2013数学二轮复习 换元法
- 格式:doc
- 大小:319.00 KB
- 文档页数:5
中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。
2).方程x 2+y 2+4x -2y+5=0的解是 。
3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。
例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。
例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。
4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。
(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。
高中数学解题方法2013年高考数学二轮复习 换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:代数换元、三角换元、均值换元等。
例如解不等式:0224≥-+x x ,先变形为设)0(2>=t t x ,而变为熟悉的一元二次不等式求解和指数方程的问题。
三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。
如求函数y =x +1-x 的值域时,易发现[]1,0∈x ,设α2sin =x ⎥⎦⎤⎢⎣⎡∈22,0α,问题变成了熟悉的求三角函数值域。
如变量y x ,适合条件)0(222>=+r r y x 时,则可作三角代换θθsin ,cos r y r x ==化为三角问题。
均值换元,如遇到S y x =+形式时,设t S y t S x -=+=2,2等等。
我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。
题型一:代数换元例1:(1)方程1313++-xx=3的解是_______________ (2)x x x f --=2)(的值域是___________. (3)2log log )12(2)22(2<⋅--x x 的解为_____________________________. 变式练习:已知221)1(x x x x f +=-,则=)(x f _________________。
换元法的常见形式在数学解题过程中,根据已知条件的特征,引入新的变量,对题目进行转化,形成一个用新变量表达的问题,通过解决新问题,来达到解决原问题的目的,这种解题方法叫做换元法。
换元法的形式很多,但它们有一个共同特点,改变问题的结构形成新问题,为解决问题提供可能性,它是数学中转化和化归思想的一个重要体现。
下面举例说明换元法的常见形式的应用。
一、三角换元例1 已知224a b +=,229x y +=,求ax by +的最大值。
解 由224a b +=,可设2cos ,2sin a b αα==;由229x y +=,可设3cos ,3sin x y ββ==.于是6cos cos 6sin sin 6cos()6ax by αβαβαβ+=+=-≤又当2()k k Z αβπ-=∈时,上式中等号成立。
即ax by +的最大值是6.一般地,题目中若有条件222(0)a b r r +=≥,常设cos ,sin a r b r αα==进行三角换元,将问题改变成一个三角函数有关的问题,再利用三角函数知识、方法进行解答,此方法称为三角换元。
事实上,对于任意两个实数,x y ,在坐标平面上总有惟一的对应点A(,)x y 与之对应,设此点到原点的距离为r ,射线Ox 逆时针方向旋转到射线OA 时,所转过的最小正角为θ,则cos ,sin x r y θθ==。
例2 实数,x y 满足224545x xy y -+=,设22S x y =+,求S 的最大值和最小值。
解 设cos ,sin x r y θθ==,则2245cos sin 5r r θθ-=,2545cos sin r θθ=- 所以22251045cos sin 85sin 2S x y r θθθ=+===-- 所以当sin 21θ=时,max 103S =;当sin 21θ=-时,min 1013S =. 二、增量换元若题目的已知中有形如a b >的条件,则可考虑设,0a b t t =+>,将问题进行转化。
初中数学什么是换元法换元法是一种在初中数学中常用的解题方法,特别适用于一些复杂的方程或不等式的求解过程。
通过引入一个新的未知数或进行一定的代换,可以将原问题转化为更简单的形式,从而更容易求解。
下面我将为您详细介绍换元法的定义、原理以及应用方法。
一、换元法的定义换元法是指通过引入一个新的未知数或进行一定的代换,将原问题转化为更简单的形式,从而更容易求解的解题方法。
通过将问题中的变量进行替换,可以改变问题的形式,使其更易于处理。
换元法在解方程、求不等式的最值、证明等问题中都有广泛的应用。
二、换元法的原理换元法的原理是通过引入一个新的未知数或进行一定的代换,将原问题转化为更简单的形式。
新的未知数或代换的选择通常是根据问题的特点和需要来确定的。
通过合理的选择,可以使问题的形式更简单,从而更容易求解。
三、换元法的应用方法换元法的应用方法可以根据具体问题的不同而有所变化。
下面我将分别介绍在解方程、求不等式的最值以及证明中的换元法应用方法。
1. 解方程:a. 对于一元一次方程,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于方程2x + 3 = 7,可以引入新的未知数y = 2x + 3,转化为y = 7,进而求得x的值。
b. 对于一元二次方程,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于方程x^2 + 3x + 2 = 0,可以引入新的未知数y = x + 1,转化为y^2 + 2 = 0,进而求得x的值。
2. 求不等式的最值:a. 对于一元一次不等式,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于不等式2x + 3 > 5,可以引入新的未知数y = 2x + 3,转化为y > 5,进而求得x的取值范围。
