低,DNA甲基化差异区域主要富集在基因启动子周围的序列上[17]㊂尽管DNA甲基化水平降低是主要趋势,但局部DNA超甲基化对多能细胞状态的形成与维持至关重要㊂对拟南芥(Arabidopsisthaliana)研究发现,编码丝裂原活化蛋白激酶12(MAPK12)㊁谷胱甘肽S⁃转移酶TAU10(GSTU10)和β⁃羟化酶1(BXL1)基因的启动子序列在愈伤组织细胞中发生高度甲基化并抑制基因表达,从而促进全能细胞2㊀第6期国㊀颖,等:DNA甲基化调控植物组织培养过程的分子机制研究进展团的形成㊂MET1和DRM2等DNA甲基转移酶在愈伤组织形成过程中受到广泛的转录控制,这与DNA甲基化水平变化的调控功能相一致[18]㊂愈伤组织的分化程度随着组织培养时间的延长而增加,长期培养的愈伤组织中转座子㊁核糖体DNA和端粒重复序列发生大规模转移和扩增[6],从而导致其DNA甲基化水平不稳定㊂Ma等[19]对木薯(Manihotesculenta)的茎尖分生组织以及腋芽的松散型胚性愈伤组织进行研究,结果表明随着松散型胚性愈伤组织培养时间的延长,DNA甲基化水平从50%降至27%;而Zeng等[20]的研究表明,白桦(Betulaplatyphylla)早期愈伤组织(诱导后20d)的DNA甲基化水平最低(11.92%),随着愈伤组织诱导时间的延长,在40d时DNA甲基化水平升至14.5%㊂a.DNA甲基化在基因体中分布模式及其对愈伤组织形成的影响:褐色圆圈代表高甲基化水平抑制基因表达而导致愈伤组织褐化;绿色圆圈代表低甲基化水平促进基因表达进而促进愈伤组织生长thedistributionpatternofDNAmethylationingenebodiesanditseffectoncallusformation.Browncirclesrepresenthighmethylationlevelsthatinhibitgeneexpressionandleadtocallusbrowning,greencirclesrepresentalowmethylationlevelthatenhancegeneexpressiontopromotecallusgrowth;b.DNA甲基化对转座元件表达影响:蓝色矩形颜色由深至浅表示DNA甲基化水平由高至低的变化;灰色矩形颜色由深至浅表示转座子表达由高至低的变化effectsofDNAmethylationontheexpressionoftransposableelements(TEs).BluerectanglecolorsfromdarktolightindicatechangesinDNAmethylationlevelsofTEfromhightolow,grayrec⁃tanglecolorsfromdarktolightindicatechangesinTEexpressionfromhightolow.图1㊀DNA甲基化动态变化影响愈伤组织生长模式Fig.1㊀DynamicchangesofDNAmethylationaffectcallusgrowthpattern1.3㊀愈伤组织中DNA甲基化在全基因组上的变化模式㊀㊀在全基因组水平上,植物DNA甲基化在不同物种间存在广泛的差异㊂其中,CG序列甲基化是愈伤组织形成过程中主要的DNA甲基化类型㊂例如,在草莓[9]㊁菠萝(Ananascomosus)[21]㊁葡萄(Vitisvinifera)[22]及拟南芥[23]等植物的研究中均发现其愈伤组织中CG甲基化水平最高(不同物种中占比范围为35% 70%),CHG甲基化位于中间水平(20% 45%),而CHH甲基化水平最低(3%20%)㊂对6个菠萝样本的研究表明愈伤组织DNA甲基化在基因区的启动子(上游2kb)㊁转录终止子(下游2kb)㊁外显子以及内含子等区域变化模式不同[21]㊂愈伤组织在启动子位点的DNA甲基化变化随着时间增加会出现上升趋势㊂烟草中的研究表明,愈伤组织培养早期启动子区域的DNA甲基化会出现部分缺失,但在培养阶段后期则发生缓慢的超甲基化[24]㊂对草莓及菠萝的叶片愈伤组织研究发现,全基因组DNA甲基化水平在内含子(20% 25%)和启动子(25% 33%)区域最高,而在外显子(15% 20%)中DNA甲基化水平较低[9,21](图1a)㊂此外,对草莓[9]㊁烟草[11]㊁菠萝[21]及葡萄[22]等研究都表明愈伤组织中DNA甲基化水平在转录起始位点以及转录终止位点附近比在外显子等区域显著降低㊂在CG和CHG序列3南京林业大学学报(自然科学版)第47卷背景下,葡萄的愈伤组织在转座子序列的甲基化率要高于叶片组织的甲基化率,然而在CHH序列背景下愈伤组织的甲基化率则低于叶片组织[22]㊂拟南芥的愈伤组织和叶片组织之间也具有相似的甲基化变化趋势[23]㊂当大部分植物中的转座子区域具有整体较高水平的DNA甲基化时,会导致转座子沉默的出现[25],转座子区域的甲基化水平在愈伤组织形成过程中相对稳定(图1b)㊂2㊀DNA甲基化与体细胞胚胎发生2.1㊀DNA甲基化参与体胚发生相关基因的表达调控㊀㊀体细胞胚胎发生(somaticembryogenesis,SE)是指体细胞或营养细胞在特定诱导条件下再生为胚胎进而具有发育成为独立植株的能力㊂体细胞可以通过直接途径或历经愈伤组织的间接途径形成体细胞胚,其发生过程涵盖复杂的转录调控机制,其中表观遗传修饰也是影响体胚发生的重要调控方式㊂研究表明,DNA甲基化能够引起特定参与细胞分化基因的沉默,从而在体胚发生中发挥作用㊂在对板栗(Castaneamollissima)的研究中发现,MADS⁃box转录因子家族基因CmAGL11在球状胚胎中特异性积累,与愈伤组织相比,球状体细胞胚胎中CmAGL11启动子处的甲基化水平显著降低㊂CmAGL11启动子甲基化比率的降低促进了该基因的表达,进而将加快体细胞胚的发育速度[26]㊂菠萝体细胞胚诱导研究指出,经甲基化抑制剂处理5d后,体胚发生相关类受体蛋白激酶基因AcSERK1在非胚性愈伤组织中的表