第一节 一元一次不等式
- 格式:pdf
- 大小:397.98 KB
- 文档页数:6
浙教版八年级上册数学《3.3一元一次不等式第1课时认识一
元一次不等式》教案
第3章
一元一次不等式
3.3
一元一次等式
第1课时
认识一元一次不等式
1.会解简单的一元一次不等式,并能在数轴上表示其解集.
2.通过对一元一次不等式的学习,提高学生的自主学习能力,激发学生的探究兴趣.掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来.一元一次不等式的解法
复习提问:
(1)不等式的三条基本性质是什么?
(2)运用不等式基本性质把下列不等式化成x>a或x
②2x>x-5
③x-4<6
④x≥x
(3)什么叫一元一次方程?解一元一次方程的步骤是什么?
【教学说明】通过问题,让学生回顾一元一次方程的概念和解一元一次方程的步骤,以及不等式的意义,不等式的基本性质和不等式的解集,为后面归纳一元一次不等式的概念及解法提供条件.同时让学生体会等式与不等式之间所蕴含的特殊与一般的关系.探究1:一元一次不等式的概念
观察下列不等式:
这些不等式有哪些共同点?
【归纳结论】左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1的不等式,叫做一元一次不等式.例:5x+6≤4,7x +10>5是一元一次不等式么?
解:上述两个不等式都是一元一次不等式,因为左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1的不等式什么是一元一次不等式。
一元一次不等式(1)【知识梳理】:1.不等式 :-----------连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的--------的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的------,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的----------.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的--------------.如果,0a b c >>,那么__ac bc (或___a bc c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的-----------.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
第一章一元一次不等式和一元一次不等式组第一节不等关系一、生活中的不等关系1.不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?那么,如何用式子表示不等关系呢?请看例题:如图,用两根长度均为l cm的绳子,分别围成一个正方形和圆.1)如果要使正方形的面积不大于25 cm2,那么绳长l应满足怎样的关系式?2)如果要使圆的面积不小于100 cm2,那么绳长l应满足怎样的关系式?3)当l=8时,正方形和圆的面积哪个大?l=12呢?4)你能得到什么猜想?改变l的取值,再试一试.本题中大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,另一个是了解“不大于”“大于”等词的含意.圆的面积是πR2,其中R是圆的半径.两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于.一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式(inequality).列不等式:不等式表示代数式之间的不等关系,与方程表示的相等关系相对应。
列不等式表示不等关系的方法步骤:(1)分析题意,重点找出题中的各种量;(2)寻找各种量之间的不等关系;(3)用代数式表示各种量(4)用适当的不等号将不等关系连接起来。
例1.用不等式表示(1)a是正数;(2)a是负数;(3)a与6的和小于5;(4)x与2的差小于-1;例2.根据下面的数量关系列不等式试比较3x2-2x+7与4x2-2x+7的大小例3.数形结合题型a,b两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:(1)a______b;(2)|a|______|b|;(3)a+b_________0;(4)a-b_______0;(5)a+b_______a-b;(6)ab______a.练一练:(1)x 的32与5的差不小于1; (2)x 与6的和小于等于9;(3)8与y 的2倍的和是正数; (4)a 的3倍与7的差是非负数;(5)x 的4倍大于x 的3倍与7的差;(6)x 的54与1的和小于-2;(7)x 与8的差的32不大于0. (8)m 与1差的绝对值是非负数。