b. 对于一元二次不等式,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于不等式x^2 - 4x + 3 > 0,可以引入新的未知数y = x - 2,转化为y^2 - 1 > 0,进而求得x的取值范围。
数学方法之换元法篇通过换元法可以把未知问题化为已知问题,把抽象问题化为具体问题,把较复杂的问题化为简单问题. 通过问题化为具体问题,把较复杂的问题化为简单问题. 通过换元可以清楚的认识问题的实质,迅速寻找和选择解决问题的途径的方法. 根据数式的特点常见的换元法有:(1)整体换元;(2)平均数换元法;(3)比值换元法;(4)三角代换法;(5)不等量换元法;(6)根式换元法;(7)倒数换元法;(8)相反数换元法;(9)坐标换元法等等.一、整体换元例1:求函数x x x x y cos sin cos sin ++=的最大值.解析:设••t x x •y x x t .21cos sin ),22(cos sin 2-=∙≤≤-+=则 •t t t y .1)1(212122-+=+-=故 当.221,2max +==••y •t 时 二、三角换元例2:求函数25x x y -+=的值域.解析:令••••x ],2,2[,sin 5ππθθ-∈= ).4sin(10cos 5sin 5|cos |5sin 5πθθθθθ+=+=+∙=y 则 因为22πθπ≤≤-,所以 .4344ππθπ≤+≤- 所以1)4sin(22≤+≤-πθ,得10)4sin(105≤+≤-πθ 所以函数的值域为[10,5•-]. 三、平均数换元法例3:已知正数.425)1)(1(:,1,≥++=+y y x x •••y x y x •求证满足 证明:由题意可知x ,y 的平均数为21,令x =21+θ,y =21-θ(-21<θ<21), 则.41162523)1)(1()1)(1(22422θθθ-++=++=++xy y x y y x x 显然分子的值大于等于1625, 分母的值大于0小于等于41,从而得证.四、比值换元例4:已知x ,y ,z 满足x -1=3221-=+z y ,试问实数x ,y ,z 为何值时,x 2+y 2+z 2达到最小值? 解析:由比例可以设t z y x =-=+=-322111,则 222z y x ++22)12()1(-++=t t +.61014)23(22++=+t t t 当145-=t 时,即149=x ,712-=y ,222,1413z y ••x z ++=时达到最小值. 五、根式换元例5:求函数y =2x +x 21-的值域.解析:设t =x 21-≥0,则x =212t -,f (t )=)0(21212≥++-t t t ,由二次函数的图象可以知f (t )≤1,所以原函数的值域是(].1,•••∞- 六、不等量换元例6:求证:47)1(1131211122322<++++++n n . 证明:对通项公式进行变形)1111(21)1)(1(111122+--∙=+-=-<k k k k k k . 令k =2,3,…n ,n +1,则47)2111211(211)1(1131211122322<+-+-++<++++++n n n n .。
三角函数中的整体换元法【教学目标】1、掌握三角函数的基本性质;2、能灵活使用整体换元法;3、体会用几何直观和代数运算的方法研究三角函数性质,提高直观想象,逻辑推理、数学抽象的数学素养。
【重点】掌握三角函数的基本性质并学会利用整体换元法研究三角函数基本性质。
【难点】解决ω取值范围问题【内容分析】三角函数是高考考查重点,也作为难点之一。
2024年春考第17题,2024年高考第14题,2023年第15题,2022年第19题,2021年第15题,2020年的第18题等。
基本考点是围绕着三角函数的基本性质的综合运用,整体换元法是三角函数解题的重要思想,将ϕω+x 代换成新元t ,可将()ϕω+=x A y sin 的问题转换为t A y sin =的问题,化繁为简。
【学情分析】学生已经基本掌握三角函数的性质,需要加强其综合运用。
所以,在整体换元法思想下,再次加强基本性质的应用。
我校学生只会在x y sin =下的性质,比较难理解()ϕω+=x A y sin 的性质,需要渗透整体换元法来帮助学生理解其性质。
同时,整体思想也能提升学生的数学抽象、逻辑推理的数学素养。
【教学过程】例1、已知正弦函数x y 2sin =(1)求单调增区间;(2)求函数在⎥⎦⎤⎢⎣⎡30π,的单调增区间; (3)求函数的最大值和最小值,并求出取到最大值、最小值时x 的取值;(4)求函数在⎥⎦⎤⎢⎣⎡63-ππ,上的值域; (5)求方程()21=x f 在[]π20,上的解; (6)求函数的零点。
提问:⎥⎦⎤⎢⎣⎡-∈=32,3,sin ππx x y 的值域是?设计意图:用简单的正弦型函数体验整体法的基本应用,以此为基础进步解决解决较难问题。
例2、(2024春考)已知()0,3sin >⎪⎭⎫ ⎝⎛+=ωπωx x f (1)若1=ω,当[]π,0∈x 时,求()x f y =值域;(2)已知实数πα>,且()x f 的最小正周期为π,当()x f y =在[]απ,∈x 上恰有三个零点时,求α取值范围设计题图:由例1的基础上加强训练,引导学生用t y sin =图像解决问题。