达量显著提高,从而有效提高菠萝体细胞胚的发生能力[27]㊂此外,研究发现在拟南芥中超表达一些体胚发生的关键基因,如LEC(leafycotyledon)㊁BBM(babyboom)㊁WUS(wuschel)等,可以在不添加激素的情况下提高体胚胎发生诱导效率,而DNA甲基化通过影响这些基因的表达进而在一定程度上调控体细胞胚胎的发生[28]㊂2.2㊀体细胞胚胎发生过程中DNA甲基化水平的变化㊀㊀体胚发生需要经过脱分化㊁细胞分裂㊁再分化等多个步骤,在不同发育阶段DNA甲基化水平也发生变化㊂油棕(Elaeisguineensis)离体培养前的叶片外植体细胞的细胞核表现出较强的DNA甲基化水平,研究发现随着在高浓度生长素培养基中培养90d后,叶肉细胞和非反应性维管束细胞中的5⁃mC免疫荧光信号显著降低[29]㊂在龙眼(Dimo⁃carpuslongan)胚性愈伤组织㊁不完全致密的胚前培养物及球状胚中,CG甲基化的全基因组水平远高于CHG和CHH,且在胚性愈伤组织中存在更高水平的DNA甲基化[30]㊂在棉花(Gossypiumhirsu⁃tum)体胚发生去分化过程中也观察到总体mCG水平占比最高,这种趋势在外显子㊁内含子㊁转录起始位点上下游2kb的范围内及其上下游区域都很一致㊂同时棉花早期体胚发生过程中,CG位点的甲基化水平具有基因型特异性,而CHH位点的甲基化水平具有分化阶段特异性[31]㊂在对可可(Theobromacacao)的研究中发现,体细胞胚比合子胚具有更高比例的高甲基化CG位点[32]㊂此外,植物体胚发生过程中还存在DNA甲基化水平早期显著升高后又降低的现象㊂例如,对椰子(Cocosnucifera)体细胞胚胎发生相关研究发现,DNA甲基化水平在培养第3天迅速升高(10.84% 22 99%),随后在第15天下降至11.69%,在培养第120天后增加至39.63%[33];对龙眼的研究表明,胚性愈伤组织㊁不完全致密的胚前培养物和球状胚的5⁃mC含量分别为24.59%㊁19.65%和19.74%,表明从胚性愈伤组织到不完全致密的胚前培养物的DNA甲基化在全基因组范围内先呈下降,之后略有上升的趋势[31]㊂2.3㊀DNA甲基化调节剂对体胚发生的影响㊀㊀DNA甲基化修饰是可逆的,当DNA复制过程中甲基转移酶活性偏低时,合成新链中甲基化的胞嘧啶位点未发生甲基化从而造成DNA被动去甲基化;基因组上的5⁃mC受ROS1(repressorofsilencing1)/DME(demeter)家族蛋白剪切,并由DNA修复系统介导的胞嘧啶修复完成DNA主动去甲基化[34]㊂DNA去甲基化可以将基因从沉默状态激活,已有证据表明DNA甲基化抑制剂在调控植物体胚发生过程中具有较高的应用潜力㊂5⁃氮杂胞苷(5⁃azaC)作为一种常见的DNA甲基化抑制剂,能够在代谢过程中与DNA甲基转移酶结合以降低酶的活性,进而阻碍DNA甲基化进程并调控体胚发生相关基因的表达㊂在龙眼体胚发生研究中发现,5⁃azaC的外源施加降低了胚性愈伤组织的DNA甲基化水平并促进了球状胚的形成㊂与未经5⁃azaC处理的龙眼比较发现,处理后的龙眼有关体胚发生的基因表达明显上调,结果表明5⁃azaC处理对龙眼早期体胚发生具有促进作用[35]㊂而在蒺藜苜蓿(Medicagotruncatula)的研究中发现,5⁃azaC处理诱导的去甲基化终止了胚性细胞系产生4㊀第6期国㊀颖,等:DNA甲基化调控植物组织培养过程的分子机制研究进展体胚的能力[36]㊂除DNA甲基化抑制剂之外,生长素处理拟南芥能够在一定程度上调节编码ROS1㊁DML2(dementer⁃likeprotein2)等去甲基化酶的基因[37-38]㊂此外,研究发现低温诱导[39]㊁高温诱导㊁辐射[40],以及铜㊁银离子处理[41]等都会降低DNA甲基化水平从而提高植物体胚发生的能力㊂3㊀DNA甲基化调控植物再生的分子机制3.1㊀DNA甲基化调控植物再生关键基因的表达组织培养过程中,器官发生主要受WUS㊁LEC㊁WOX(wuschel⁃relatedhomeobox)及WIN(wound⁃in⁃duced)等基因的调控[42-44],研究发现这些基因的表达受到DNA甲基化特异性调控(表1)㊂表1㊀植物组织培养发育过程中DNA甲基化对植物再生关键基因影响Table1㊀EffectsofDNAmethylationonkeygenesofplantregenerationduringplanttissuecultureanddevelopment序号No.基因名称genesymbol功能function物种species1ARR3(arabidopsisresponseregulator3)参与细胞分裂素调节;5⁃azaC处理后基因表达上调,发生低甲基化促进桃叶片愈伤组织诱导桃Prunuspersica[45]2BBM(babyboom)影响体细胞胚胎发生;表达量升高,甲基化水平降低促进胚胎发生(胚性愈伤组织中高表达)凹唇姜Boesenbergiarotunda[14]3CRY1(cryptochrome1)调节细胞分裂素信号,促进芽再生器官的新生拟南芥Arabidopsisthaliana[46]4CCD1(carotenoidcleavagedioxygenases1)降解类胡萝卜素;5⁃azaC处理导致全基因组去甲基化,类胡萝卜素含量降低柑橘Citrusparadisi[47]5CMT2/CMT3(chromomethylase2/chromomethylase3)参与mCHG维持;5⁃azaC处理抑制了叶外植体愈伤组织的形成和不定芽再生草莓Fragariavesca[9]6CMT3(chromomethylase3)维持DNA甲基化;5⁃azaC处理后基因表达显著下调,DNA甲基化降低促进桃叶片愈伤组织诱导桃P.persica[45]维持DNA甲基化;表达量升高DNA甲基化水平降低,促进体细胞胚胎的发生和再生凹唇姜B.rotunda[48]7DRM2(domainsrearrangedmethyltransferase)维持CHH甲基化毛果杨Populustrichocarpa[49]表达量升高DNA甲基化水平降低,促进体细胞胚胎的发生和再生凹唇姜B.rotunda[48]8维持CG甲基化;低甲基化,met1⁃3突变体芽再生能力更高拟南芥A.thaliana[46]MET1(methyltransferase1)维持DNA甲基化;表达量升高DNA甲基化水平降低,促进体细胞胚胎的发生和再生凹唇姜B.rotunda[48]维持DNA甲基化;幼苗和嫩叶中偏好表达柑橘C.paradisi[47]9ROS1(repressorofsilencing1)DNA甲基化水平降低,促进球状胚形成龙眼Dimocarpuslongan[30]10SERK(somaticembryogenesisreceptor⁃likekinase)影响体细胞胚胎发生;表达量升高,甲基化水平降低促进胚胎发生(胚性愈伤组织中高表达)凹唇姜B.rotunda[14]11WIN(wound⁃induced)诱导细胞去分化和增殖;发生去甲基化,基因表达上调促进愈伤组织形成草莓F.nilgerrensis[50]12WOX(wuschel⁃relatedhomeobox)参与顶端分生组织发生;发生去甲基化,基因表达上调促进愈伤组织形成草莓F.nilgerrensis[50]13WUS(wuschel⁃relatedhomeobox)调控植物再生;低甲基化激活了生长素和WUS相关基因表达,提高植物再生能力棉花Gossypiumhirsutum[51]影响体细胞胚胎发生;表达量升高,甲基化水平降低促进胚胎发生(分生组织中表达最高,其次是胚性愈伤)凹唇姜B.rotunda[14]㊀㊀Shemer等[42]对拟南芥根外植体再生能力的研究发现,在野生型拟南芥中WUS启动子的两个CHG位点高度甲基化;而在甲基转移酶基因cmt3的突变体中,CHG甲基化的减少促进了WUS在芽诱导培养基下的表达,这些启动子区域的甲基化变化对WUS基因转录具有关键调节作用[52]㊂Li5南京林业大学学报(自然科学版)第47卷等[53]认为,在拟南芥从头芽再生的过程中,WUS基因在甲基转移酶功能缺失突变体(met1)中发生去甲基化,导致WUS基因表达上调㊂值得注意的是,DNA甲基化对WUS基因的表达调控是发生在芽诱导的早期阶段,同时MET1介导的芽再生受细胞分裂素诱导的细胞周期所调节[54]㊂Gao等[50]研究发现,黄毛草莓(Fragarianilgerrensis)愈伤组织的诱导过程中有大量基因DNA甲基化水平出现改变,如与伤口反应相关基因WIN㊁顶端分生组织相关基因WOX㊁体细胞胚胎形成相关基因AGL(agamous⁃like)㊁细胞周期相关基因CDK(cyclin⁃dependentkinase)和CKX(cytokinindehydrogenase/oxidase)均发生了去甲基化,表明这些基因的上调表达对愈伤组织的形成至关重要㊂而在黄毛草莓不定芽诱导阶段,愈伤组织阶段发生去甲基化的基因又重新获得甲基化,如LEC2㊁与细胞周期进程相关的CKX㊁生长素活化酶基因ILR1(IAA⁃aminoacidhydrolaseILR1⁃like4)和LEA(lateembryogenesisabundant)等基因,表明这些基因的甲基化修饰对于芽的形成至关重要㊂3.2㊀DNA甲基转移酶在植物再生中的作用植物DNA甲基化维持由胞嘧啶序列环境和DNA甲基化调控酶活性共同决定㊂DNA甲基化调控酶主要包括甲基转移酶(MET1)㊁染色质域甲基转移酶(chromomethylase,CMT)㊁结构域重排甲基转移酶(domainsrearrangedmethyltransferase,DRM)和DNMT3(DNAmethyltransferase3)4个家族[55]㊂MET1主要维持CG位点的甲基化,CMT3和CMT2主要负责CHG背景下的DNA甲基化,CHH环境中的甲基化由CMT2或DRM2通过RNA介导的DNA甲基化(RNA⁃directedDNAmethylation,RdDM)途径维持[8]㊂拟南芥中,MET1依赖的CG甲基化与植株再生有关,与野生型相比,met1⁃3突变体表现出更高的芽再生能力[46]㊂DNA甲基转移酶基因在华东黄杉(Pseudotsugagaussenii)体胚发生的不同阶段表达量发生变化,例如CMT㊁MET1⁃1和MET1⁃3的表达量下降,MET1⁃2的基因表达量大幅增加,而DRM1和DRM2的表达无明显变化[56]㊂凹唇姜离体培养过程中,MET1㊁CMT3和DRM2的甲基化水平降低与基因表达水平升高促进了体胚发生和再生[48]㊂而对龙眼早期体细胞胚胎发生的研究发现,DNA甲基化水平的降低受DNA甲基转移酶基因和DNA去甲基化酶基因ROS1的调控[30]㊂对更多植物再生体系进行研究,将有助于理解不同DNA甲基化调控酶在再生过程中的调节作用㊂3.3㊀RNA介导的DNA甲基化对植物再生的影响RNA介导的DNA甲基化(RdDM)是重要的基因调控机制,主要通过双链小RNA(dsRNA)介导相近序列的从头甲基化发挥作用[57]㊂在植物中,RdDM参与各种生物学过程,如生物和非生物胁迫反应㊁抑制转座子活性以及再生过程中甲基化模式的形成[7]㊂在棉花(Gossypiumhirsutum)体胚发生过程中,RdDM通路介导非CG甲基化,并防止基因转录从而影响再生相关基因的表达[56]㊂而在大豆胚性细胞培养中,RdDM途径是全基因组CHH高甲基化的关键驱动因素㊂连续多年的组织培养使DNA甲基化减少,导致细胞胚性丧失,从而影响大豆的再生能力[58]㊂值得注意的是,高活性RdDM的缺失可以解释CHH甲基化的减少,但不会导致CG和CHG甲基化的丢失㊂4㊀展㊀望近年来,DNA甲基化在植物组织培养中的研究主要集中在模式植物拟南芥㊁农作物(水稻㊁玉米等)和一些园艺植物中,而在林木中的研究相对滞后㊂通常木本植物具有生长缓慢㊁寿命长㊁自交不亲和及高度杂合的特性,其快速再生受到限制,尤其是在气候变化的背景