一元一次不等式一元一次不等式是高中数学中常见的题型,也是学习代数的基础内容之一。
它是由一个一次式与一个数的关系构成的,其中包含了未知数x的不等式。
本文将介绍一元一次不等式的基本概念、解法和应用。
一、一元一次不等式的基本概念一元一次不等式的一般形式为ax + b < c(或ax + b > c),其中a、b、c为给定的实数,且a ≠ 0。
在解一元一次不等式时,需要找出使不等式成立的x的取值范围。
二、一元一次不等式的解法1. 移项法通过移项可以将一元一次不等式转化为形如x < d(或x > d)的不等式,其中d为一个实数。
移项的过程如下:(1)如果不等式中含有加法或减法运算,可以通过加减法逆元的变换,将不等式转化为x < d或x > d的形式。
(2)如果不等式中含有乘法或除法运算,可以通过乘除法的变换,将不等式转化为形如ax < b(或ax > b)的形式。
注意乘除的时候需要考虑a的正负性。
2. 分情况讨论法当一元一次不等式中存在绝对值、分数等特殊情况时,可以采用分情况讨论法来求解。
需要根据不同情况的实际意义,分别列出对应的不等式并求解。
三、一元一次不等式的应用一元一次不等式在实际问题中有着广泛的应用。
下面以两个典型问题为例,介绍一元一次不等式的应用。
1. 生活中的应用假设某市公交车票价为2元,同时发行了一种优惠卡,每次乘车只需支付1元。
现假设一人每月乘坐公交车次数不少于12次,求这人每月乘坐公交车所需的费用范围。
解:设这人每月乘坐公交车的次数为x次,则有不等式x ≥ 12。
因为每次乘车需支付的费用范围为1元至2元,所以还可得出不等式1 ≤ x ≤ 2。
因此,这人每月乘坐公交车的费用范围为12元至24元。
2. 经济学中的应用某的家庭年收入I万元,每年花费C万元。
已知为了正常生活,家庭应至少储蓄S万元。
写出家庭年收入与花费的不等关系,并求解I的范围。
解:根据题目可以得出不等式 I - C ≥ S。
一元一次不等式一元一次不等式是初中数学中的一个重要概念。
它是一种用来描述数之间大小关系的数学式子,由一个未知数和一个或多个常数构成。
本文将从基本概念、求解方法和应用场景三个方面介绍一元一次不等式的相关知识。
1. 基本概念一元一次不等式是指由一个未知数和一个或多个常数构成的不等式。
一元一次不等式的一般形式为Ax + B > 0(或< 0),其中A和B为实数,且A ≠ 0。
在求解一元一次不等式时,需要注意以下几个基本规则:- 若A > 0,则不等式两端同时乘以正数(或正数的等价形式)不改变不等式的方向。
- 若A < 0,则不等式两端同时乘以负数(或负数的等价形式)会改变不等式的方向。
- 不等式两端同时加(或减)同一个数值,不等式的方向不变。
2. 求解方法对于一元一次不等式的求解,我们可以采用图像法、试值法或代数法等不同方法。
2.1 图像法图像法是一种直观的方法,通过绘制函数图像来确定不等式的解。
对于一元一次不等式Ax + B > 0(或< 0),我们可以绘制出函数y = Ax + B 的图像,并根据图像在数轴上的位置来确定不等式的解集。
2.2 试值法试值法是一种简单有效的方法,在不等式两边选择一些特定的数值进行代入,然后判断不等式的成立情况。
通过不断尝试,最终找到满足不等式的解集。
2.3 代数法代数法是一种更为精确的方法,它基于等价变形和性质运算对不等式进行求解。
通过将一元一次不等式进行等价变形,将未知数的系数化为1,从而得到不等式的解集。
3. 应用场景一元一次不等式在实际问题中有着广泛的应用。
以下是两个常见的应用场景:3.1 财务管理在财务管理中,一元一次不等式可以用来描述投资、贷款或收入等方面的问题。
例如,假设一个人每月的收入为x元,他将其中的40%用于生活费,那么可以通过不等式0.4x > 1000 来计算他每月的最低收入。
3.2 生产与销售在生产与销售中,一元一次不等式可以用来描述成本、销售量和利润等关系。
一元一次不等式一.基本概念1.不等式用表示不等关系的式子,叫做不等式.2.不等式的解和不等式的解集(1)不等式的解:与方程类似,使不等式成立的叫做不等式的解.(2)不等式的解集:一个含有未知数的不等式的,组成这个不等式的解集.它可以用最简单的不等式表示,也可以用数轴表示.3.解不等式求不等式的解集的过程,叫做.4.不等式的基本性质性质1 不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变.性质2 不等式两边都乘以(或除以)同一个数,不等号的方向不变.性质3 不等式两边都乘以(或除以)同一个数,不等号的方向改变.不等式的其他性质:(1)若a>b,则b<a;(2)若a>b,b>c,则a>c;(3)若a≥b,b≥a,则a=b;(4)若a2≤0,则a=0.5.一元一次不等式类似于一元一次方程,含有个未知数,未知数的次数是的不等式叫做一元一次不等式.它的一般形式为ax+b>0(a≠0)或ax+b<0(a≠0).6.一元一次不等式的解法类似于一元一次方程的解法,但要特别注意不等式两边都乘以(或除以) 同一个数时,不等号的方向改变.二.例题例1.用不等式表.用不等式表示:(1)m-3是正数______;(2)y+5是负数______;(3)x不大于2______;(4)a是非负数______;(5)a的2倍比10大______;(6)y的一半与6的和是负数______;(7)x的3倍与5的和大于x的______;(8)m的相反数是非正数____例2.如图,在数轴上表示的解集对应的是( ).(A)-2<x<4 (B)-2<x≤4(C)-2≤x<4 (D)-2≤x≤4例3.a、b是有理数,下列各式中成立的是( ).(A)若a>b,则a2>b2(B)若a2>b2,则a>b(C)若a≠b,则|a|≠|b|(D)若|a|≠|b|,则a≠b例4.解关于x的不等式(1)ax>b(a≠0).(2) mx+1< m+2x例5.求不等式361336x x--->-的非负整数例6.已知关于x的方程2233x m xx---=的解是非负数,m是正整数,求m的值.例7.已知方程组⎧⎨⎩2x+y=1+3m,x+2y=1-m的解满足x+y<0,求m的取值范围.例8.(1)已知x<a的解集中的最大整数为3,则a的取值范围是______;(2)已知x>a的解集中最小整数为-2,则a的取值范围是______.例9. 适当选择a的取值范围,使1.7<x<a的整数解:(1)x只有一个整数解;(2)x一个整数解也没有.。
一元一次方程不等式解法一元一次方程不等式是数学中比较基础的知识,对于初学者来说,理解并掌握它是非常重要的。
本文将为大家介绍一元一次方程不等式的概念、解法以及常见的问题和注意事项。
一、什么是一元一次方程不等式?一元一次方程不等式是指一个只有一个未知数x的不等式,其形式一般为ax + b > 0或ax + b < 0,其中a和b为已知数且a ≠ 0。
二、一元一次方程不等式的解法1. 移项法将不等式中的常数项b移到一边,未知数项ax移到另一边,然后将方程两边同除以系数a。
例如,对于ax + b > 0,我们可将b移到另一边,得到ax > -b,再将两边同除以a,即可得到x > -b/a的解。
2. 加减法一元一次方程不等式的加减法是指将不等式两边同时加上或减去同一量,从而改变不等式符号后比较大小。
例如,对于ax + b < 0,我们可将b移到另一边,得到ax < -b,再将两边同时减去b/a,即可得到x < -b/a的解。
三、一元一次方程不等式的常见问题和注意事项1. 一元一次方程不等式的解可能是整数、有理数或无理数。
2. 当a为正数时,不等式ax + b > 0的解集为x > -b/a,不等式ax + b < 0的解集为x < -b/a。
3. 当a为负数时,不等式ax + b > 0的解集为x < -b/a,不等式ax + b < 0的解集为x > -b/a。
4. 在解一元一次方程不等式时,最好画出数轴,从而更直观地判断解的区间。
5. 如果在方程中遇到分母为0的情况,就必须将其排除在方程的解的范围之外。
综上所述,理解一元一次方程不等式的概念和解法,以及注意事项,有助于我们更好地学习数学,提高解题能力。
希望本文能为大家提供一些参考和帮助。
第一章:一元一次不等式和一元一次不等式组知识要点:1. 不等式:一般地用不等号连接的式子叫做不等式。
2. 不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
3. 解不等式:把不等式变为x>a 或x<a 的形式。
4. 一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,不等式的左右两边都是整式的不等式,叫做一元一次不等式。
5. 解一元一次不等式的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为16. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分。
法则:“同大取大,同小取小,大小小大取中间,大大小小是无解。
”【典型例题】例1. 用不等式表示下列数量关系。
(1)a 的一半与-3的和小于或等于1。
()的与的差的相反数不小于。
2a 3525-()的相反数的不大于的倍加。
317516x x点评:用不等号表示的时候要准确理解“大”、“小”、“多”、“少”、“不大于”、“不小于”、“不多于”、“不少于”、“至少”、“至多”等词语的含义。