第二十二节 双变量问题之换元法与主元法知识与方法1.换元法:将要证明的不等式或目标代数式通过变形成关于12x x 的整体结构,通过将12x x 换元成t 把问题化归成单变量问题来处理,这一方法也称为“齐次换元”.2.主元法:要证明的不等式或目标代数式中含有1x 和2x 两个变量,将其中一个变量看成主元,另一个变量看成次元,将主元换成x ,构造函数研究问题.典型例题【例1】已知函数()ln f x x x =.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)设0b a >>,证明:()()()()ln 2f a a b f a b f b ++>+-. 【例2】已知函数()2ln f x x x ax =-()a ∈R . (1)若()f x 存在单调递增区间,求a 的取值范围;(2)若1x ,2x 是()f x 的两个不同的极值点,证明:123ln ln 1x x +>-. 【例3】已知函数()()ln ln ax f x e x x=-(1)当a e =时,讨论函数()f x 的单调性;(2)当a e >时,证明:()()1f x a e <-.强化训练1.设a 和bln ln 2a b a ba b -+<<-. 2.已知函数()x f x e =,()ln g x x =(1)若直线1y kx =+与()g x 的图象相切,求实数k 的值; (2)设a b <,比较()()2f a f b +与()()f b f a b a--的大小,并说明理由.3.已知函数()()2ln 2f x a x x x x =-+-,其中a ∈R . (1)当2a e =-时,求()f x 的极值;(2)当0a >,120x x >>时,证明:()()1212112222x x x x f x f x f x f x ++⎛⎫⎛⎫''-<- ⎪ ⎪⎝⎭⎝⎭.4.设函数()()()2ln 12f x x a x x =+--,其中0a ≠.(1)当12a =时,证明:()f x 有且仅有一个零点; (2)在函数()y f x =的图象上是否存在不同的两点()11,A x y ,()22,B x y ,使得线段AB 中点的横坐标0x 与直线AB 的斜率k 之间满足()0k f x '=?若存在,求出0x ;若不存在,说明理由.。
初中数学换元法解析换元法是数学中的重要方法之一,它往往和消元的思想联系在一起.换元的实质就是“转化”的数学思想,关键是构造元和设元,理论依据是等量代换.换元的基本方法有:整体换元、局部换元、均值换元、三角换元等.换元法的一般步骤为:设元(或构造元)、换元、求解、回代和检验等。
(1)换元法在整式运算中的应用初中数学问题中,常见的就是整式运算问题.在整式运算中经常会出现相对复杂的题目,这就需要在解题过程中将结构相同的部分看成一个整体,并用新元去替换它,将综合性强的问题转换成普通问题。
【典型例题】【思路分析】从题目中可发现,第一个括号中的式子=1-第四个括号中的式子,第三个括号中的式子=1-第二个括号中的式子.所以我们可以把第四个括号中的式子、第二个括号中的式子整体设元。
【答案解析】设2+3+4+…+999=a,2+3+4+…+998=b,则有a-b=999.所以原式=(1-b)·a-(1-a)b=a-ab-b+ab=a-b=999.【归纳总结】解题之前可以先观察题目,发现并探究相同的式子,然后用字母将相同部分替换,计算相对快捷简便.从此题中还可以发现,每两组括号都会相差999,第三个括号比第一个括号中少了999,第二个括号比第四个括号中多了999.所以还可以这样设元、换元:设1-2-3-…-998=a,2+3+4+…+998=b,则有a+b=1那么原式就变换a·(b+999)-(a-999)b=999(a+b)=999.所以换元方法不止一种,可以灵活选择.(2)换元法在因式分解中的应用初中数学问题中的重要内容之一就是因式分解.用换元法分解因式,它的基本思路就是将多项式中的某一部分用新的变量替换,减少因式项数或者降低次数,同时,让隐含的关系清晰地表现出来,从而使运算过程简明清晰.【典型例题】【思路分析】认真观察题目的结构,可以发现(x-4)(x+1)=x²-3x-4,(x-2)(x-1)=x²-3x+2,它们的二次项、一次项完全相同,这就具备了换元的条件,使用换元法进行降次处理,就使得分解变得简单易行.在设辅助未知数时,方法比较灵活,如可设x²-3x=a,或设x²-3x-4=a等,一般地,设辅助元为x²-3x-4和x²-3x+2的算术平均式比较简捷.【答案解析】(3)换元法在解方程(组)中的应用掌握运用换元法解方程和方程组是初中数学的一个重点要求,而在解高次方程、分式方程、无理方程时,要注意方程的特点,创造运用换元法的条件,往往会简化求解过程.A.高次方程解一元高次方程的基本思想是降次,而换元法是降次的一种基本方法.用换元法解高次方程的思路,与用换元法分解因式的思路一致.【典型例题】【思路分析】这个方程左边的两个因式中都含有x²+3x,于是解此题可设x²+3x+4=y或者x²+3x=y,当然与分解因式类似,也可设两个因式的算术平均式为辅助元,不过此题中算术平均式为x2+3x+9/2,计算并不方便.所以辅助元的选择要根据题意灵活地掌握.【答案解析】B.分式方程运用换元法解分式方程的基本思路是化分式方程为整式方程.【典型例题】【思路分析】【答案解析】C.无理方程运用换元法解无理方程的基本思路是化无理方程为有理方程.【典型例题】【思路分析】当无理方程的有理式部分与无理式部分所含未知数的项的系数成比例(包括相等)时,把无理式部分设为辅助元.此方程组中存在两组这样的关系,所以需设两个辅助元.用换元法解方程或方程组,虽然能把复杂的方程(组)简单化,但用此方法必须验根,因为在换元过程中(特别是分式方程和无理方程)常会出现增根.【答案解析】(4)换元法在证明中的应用换元法在证明中应用广泛,比如一元二次方程根的问题、不等式的证明、几何问题等,证明题利用换元法十分简捷.常采用的方法有增量换元法、均值换元法等.【典型例题】【思路分析】因为b+c=8,所以b和c的均值就是4,所以b和c的值都在4附近,所以可分别给b,c在4的基础上加上一个变量,这两个变量之和应为0,所以为简便起见,一个表示为t,另外一个则为-t.所以设b=4+t,c=4-t.又因为b,c都大于0,所以可以求出t值的取值范围.到此,设辅助元完成,然后代入换元即可.像这样,若某几个变量之和为一定值,则可求出其均值,则这几个变量都在均值这一常量附近变化,此时,可设这几个变量为该均值加上另外几个变量.新加入的变量之和为0,这种换元方法叫作均值换元法.【答案解析】。
初中换元法经典例题
初中数学中,换元法是解方程的一种常见方法。
下面是一个经典的例题:
例题,解方程 $x^2 + 2x 3 = 0$。
解答,首先,我们观察到这是一个二次方程,可以使用换元法来解决。
我们可以通过引入一个新的变量来进行换元,使得原方程变得更容易解决。
我们可以设 $y = x + 1$,即令 $y$ 代替 $x + 1$。
这样,原方程可以改写为 $y^2 4 = 0$。
接下来,我们可以将方程 $y^2 4 = 0$ 因式分解为 $(y 2)(y + 2) = 0$。