下[59]㊂过度分泌酚类物质㊁玻璃化㊁芽端坏死㊁生根困难是林木组织培养过程中常见的限制因素[60],阻碍了经济树种的规模化繁殖与遗传改良㊂在木本植物细胞中,再生相关基因的表达同样受到表观遗传学机制的严格调控㊂因此,揭示林木细胞的脱分化和再分化过程的DNA甲基化调控机制是提升组培繁殖效率的重要路径,有助于建立更有效的林木再生分子工具㊂尽管DNA甲基化调控再生基因表达方面的研究取得了相当大的进展,但二者之间的关联机制还存在争议㊂一般认为,特定基因座的DNA甲基化水平升高可能通过沉默基因阻碍再生,而全基因组低甲基化通过激活转录而增强再生㊂例如,在DNA甲基转移酶的功能缺失突变体met1中,WUS调控区的DNA甲基化缺失,导致该基因表达增加以提高芽再生效率[53]㊂然而,最近研究表明,DNA甲基化也可以与基因转录呈现显著的正相关关系,且DNA甲基化对基因表达的调控既可以是主动的,也可以是被动的[61]㊂识别不同激素环境下以及不同再生阶段的植物细胞中DNA甲基化与基因表达之间复杂的调控关系,将进一步加深对植物再生过程中表观遗传调控作用的理解㊂6㊀第6期国㊀颖,等:DNA甲基化调控植物组织培养过程的分子机制研究进展基于前期研究结果,DNA甲基化在植物组培中的研究可集中在以下4个方面:①加强组织培养过程中DNA甲基化与多组学的关联研究,结合单细胞测序等多维组学技术,精确解析再生调节基因的表观遗传调控机制;②开发多种甲基化抑制剂,通过定向调控甲基化酶活性,以引起组织培养过程中的去甲基化和再生相关基因的再激活;③深入解析生长素和细胞分裂素在细胞重编程过程中对甲基化水平的调控机制,为提高组培再生效率提供潜在的靶点;④应用CRISPR/dCas9靶向去甲基化技术,对再生调节基因的甲基化水平进行设计改造,全面提高植物再生效率,并为提高顽抗树种的再生能力提供技术支撑㊂参考文献(reference):[1]赵翔宇.植物组织培养在林木遗传育种中的应用[J].河南农业,2022(11):51-52.ZHAOXY.Applicationofplanttissuecul⁃tureinforestgeneticbreeding[J].AgricHenan,2022(11):51-52.DOI:10.15904/j.cnki.hnny.2022.11.011.[2]巩振辉,申书兴.植物组织培养[M].3版.北京:化学工业出版社,2022:12-17.GONGZH,SHENSX.Planttissueculture[M].3rded.Beijing:ChemicalIndustryPress,2022:12-17.[3]SIVANESANI,NAYEEMS,VENKIDASAMYB,etal.Geneticandepigeneticmodesoftheregulationofsomaticembryogenesis:areview[J].BiolFutur,2022,73(3):259-277.DOI:10.1007/s42977-022-00126-3.[4]樊龙江.植物基因组学[M].北京:科学出版社,2020:68-69.FANLJ.Plantgenomics[M].Beijing:SciencePress,2020:68-69.[5]HEXJ,CHENTP,ZHUJK.RegulationandfunctionofDNAmethylationinplantsandanimals[J].CellRes,2011,21(3):442-465.DOI:10.1038/cr.2011.23.[6]LEEK,SEOPJ.Dynamicepigeneticchangesduringplantregeneration[J].TrendsPlantSci,2018,23(3):235-247.DOI:10.1016/j.tplants.2017.11.009.[7]ZHANGHM,LANGZB,ZHUJK.DynamicsandfunctionofDNAmethylationinplants[J].NatRevMolCellBiol,2018,19(8):489-506.DOI:10.1038/s41580-018-0016-z.[8]LEEK,PARKOS,SEOPJ.JMJ30⁃mediateddemethylationofH3K9me3drivestissueidentitychangestopromotecallusformationinArabidopsis[J].PlantJ,2018,95(6):961-975.DOI:10.1111/tpj.14002.[9]LIUDC,MUQ,LIXY,etal.ThecallusformationcapacityofstrawberryleafexplantismodulatedbyDNAmethylation[J].HorticRes,2022,9:uhab073.DOI:10.1093/hr/uhab073.[10]GHOSHA,IGAMBERDIEVAU,DEBNATHSC.DetectionofDNAmethylationpatterninthidiazuron⁃inducedblueberrycallususingmethylation⁃sensitiveamplificationpolymorphism[J].BiolPlant,2017,61(3):511-519.DOI:10.1007/s10535-016-0678-3.[11]KRIZOVAK,FOJTOVAM,DEPICKERA,etal.Cellculture⁃in⁃ducedgradualandfrequentepigeneticreprogrammingofinvertedlyrepeatedtobaccotransgeneepialleles[J].PlantPhysiol,2009,149(3):1493-1504.DOI:10.1104/pp.108.133165.