下面我们判断一下,以下的不等式是不是一元一次不等式.请大家讨论.2.一元一次不等式的解法.[例1]解不等式3-x <2x +6,并把它的解集表示在数轴上.[分析]要化成“x >a ”或“x <a ”的形式,首先要把不等式两边的x 或常数项转移到同一侧,变成“ax >b ”或“ax <b ”的形式,再根据不等式的基本性质求得.解一元一次方程的步骤吗?.有去分母;去括号;移项;合并同类项;系数化成1.[例2]解不等式22-x ≥37x -,并把它的解集在数轴上表示出来.请大家判断以下解法是否正确.若不正确,请改正.解不等式:312 -+-x≥5解:去分母,得-2x+1≥-15移项、合并同类项,得-2x≥-16两边同时除以-2,得x≥8.有两处错误.第一,在去分母时,两边同时乘以-3,根据不等式的基本性质3,不等号的方向要改变,第二,在最后一步,两边同时除以-2时,不等号的方向也应改变.[3.解一元一次不等式与解一元一次方程的区别与联系.联系:两种解法的步骤相似.区别:(1)不等式两边都乘以(或除以)同一个负数时,不等号的方向改变;而方程两边乘以(或除以)同一个负数时,等号不变.(2)一元一次不等式有无限多个解,而一元一次方程只有一个解.例2. 有理数x、y在数轴上的对应点如图所示,试用“>”或“<”号填空:x 0 y(1)x______y (2)x+y_____0 (3)xy____0(4)x-y______0例3. 设“A、B、C、D”表示四种不同质量的物体,在天平秤上的情况如图所示,请你用“<”号将这四种物体的质量m A、m B、m C、m D从小到大排列:_____________________________。
9.2 一元一次不等式(第1课时)【教学目标】知识技能:1.掌握一元一次不等式的概念。
2.掌握一元一次不等式的解法,并能在数轴上将其解集表示出来。
数学思考:知道解方程得移项法则对解不等式同样适用;运用“类比”“化归”的数学思想能归纳出一元一次不等式的解法(解法步骤)解决问题:掌握一元一次不等式的解法,会解一元一次不等式。
情感态度:通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质。
【教学重点】掌握一元一次不等式的解法,会解一元一次不等式。
【教学难点】解一元一次不等式步骤的确立。
课前延伸: 一、知识回顾1、 叫做一元一次方程。
2、一元一次方程的最简形式是 ,标准形式是 。
3、解方程 ,并体会其步骤.4、下列式子中哪些是不等式?(1)a +b=b+a (2)-3>-5 (3)x ≠l (4)x 十3>6 (5) 2m< n (6)2x-3上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.类比一元一次方程的概念,得出一元一次不等式的概念。
5、利用不等式的性质解下列不等式(1)x+3>2 (2) -2x <10 (3) 3x+1<2x-5设计意图:通过解简单的一元一次不等式,让学生回忆利用不等式性质解不等式的过程,教师通过简化解题步骤,让学生明确解不等式的依据,为下面类比解方程形成解不等式的步骤做好准备。
【教学过程设计】12 13 = - - x x教学评价:本课设计充分体现教科书的编写意图,通过复习不等式及一元一次方程的知识,运用类比的思想,总结一元一次不等式的概念,并且发现一元一次不等式与一元一次方程之间的内在联系,从而学会解一元一次不等式.要让学生懂得:熟学学习的目的就是为了学以致用.为实现上述构想,本课设计了一系列的学生活动,引发学生独立思考,讨论交流,尝试练习,自主建构一元一次不等式的解法.在这些活动中,又采用了个体活动、小组活动、全班活动等多种形式,为学生的自主学习提供了广阔的“舞台”,真正凸现出学生是数学学习的主人,动手实践、自主探索与合作交流是学生学习数学的重要方式这一全新的理念.。
一元一次不等式一元一次不等式的概念只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。
要点诠释:(1)一元一次不等式的概念可以从以下几方面理解:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.(2)一元一次不等式和一元一次方程可以对比理解。
相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。
一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式。
2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.注意事项:(1)在解一元一次不等式时,每个步调其实不肯定都要用到,可按照具体问题灵活运用(2)解不等式应注意:①去分母时,每一项都要乘统一个数,尤其不要漏乘常数②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有没有限多个解,它对当前正确确定一元一次不等式组的解集有很大匡助。
留意事项:在用数轴表示不等式的解集时,要确定边界和偏向:(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)偏向:大向右,小向左1、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。
2、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为或的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为这五个步骤根据具体题目,适当选用,合理安排顺序。