这样,我们得到两个可能的解,$y 2 = 0$ 或 $y + 2 = 0$。
解第一个方程 $y 2 = 0$,我们得到 $y = 2$。
将 $y = 2$ 代入 $y = x + 1$,我们可以得到 $x = 1$。
解第二个方程 $y + 2 = 0$,我们得到 $y = -2$。
将 $y = -
2$ 代入 $y = x + 1$,我们可以得到 $x = -3$。
综上所述,原方程 $x^2 + 2x 3 = 0$ 的解为 $x = 1$ 或 $x
= -3$。
通过这个例题,我们可以看到换元法是一种有效的解方程方法。
通过引入新的变量,我们可以将原方程转化为一个更简单的形式,
从而更容易求解。
换元求解方法和技巧换元求解方法是一种常用的数学分析技巧,用于将复杂的数学问题转化为更简单或更易处理的形式。
它通常用于积分或微分的计算中,可以大大简化计算过程,提高计算效率。
在换元求解中,我们寻找一个合适的变量替换,使得原问题可以转化为一个等价的但更易处理的形式。
下面我们将详细介绍换元求解的基本思路、方法和技巧。
1. 换元法的基本思路换元法的基本思路是通过一个适当的变量替换,将原问题转化为一个更易处理的形式,然后通过求解新问题得到原问题的解。
一般来说,换元法可以将复杂的代数式或函数进行简化,或者将繁琐的积分或微分问题转化为更简单的形式。
2. 换元法的基本步骤换元法的基本步骤如下:(1)选择合适的变量替换,找到一个新的变量或新的函数关系,使得原问题可以转化为一个更简单或更易处理的形式。
(2)将原问题中的变量和微分或积分元用新的变量或新的函数来表示。
(3)进行变量替换后,将原问题转化为一个新的问题,然后解决这个新问题。
(4)根据新问题的解,得到原问题的解。
3. 常用的换元法技巧(1)代数换元代数换元是指通过一系列代数变换,将原问题中的变量替换为一个或多个新的变量,从而简化问题的求解过程。
常用的代数换元技巧有:- 分式分解:将一个复杂的分式拆解成几个简单分式之和或积之积。
- 完全平方公式:将一个二次项进行完全平方分解,从而得到一个简化后的表达式。
- 三角恒等式:利用三角函数的基本关系和恒等式,将复杂的三角函数表达式转化为更简单的形式。
(2)三角换元三角换元是指通过引入三角函数和三角恒等式,将原问题中的变量替换为三角函数或与之相关的新的变量,从而简化问题的求解过程。
常用的三角换元技巧有:- 三角函数的幂指数换元:利用三角函数和幂指数函数的关系,将原问题中的指数部分进行替换,从而简化计算。
- 特殊角换元:利用特殊角的正弦、余弦、正切等值,将原问题中的变量替换为特殊角的函数值,从而求解问题。
(3)指数换元指数换元是指通过引入指数函数和对数函数,将原问题中的变量替换为指数函数或对数函数的值,从而简化问题的求解过程。
2013东北师大附中高考第二轮复习 :专题三《三角函数(下)》【例题解析】例1 完成下列选择题(1)已知sin α>sin β,那么下列命题成立的是( ) A.若α、β是第一象限角,则cos α>cos β B.若α、β是第二象限,则tan α>tan β C.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β(3)函数y=sin(2x+3π)的图象是由函数y=sin2x 的图像( )A.向左平移3π单位 B.向右平移6π单位 C.向左平移65π单位D.向右平移65π单位解析 (1)当α,β∈(0,2π)时,由sin α>sin β得α>β,此时cos α<cos β;当α,β∈(2π,π)时,由sin α>sin β得,α<β,此时tan α<tan β;当α,β∈(π,23π)时,由sin α>sin β得,α<β,此时cos α<cos β;而对于α,β是第四象限角,由sin α>sin β⇒sin 2α<sin 2β⇒1-cos 2α<1-cos 2β⇒cos 2α>cos 2β⇒α2cos 1<β2cos1⇒tan 2α<tan 2β ∵tan α<0,tan β<0⇒tan α>tan β。
故答案选D 。
(3)y=sin2x 图像向左平移3π单位后得:y=sin2(x+3π)=sin(2x+32π);y=sin2x 图像,向右平移`6π单位后得y=sin2(x -`6π)=sin(2x -`3π);y=sin2x 图象向左平移`65π单位后得:y=sin2(x+`65π)=sin(2x+35π)=sin(2x -3π);y=sin2x 图像向右平移`65π单位后得:y=sin2(x-`65π)=sin(2x -35π)=sin(2x+3π),故答案选D 。
换元法 知识定位很多时候,我们遇到的问题直观比较复杂,在这种情况下把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
知识梳理知识梳理1:换元法在因式分解中的运用利用换元法分解因式,就是将多项式中的某一部分用一个新字母(元)来代替,进行变量替换,将问题转化,从而起到化繁为简、化隐为显、化难为易的作用。
知识梳理2:换元法在解方程中的运用换元法在解方程中是一种常用的方法,特别是解特殊方程中经常能产生事半功倍的 效果,下面介绍解特殊方程时应用换元法的几种常见的方法。
例题精讲【试题来源】【题目】分解因式:()()a a a a a 22216112++-++【答案】【解析】直接换元设a m 21+=,则原式=+-+()()m a m a a 6122=-+=--=+-+-=-+-m am a m a m a a a a a a a a 22222256231213311()()()()()()【知识点】换元法【适用场合】当堂例题【难度系数】3【试题来源】【题目】分解因式:()()()a b b c c a ----24 【答案】【解析】双元换元设b c m c a n -=-=,则a b m n -=-+(),原式=-+-[()]m n mn 24=-=---=+-()[()()]()m n b c c a a b c 2222【知识点】换元法【适用场合】当堂例题【难度系数】3【试题来源】【题目】分解因式:()()()a b ab a b ab +-+-+-2212【答案】【解析】和积换元设a b m ab n +==,原式=--+-()()()m