[12]VININGK,POMRANINGKR,WILHELMLJ,etal.MethylomereorganizationduringinvitrodedifferentiationandregenerationofPopulustrichocarpa[J].BMCPlantBiol,2013,13:92.DOI:10.1186/1471-2229-13-92.[13]IKEUCHIM,SUGIMOTOK,IWASEA.Plantcallus:mechanismsofinductionandrepression[J].PlantCell,2013,25(9):3159-3173.DOI:10.1105/tpc.113.116053.[14]KARIMR,TANYS,SINGHP,etal.ExpressionandDNAmethy⁃lationofSERK,BBM,LEC2andWUSgenesininvitroculturesofBoesenbergiarotunda(L.)Mansf[J].PhysiolMolBiolPlants,2018,24(5):741-751.DOI:10.1007/s12298-018-0566-8.[15]GAOY,RANL,KONGY,etal.AssessmentofDNAmethylationchangesintissuecultureofBrassicanapus[J].Genetika,2014,50(11):1338-1344.DOI:10.7868/s001667581410004x.[16]ZAKRZEWSKIF,SCHMIDTM,VANLIJSEBETTENSM,etal.DNAmethylationofretrotransposons,DNAtransposonsandgenesinsugarbeet(BetavulgarisL.)[J].PlantJ,2017,90(6):1156-1175.DOI:10.1111/tpj.13526.[17]STROUDH,DINGB,SIMONSA,etal.Plantsregeneratedfromtissueculturecontainstableepigenomechangesinrice[J].eLife,2013,2:e00354.DOI:10.7554/eLife.00354.[18]SMITHJ,SENS,WEEKSRJ,etal.PromoterDNAhypermethyla⁃tionandparadoxicalgeneactivation[J].TrendsCancer,2020,6(5):392-406.DOI:10.1016/j.trecan.2020.02.007.[19]MAQX,ZHOUWZ,ZHANGP.Transitionfromsomaticembryotofriableembryogeniccallusincassava:dynamicchangesincel⁃lularstructure,physiologicalstatus,andgeneexpressionprofiles[J].FrontPlantSci,2015,6:824.DOI:10.3389/fpls.2015.00824.[20]ZENGFS,SUNFK,LIANGNS,etal.DynamicchangeofDNAmethylationandcellredoxstateatdifferentmicropropagationpha⁃sesinbirch[J].Trees,2015,29(3):917-930.DOI:10.1007/s00468-015-1174-7.[21]LINWQ,XIAOXO,ZHANGHN,etal.Whole⁃genomebisulfitesequencingrevealsaroleforDNAmethylationinvariantsfromcalluscultureofpineapple(AnanascomosusL.)[J].Genes,2019,10(11):877.DOI:10.3390/genes10110877.[22]LIZAMORED,BICKNELLR,WINEFIELDC.Elevatedtranscrip⁃tionoftransposableelementsisaccompaniedbyhet⁃siRNA⁃drivendenovoDNAmethylationingrapevineembryogeniccallus[J].BMCGenomics,2021,22(1):676.DOI:10.1186/s12864-021-07973-9.[23]SHIMS,LEEHG,PARKOS,etal.DynamicchangesinDNAmethylationoccurinTEregionsandaffectcellproliferationduringleaf⁃to⁃callustransitioninArabidopsis[J].Epigenetics,2022,17(1):41-58.DOI:10.1080/15592294.2021.1872927.[24]ALISHAIKHA,CHACHARS,CHACHARM,etal.Recentad⁃vancesinDNAmethylationandtheirpotentialbreedingapplica⁃tionsinplants[J].Horticulturae,2022,8(7):562.DOI:10.3390/horticulturae8070562.[25]BARTELSA,HANQ,NAIRP,etal.DynamicDNAmethylationinplantgrowthanddevelopment[J].IntJMolSci,2018,19(7):2144.DOI:10.3390/ijms19072144.[26]GAOYR,SUNJC,SUNZL,etal.TheMADS⁃boxtranscriptionfactorCmAGL11modulatessomaticembryogenesisinChinesechestnut(CastaneamollissimaBlume)[J].JIntegrAgric,2020,19(4):1033-1043.DOI:10.1016/S2095-3119(20)63157-4.[27]LUANAP,CHENCJ,XIET,etal.MethylationanalysisofCpGislandsinpineappleSERK1promoter[J].Genes,2020,11(4):425.DOI:10.3390/genes11040425.[28]SALAÜNC,LEPINIECL,DUBREUCQB.Geneticandmolecularcontrolofsomaticembryogenesis[J].Plants,2021,10(7):1467.DOI:10.3390/plants10071467.[29]DEARAÚJOSIM,GOMESACMM,SCHERWINSKI⁃PEREIRAJE.Cellularresponsesofoilpalmgenotypesduringso⁃maticembryogenesisinvolveparticipationofprocambialcells,DNAdemethylation,andauxinaccumulation[J].PlantCellRep,2022,41(9):1875-1893.DOI:10.1007/s00299-022-02898-3.[30]CHENXH,XUXP,SHENX,etal.Genome⁃wideinvestigationofDNAmethylationdynamicsrevealsacriticalroleofDNAdemethylationduringtheearlysomaticembryogenesisofDimo⁃7南京林业大学学报(自然科学版)第47卷carpuslonganLour[J].TreePhysiol,2020,40(12):1807-1826.DOI:10.1093/treephys/tpaa097.[31]GUOHH,FANYJ,GUOHX,etal.Somaticembryogenesiscriti⁃calinitiationstage⁃specificmCHHhypomethylationrevealsepige⁃neticbasisunderlyingembryogenicredifferentiationincotton[J].PlantBiotechnolJ,2020,18(8):1648-1650.DOI:10.1111/pbi.13336.[32]GARCIAC,DEFURTADOALMEIDAAA,COSTAM,etal.Sin⁃gle⁃baseresolutionmethylomesofsomaticembryogenesisinTheo⁃bromacacaoL.revealepigenomemodificationsassociatedwithso⁃maticembryoabnormalities[J].SciRep,2022,12(1):15097.DOI:10.1038/s41598-022-18035-9.[33]OSORIO⁃MONTALVOP,DE⁃LA⁃PEÑAC,OROPEZAC,etal.ApeakinglobalDNAmethylationisakeysteptoinitiatethesomaticembryogenesisofcoconutpalm(CocosnuciferaL)[J].PlantCellRep,2020,39(10):1345-1357.DOI:10.1007/s00299-020-02568-2.[34]DUX,YANGZL,XIEGH,etal.MolecularbasisoftheplantROS1⁃mediatedactiveDNAdemethylation[J].NatPlants,2023,9(2):271-279.DOI:10.1038/s41477-022-01322-8.[35]CHENRZ,CHENXH,HUOW,etal.Transcriptomeanalysisofazacitidine(5⁃AzaC)⁃treatmentaffectingthedevelopmentofearlysomaticembryogenesisinLongan[J].JHorticSciBiotechnol,2021,96(3):311-323.DOI:10.1080/14620316.2020.1847695.[36]SANTOSD,FEVEREIROP.LossofDNAmethylationaffectsso⁃maticembryogenesisinMedicagotruncatula[J].PlantCellTissueOrganCult,2002,70(2):155-161.DOI:10.1023/A:1016369921067.[37]WÓJCIKOWSKAB,GAJMD.Expressionprofilingofauxinre⁃sponsefactorgenesduringsomaticembryogenesisinductioninArabidopsis[J].PlantCellRep,2017,36(6):843-858.DOI:10.1007/s00299-017-2114-3.[38]GRZYBKOWSKAD,MORONCZYKJ,WÓJCIKOWSKAB,etal.Azacitidine(5⁃AzaC)⁃treatmentandmutationsinDNAmethylasegenesaffectembryogenicresponseandexpressionofthegenesthatareinvolvedinsomaticembryogenesisinArabidopsis[J].PlantGrowthRegul,2018,85(2):243-256.DOI:10.1007/s10725-018-0389-1.