n m n 2212=---+=--=+--=--()()()()()()m n m n m n a b ab a b 22222211111【知识点】换元法【适用场合】当堂例题【难度系数】3【试题来源】【题目】分解因式:()()()ab a b ab a b --+---1222 【答案】【解析】和差换元设a b ab m n +-=+22--=-a b m n则m ab n a b ab =-=+--11, 原式=-+-m m n m n 2()()=--=m m n n 2222()=+--=--()()()a b ab a b 111222【知识点】换元法【适用场合】当堂练习题【难度系数】3【试题来源】【题目】分解因式:a a a 42200320022003+++【答案】【解析】常值换元设2003=m ,则20021=-m ,原式=++-+a ma m a m 421()=-+++()()a a m a a 421=++-+=++-+()()()()a a a a m a a a a 2222112003【知识点】换元法【适用场合】当堂例题【难度系数】3【试题来源】【题目】分解因式: ()()()()x m x m x m x m m +++++2344 【答案】【解析】均值换元 原式=+++++()()x mx m x mx m m 222245456 设n x mx m x mx m =+++++1254562222[()()] =++x mx m 2255则原式=-++()()n m n m m 224==++n x mx m 222255()【知识点】换元法 【适用场合】当堂例题【难度系数】4【试题来源】【题目】分解因式:291492432a a a a -+-+【答案】【解析】倒数换元 原式=-+-+a a a a a 222291492()=+-++a a a a a 222219114[()()] 设a a m +=1,则原式=--+a m m 2222914[()]=-+=--a m m a m m 2222910225()()()=+-+-=-+-+=---a a a a a a a a a a a a 222212225212521221()()()()()()()【知识点】换元法【适用场合】阶段测验【难度系数】3【试题来源】【题目】分解因式:()()()a b b c c a abc ++++【答案】【解析】变形后换元原式=++-++-++-+()()()a b c c a b c a a b c b abc设a b c m ++=,则原式=---+()()()m c m a m b abc =-+++++-+=-+++=++++m a b c m ab bc ca m abc abcm m m ab bc ca mab bc ca a b c 3232()()()()()·【知识点】换元法【适用场合】课后两周练习【难度系数】3【试题来源】【题目】分解因式: ()()()a a a 212472----【答案】【解析】整体换元原式=+----[()()][()()]a a a a 141272 =---+-()()a a a a 22343272设a a m 232-+=,则原式=--()m m 672=--=-+=-+--++=+--+m m m m a a a a a a a a 222267212632123262538()()()()()()()【知识点】换元法【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】分解因式: ()12323+++-m m m m【答案】【解析】局部换元设12++=m m a ,则原式=+-()a m m 323 =++-=++-=++-=++-=++++++a am m m a am m m a am m m aa a m m m m m m m m m 23632333233343223422121211()()()()()【知识点】换元法【适用场合】课后两周练习【难度系数】3【试题来源】【题目】解方程:x 4+(x -4)4=626.【答案】x=5;或x=-1.【解析】(用平均值24-+x x 代换,可化为双二次方程.) 设 y= x -2 ,则x=y+2.原方程化为 (y+2)4+(y -2)4=626.[((y+2)2-(y -2)2)2+2(y+2)2(y -2)2-626=0整理,得 y 4+24y 2-297=0. (这是关于y 的双二次方程).(y 2+33)(y 2-9)=0.当y 2+33=0时, 无实根 ;当y 2-9=0时, y=±3.即x -2=±3,∴x=5;或x=-1.【知识点】换元法【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】解方程:2x 4+3x 3-16x 2+3x+2=0 .【答案】x=-2+3;x=-2-3; x=2;或x=21. 【解析】∵这是个倒数方程,且知x ≠0, 两边除以x 2,并整理 得2(x 2+21x )+3(x+x 1)-16=0. 设x+x 1=y, 则x 2+21x =y 2-2. 原方程化为 2y 2+3y -20=0.解得 y=-4;或y=25.由y=-4得 x=-2+3;或x=-2-3.由y=2.5得 x=2;或x=21. 【知识点】换元法【适用场合】课后两周练习【难度系数】3【试题来源】【题目】 解方程组⎪⎩⎪⎨⎧=+++++=+++++01012124012522222y x y xy x y x y xy x 【答案】⎪⎪⎩⎪⎪⎨⎧--=+-=33213321y x ;或⎪⎪⎩⎪⎪⎨⎧+-=--=33213321y x ;或⎪⎩⎪⎨⎧-=+=412412y x ;或⎪⎩⎪⎨⎧+=-=412412y x . 【解析】(这个方程组的两个方程都是二元对称方程,可用基本对称式代换.)设x+y=u, xy=v. 原方程组化为:⎪⎩⎪⎨⎧=+++=+++010********v u u v u u . 解得⎩⎨⎧-==374v u ; 或⎪⎪⎩⎪⎪⎨⎧=-=91132v u . 即⎩⎨⎧-==+374xy y x ; 或⎪⎪⎩⎪⎪⎨⎧=-=+91132xy y x . 