[39]GAOY,CUIY,ZHAORR,etal.Cryo⁃treatmentenhancestheembryogenicityofmaturesomaticembryosviathelncRNA⁃miRNA⁃mRNAnetworkinwhitespruce[J].IntJMolSci,2022,23(3):1111.DOI:10.3390/ijms23031111.[40]CASTANDER⁃OLARIETAA,PEREIRAC,SALESE,etal.In⁃ductionofRadiatapinesomaticembryogenesisathightemperaturesprovokesalong⁃termdecreaseinDNAmethylation/hydroxymethylationanddifferentialexpressionofstress⁃relatedgenes[J].Plants,2020,9(12):1762.DOI:10.3390/plants9121762.[41]PACHOTAKA,ORŁOWSKAR.EffectofcopperandsilverionsonsequenceandDNAmethylationchangesintriticaleregenerantsgainedviasomaticembryogenesis[J].JApplGenet,2022,63(4):663-675.DOI:10.1007/s13353-022-00717-9.[42]SHEMERO,LANDAUU,CANDELAH,etal.CompetencyforshootregenerationfromArabidopsisrootexplantsisregulatedbyDNAmethylation[J].PlantSci,2015,238:251-261.DOI:10.1016/j.plantsci.2015.06.015.[43]SHIBUKAWAT,YAZAWAK,KIKUCHIA,etal.Possiblein⁃volvementofDNAmethylationonexpressionregulationofcarrotLEC1geneinits5ᶄ⁃upstreamregion[J].Gene,2009,437(1/2):22-31.DOI:10.1016/j.gene.2009.02.011.[44]DAIXH,WANGJ,SONGYG,etal.CytosinemethylationoftheFWApromoterpromotesdirectinvitroshootregenerationinAra⁃bidopsisthaliana[J].JIntegrPlantBiol,2021,63(8):1491-1504.DOI:10.1111/jipb.13156.[45]LIUX,ZHUK,&XIAOJ.Recentadvancesinunderstandingoftheepigeneticregulationofplantregeneration[J].aBioTech,2023,4(1):31-46.DOI:10.1007/s42994-022-00093-2.[46]SHIMS,LEEHG,SEOPJ.MET1⁃dependentDNAmethylationrepresseslightsignalingandinfluencesplantregenerationinAra⁃bidopsis[J].MolCells,2021,44(10):746-757.DOI:10.14348/molcells.2021.0160.[47]XUJ,WANGX,CAOH,etal.Dynamicchangesinmethylomeandtranscriptomepatternsinresponsetomethyltransferaseinhibitor5⁃azacytidinetreatmentincitrus[J].DNARes,2017,24:509-522.DOI:10.1093/dnares/dsx021.[48]KARIMR,TANYS,SINGHP,etal.ExpressionandDNAmethy⁃lationofSERK,BBM,LEC2andWUSgenesininvitroculturesofBoesenbergiarotunda(L.)Mansf[J].PhysiolMolBiolPlants,2018,24(5):741-751.DOI:10.1007/s12298-018-0566-8.[49]VININK,POMRANINGKR,WILHELMLJ,etal.Methylomere⁃organizationduringinvitrodedifferentiationandregenerationofPopulustrichocarpa[J].BMCplantbiology,2013,13:1-15.DOI:10.1186/1471-2229-13-92.[50]CAOQ,FENGYX,DAIXW,etal.DynamicchangesofDNAmethylationduringwildstrawberry(Fragarianilgerrensis)tissueculture[J].FrontPlantSci,2021,12:765383.DOI:10.3389/fpls.2021.765383.[51]LIJY,WANGMJ,LIYJ,etal.Multi⁃omicsanalysesrevealepigenomicsbasisforcottonsomaticembryogenesisthroughsuc⁃cessiveregenerationacclimationprocess[J].PlantBiotechnolJ,2019,17(2):435-450.DOI:10.1111/pbi.12988.