解得:⎪⎪⎩⎪⎪⎨⎧--=+-=33213321y x ;或⎪⎪⎩⎪⎪⎨⎧+-=--=33213321y x ;或⎪⎩⎪⎨⎧-=+=412412y x ;或⎪⎩⎪⎨⎧+=-=412412y x .【知识点】换元法【适用场合】随堂课后练习【难度系数】3【试题来源】 【题目】解方程=++++)7(27x x x x 35-2x. 【答案】【解析】7=x x t ++则原式变为2t 420t +-=,解得t = -7 或 6【知识点】换元法【适用场合】课后两周练习【难度系数】3【试题来源】【题目】解方程(16x 2-9)2+(16x 2-9)(9x 2-16)+(9x 2-16)2=(25x 2-25)2. 【答案】【解析】可以换元令16x 2-9 = a ,9x 2-16 = b ,25x 2-25 = a + b 则原式变为 ()222a ab b a b++=+化简得ab = 0即【知识点】换元法【适用场合】阶段测验【难度系数】3【试题来源】【题目】解方程(2115-+x )4+(2315-+x )4=16.【答案】1,3【解析】【知识点】换元法【适用场合】阶段测验【难度系数】3【试题来源】【题目】解方程x x x x 112+++=223.【答案】无实数解【解析】x x x x 112+++=223 即111x x x x +++=223.令1x x + = t原方程变为1t t +=223.【知识点】换元法【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】解方程组【答案】【解析】【知识点】换元法【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】[a ]表示不大于a 的最大整数,如[2]=1,[-2]=-2, 那么 方程 [3x+1]=2x -21 的所有根的和是_____.【答案】-2【解析】【知识点】换元法【适用场合】课后一个月练习【难度系数】4【试题来源】 【题目】解方程1112---++x x x =x. 【答案】45 【解析】设11-++x x =y, 那么y 2=2x+212-x . 原方程化为: y -21y 2=0 . 解得 y=0;或y=2.当y=0时,11-++x x =0 (无解) 当y=2时, 11-++x x =2,解得,x=45. 检验(略). 【知识点】换元法【适用场合】随堂课后练习【难度系数】3。
高中数学换元法解题案例及练习题解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换兀法。
换兀的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。
局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。
例如解不等式:4x+ 2x- 2> 0,先变形为设2x= t (t>0 ),而变为熟悉的一元二次不等式求解和指数方程的问题。
三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。
如求函数y= -x + d -x 的值域时,易发现x € [0,1],设x = sin 2a ,a€ [0,],问2题变成了熟悉的求三角函数值域。
为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。
如变量x、y适合条件x2+y1 2 3= r2(r>0 )时,则可作三角代换x = rcos B、y = rsin B化为三角问【简解】1 小题:设sinx+cosx = t € [ — .一 2 ,、.. 2 ],则y =牛 + t —1, 对题。
均值换兀,如遇到x+ y = S形式时,设x = — + t , y = ——t等等。
2 2我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。
初中数学换元法数学中的换元法指通过一个一次或多次函数变换将原方程转化成更易解的方程的方法。
它在初中数学中主要应用于简化复杂的代数式和解方程,主要有以下几种类型。
1. 代数式的化简当出现一次多项式和一个二次多项式相乘时,可以使用一个新的变量,将二次项的系数给去掉。
例如:x^2 + 6x = (x+3)^2-92. 解一元一次方程组对于一元一次方程组,也可以使用换元法进行求解,通过将其中一个方程的某一变量项代入到另一个方程中,从而消去一部分未知数。
例如:\begin{cases} x-y=3\\ 2x+y=7\end{cases},可将第一个方程中的 y 用 3-x 表示,代入第二个方程,得到 x=2,进而求出 y=-1。
3. 解一元二次方程对于一元二次方程,可以通过变换将其化为一元一次方程。
例如:x^2-5x+4=0,令 x=y-\dfrac{b}{2a},代入原方程即可求解 y,再通过还原变量得到 x。
4. 解三角函数方程对于某些三角函数方程,可以通过一些简单的代数变换将其转化为其他类型的方程,例如:\sin^2 x - \sin x -2=0,令 y=\sin x,则原方程变为 y^2-y-2=(y+1)(y-2)=0,解得 y=-1 或 y=2,进而求出 x。
5. 解根式方程对于一些含有根式的方程,可以通过换元法将其化为一元二次方程,例如:\sqrt{2x+5}-\sqrt{x+1}=1,令 y=\sqrt{x+1},则原方程变为\sqrt{2y^2+3}-y=1,化为 2y^2-2y-2=0,解得 y=1+\sqrt{2} 或y=1-\sqrt{2},进而求出 x。