[52]LAWJA,JACOBSENSE.Establishing,maintainingandmodifyingDNAmethylationpatternsinplantsandanimals[J].NatRevGenet,2010,11(3):204-220.DOI:10.1038/nrg2719.[53]LIW,LIUH,CHENGZJ,etal.DNAmethylationandhistonemodificationsregulatedenovoshootregenerationinArabidopsisbymodulatingWUSCHELexpressionandauxinsignaling[J].PLoSGenet,2011,7(8):e1002243.DOI:10.1371/journal.pgen.1002243.[54]LIUH,ZHANGH,DONGYX,etal.DNAMethyltransferase1⁃mediatedshootregenerationisregulatedbycytokinin⁃inducedcellcycleinArabidopsis[J].NewPhytol,2018,217(1):219-232.DOI:10.1111/nph.14814.[55]YAARIR,KATZA,DOMBK,etal.RdDM⁃independentdenovoandheterochromatinDNAmethylationbyplantCMTandDNMT3orthologs[J].NatCommun,2019,10(1):1613.DOI:10.1038/s41467-019-09496-0.[56]GAOY,CHENXY,CUIY,etal.EffectsofmediumsupplementsonsomaticembryomaturationandDNAmethylationinPseudotsugagausseniiFlous,aspeciesunderprotection[J].Forests,2022,13(2):288.DOI:10.3390/f13020288.[57]ERDMANNRM,PICARDCL.RNA⁃directedDNAmethylation[J].PLoSGenet,2020,16(10):e1009034.DOI:10.1371/journal.pgen.1009034.[58]JILX,MATHIONISM,JOHNSONS,etal.Genome⁃widerein⁃forcementofDNAmethylationoccursduringsomaticembryogenesisinsoybean[J].PlantCell,2019,31(10):2315-2331.DOI:10.1105/tpc.19.00255.[59]GIRICC,SHYAMKUMARB,ANJANEYULUC.Progressintis⁃sueculture,genetictransformationandapplicationsofbiotechnologytotrees:anoverview[J].Trees,2004,18:115-135.DOI10.1007/s00468-003-0287-6.[60]BARGHCHIM,ALDERSONPG.ThecontrolofshoottipnecrosisinPistaciaveraL.invitro[J].Plantgrowthregulation,1996,20:31-35.[61]GUTIERREZ⁃ARCELU,MARI,LAPPALATNENT,etal.PassiveandactiveDNAmethylationandtheinterplaywithgeneticvariationingeneregulation[J].elife,2013,2:e00523.DOI:10.7554/eLife.00523.001.(责任编辑㊀吴祝华)8。
枇杷果实发育及生理病害的研究的开题报告一、选题背景及其意义枇杷(Pyrus pyrifolia Nakai)是我国一种重要的果树品种,以其果实鲜美、口感独特受到了广大消费者的欢迎。
然而,枇杷的果实生理病害问题一直是限制产业发展的重要因素之一。
因此,开展枇杷果实发育和生理病害相关研究,对于深入了解果实发育规律和依据,推广果实保鲜技术和病害防治技术,提高产业水平,促进枇杷产业健康发展具有重要意义。
二、研究内容和方法研究内容:1.枇杷生长发育规律的研究:通过对不同果期枇杷果实生长发育过程的观察,分析枇杷果实的生长发育规律;2.枇杷果实生理病害的研究:探究枇杷果实生理病害的种类、发生规律及原因,并对枇杷果实生理病害的防治措施进行系统研究。
研究方法:1.生长发育规律的研究:采用实验室和田间观察相结合的方法,对枇杷果实的大小、重量、色泽、硬度等生长发育规律进行研究;2.枇杷果实生理病害的研究:采取形态学、解剖学、生理生化等多种方法,对枇杷果实生理病害的发生与发展及其对果实品质的影响进行研究。
三、研究预期成果1.通过对枇杷果实生长发育规律的研究,能够掌握果实发育的规律及变化过程,为果实采收、保鲜和加工提供理论基础;2.通过对枇杷果实生理病害的研究,能够深入了解枇杷果实生理病害的发生机理和影响因素,为开展病害防治提供技术支持。
四、研究计划与预算1.研究计划:第一年:枇杷果实生长发育规律的研究;第二年:枇杷果实生理病害的研究;第三年:数据统计和分析。
2.研究预算:主要经费用于实验室设备购置、试剂购买、实验场地租赁等。
总经费预算为30万元。
五、研究团队本研究项目由农学专业硕士生和导师组成,研究团队具有丰富的研究经验和科研能力,能够完成本项目的研究任务。
六、预期效益本项目的预期效益为枇杷产业的健康发展提供技术支持和理论依据,提高果农自我保护意识,增加果农的经济效益,同时提高了国内果树研究的水平,为果树行业的发展做出了积极的贡献。