方法二换元法换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来;或者把条件与结论联系起来;或者变为熟悉的形式,把复杂的计算和推证简化.纵观近几年高考对于转化与化归思想的的考查,换元法是转化与化归思想中考查的重点和热点之一.换元法是解数学题时,把某个式子看成一个整体,用一个变量去代替它,使问题得到简化,变得容易处理.换元法的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是通过换元变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,可以把分散的条件联系起来,隐含的条件显露出来;或者把条件与结论联系起来;或者变为熟悉的形式,把复杂的计算和推证简化.主要考查运用换元法处理以函数、三角、不等式、数列、解析几何为背景的最值、值域或范围问题,通过换元法把不熟悉、不规范、复杂的典型问题转化为熟悉、规范、简单的典型问题,起到化隐形为显性、化繁为简、化难为易的作用,以优化解题过程.要用好换元法要求学生有较强转化与化归意识、严谨治学态度和准确的计算能力.从实际教学来看,换元法是学生掌握最为模糊,知道方法但不会灵活运用的方法.分析原因,除了换元法比较灵活外,主要是学生没有真正掌握换元法的类型和运用其解题的题型与解题规律,以至于遇到需要换元的题目便产生畏惧心理.本文就高中阶段出现换元法的类型与相关题型作以总结和方法的探讨.学…换元的常见方法有:局部换元、三角换元等,在高考中换元法常适用以下几种类型:1、局部换元局部换元是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.1.1对于形如的值域(最值)问题,令,化为一元二次函数在某个区间上的值域(最值)问题处理.例1.【2018届湖南省岳阳县第一中学高三上学期第一次月考】设函数,是定义域为R上的奇函数.(1)求的值;(2)已知,函数,,求的值域;(3)若,试问是否存在正整数,使得对恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.【答案】(1)(2)(3)【解析】试题分析:试题解析:(1)先利用为上的奇函数得求出以及函数的表达式,(2)先由得,得出函数的单调性,再对进行整理,整理为用表示的函数,最后利用函数的单调性以及值域,得到的值域.(3)利用换元法,将不等式转化为对勾函数问题求解,注意分类讨论思想的应用.(3)=,,假设存在满足条件的正整数,则,①当时,.②当时,,则,令,则,易证在上是增函数,∴.③当时,,则,令,则,易证在上是减函数,∴.综上所述,,∵是正整数,∴=3或4.∴存在正整数=3或4,使得对恒成立.1.2、分式型函数利用均值不等式求最值问题(局部换元);例2.【2018届上海市长宁、嘉定区高三一模】已知函数.(1)求证:函数是偶函数;(2)设,求关于的函数在时的值域的表达式;(3)若关于的不等式在时恒成立,求实数的取值范围.【答案】(1)见解析(2)(3).【解析】试题分析:(1)判断定义域是否关于原点对称,计算判断其与的关系;(2)令,故,换元得,转化为二次函数,分类讨论求其最值即可;(3))由,得,即恒成立,求其最值即可.试题解析:(1)函数的定义域为,对任意,,所以,函数是偶函数.(2),令,因为,所以,故,原函数可化为,,图像的对称轴为直线,当时,函数在时是增函数,值域为;当时,函数在时是减函数,在时是增函数,值域为.综上,(3)由,得,当时,,所以,所以,所以,恒成立.令,则,,由,得,所以,.所以,,即的取值范围为.1.3、常数换元例3.【2018届江苏省南京师范大学附属中学、天一、海门、淮阴四校高三联考】已知,则的值为__________.【答案】【解析】由题意得,解得.∴.答案:.1.4.复合函数中的换元例4.已知函数,,其中且,.(I)若,且时,的最小值是-2,求实数的值;(II)若,且时,有恒成立,求实数的取值范围.【答案】(I);(II).【解析】(I)∵,∴,………………2分易证在上单调递减,在上单调递增,且,∴,,………………3分∴当时,,由,解得(舍去) (4)分当时,,由,解得.………………5分综上知实数的值是.………………6分∴.………………11分故实数的取值范围为.…………………12分1.5.局部换元法与不等式局部换元法在解关于某个函数的不等式和复杂的不等式证明中,经常用到,通过换元将复杂的不等式问题转化为简单不等式、超越不等式化为一般不等式,将不熟悉的不等式问题转化为熟悉的不等式问题,如在解可化为形式为不等式时,常令,将复杂不等式化为一元二次不等式,解出t的范围,再解不等式关于的简单不等式.例5.【2018届甘肃省西北师范大学附属中学】在等腰梯形中,,其中,以为焦点且过点的双曲线的离心率为,以为焦点且过点的椭圆的离心率为,若对任意都有不等式恒成立,则的最大值为()A. B. C. D.【答案】C例6.【2018届福建省南平市高三上学期第一次综合质量检查(2月)】已知实数满足,求的取值范围__________.【答案】【解析】作出可行域如图所示:令表示可行域内的点到原点的斜率,由图联立直线可得..易知在单调递减,在单调递增.时,,时,,时,,所以.故答案为:.1.6 局部换元法与数列在已知数列递推公式求出通项公式中,常用到构造等比或等差数列法,其实质就是换元法,证明与数列有关的不等式,其实质就是求数列的最值,也常用到换元法.例7.已知在数列中,,当时,其前项和满足。
换元法解题技巧和方法
换元法是数学问题解决中常用的策略之一,旨在将复杂的问题转化为更简单的形式,从而更容易解决。
在解题过程中,正确选择合适的换元方法非常重要。
以下是几种常见的换元法解题技巧和方法:
1. 代入法:将题目中给出的数据或条件分别表示为一个或多个新的变量,然后利用这些新的变量重新表述问题,并解决它。
2. 平移法:引入一个新的变量,通过平移给定函数或方程的坐标系,使得原来的问题变得更容易处理。
3. 三角换元法:如果题目中涉及到三角函数,可以利用三角换元法将其转化为更简单的形式。
常见的三角换元包括正弦换元、余弦换元及正切换元。
4. 对称换元法:当题目中存在对称性时,可以选择合适的新变量,利用对称性质将原问题转化为较简单的形式。
5. 递推换元法:对于递归或迭代的问题,可以引入一个新的变量,利用递推关系将原问题转化为关于新变量的直接求解问题。
6. 迭代换元法:对于需要多次迭代的问题,可以通过引入新的变量,将原问题转化为一个迭代问题,然后使用逐次逼近的方法求解。
7. 反向换元法:当题目给出的问题较难处理时,可以考虑反向思维,使用一个合适的换元将该问题转化为更易解决的问题。
在应用换元法解题时,需要根据题目的特点和所给条件进行灵活选择,并合理确定新的变量。
此外,需要注意换元后问题的合法性和简化程度,避免引入复杂度较高的新问题。
通过熟练掌握换元法解题技巧和方法,可以提高问题解决的效率和准确性。
常考的压轴题,二次换元法
二次换元法(也称为二阶换元法)是微积分中的一种常用方法,用于求解某些特定类型的积分。
当需要计算形如∫f(x)dx 的积分时,如果 f(x) 包含一个二次项,可以通过引入一个新的变量来进行二次换元。
一般选择一个合适的变量代替原来的自变量,使得积分中的二次项消失或简化,从而简化积分的计算。
具体的步骤如下:
1. 观察被积函数中是否存在一个二次项及其系数。
如果存在,我们可以设这个二次项为新的变量,通常表示为 u 或 t。
2. 将 x 表达为 u 的函数,并找出 dx 与 du 之间的关系。
通常需要对原方程进行整理和求导,以便计算 dx/du。
3. 将被积函数以及 dx 表达为 u 和 du 的函数。
根据变量代换,将 f(x)dx 替换为 g(u)du。
4. 在新的积分中,我们可以利用已知的积分公式,或者通过简化被积函数,进一步计算出结果。
5. 将 u 替换为原来的自变量 x,得到最终的积分结果。
需要注意的是,二次换元法只适用于特定类型的积分问题,且需要有合适的二次项存在。
在实际应用中,还需要根据具体问题的形式和条件进行变量替换和计算。
二次换元法在高等数学和物理等领域经常被使用,对于某些积分问题可以显著简化计算过程并得到解析解。
然而,在进行积分计算时,还应该考虑其他技巧和方法,以找到最适合的方法来解决特定的问题。
高中数学解题方法 2013年高考数学二轮复习 换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:代数换元、三角换元、均值换元等。
例如解不等式:0224≥-+x x ,先变形为设)0(2>=t t x ,而变为熟悉的一元二次不等式求解和指数方程的问题。
三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。
如求函数y =x +1-x 的值域时,易发现[]1,0∈x ,设α2sin =x ⎥⎦⎤⎢⎣⎡∈22,0α,问题变成了熟悉的求三角函数值域。
如变量y x ,适合条件)0(222>=+r r yx 时,则可作三角代换θθsin ,cos r y r x ==化为三角问题。
均值换元,如遇到S y x =+形式时,设t S y t S x -=+=2,2等等。
我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。
题型一:代数换元例1:(1)方程1313++-x x=3的解是_______________(2)x x x f --=2)(的值域是___________.(3)2loglog)12(2)22(2<⋅--xx的解为_____________________________.变式练习:已知221)1(xx xx f +=-,则=)(x f _________________。
例2求函数P =解设,a b ==,则224a b +=,0a ≥,0b ≥.在平面直角坐标系xo y 中,点(,)M a b 是圆弧224(0,0)x y x y +=≥≥上的点,如图所示。
22P a =+=⋅,所以P 表示点(,)M a b到直线0:0l x +=的距离的2倍。
过点(,)M a b作直线0:0l x +=的平行线l ,则P 表示直线0l 与l 的距离的2倍。
设平行直线0l 与l 的距离为d .则当l 过点A 时(直线1l ),d 取最小值1,此时2P =;当l 与圆弧相切时(直线2l ),d 取最大值2,此时4P =.所以函数P =[2,4].此题通过做,a b ==的代换,问题转化为两直线距离问题,简明直观。
当然由224a b +=,0a ≥,0b ≥可设2cos ,2sin ,02a b πααα==≤≤则是三角换元。
题型二:均值换元例1:(1)已知,1->x ,求13++x x 的最小值(2)设实数y x ,满足0122=-+xy x ,则y x +的取值范围是___________。
例2 已知,,x y z 是正数,求证32x y z y zx zx y++≥+++证明 设,,a y z b x z c x y =+=+=+, 则,,222b c aa c ba b cx y z +-+-+-===.所以222x y z b c a a c b a b c y zx zx yabc +-+-+-++=+++++3()()()2222222b a ca b c ab accb=+++++-32≥3322≥=例3 已知1,1,1a b c>>>. 求证:22212 111a b cb c a++≥---.证明:由1,1,1a b c>>>,可设1,1,1,0,0,0a xb yc z x y z>>>-=-=-=.于是2222222(1)(1)(1)1114()412a b c x y zb c a y z x y z xx y zy z x+++++=++≥---=+≥⋅=+例4.△ABC的三个内角A、B、C满足:BBA2=+,1cos A+1cos C=-2cos B,求2cosCA-的值。
【分析】由已知“BBA2=+”和“三角形内角和等于180°”的性质,可得A CB+=⎧⎨⎩12060°=°;由“0120=+BA°”进行均值换元,则设⎩⎨⎧-+αα°=°=6060CA,再代入可求αcos即2cosCA-。
【解】由△ABC中已知BBA2=+,可得A CB+=⎧⎨⎩12060°=°,由0120=+BA°,设⎩⎨⎧-+αα°=°=6060CA,代入已知等式得:1cos A+1cos C=160cos()︒+α+160cos()︒-α=11232cos sinαα-+11232cos sinαα+=coscos sinααα143422-=coscosαα234-=-22,解得:cosα=22,即:cosA C-2=22。
题型三:三角换元例:1: 实数,x y 满足224545x xy y -+=,设22S x y =+,求S 的最大值和最小值。
解 设cos ,sin x r y θθ==,则2245cos sin 5r r θθ-=,2545cos sin r θθ=-所以22251045cos sin 85sin 2S x y r θθθ=+===--所以当sin 21θ=时,m ax 103S =;当sin 21θ=-时,m in 1013S =.例2: 已知224a b +=,229x y +=,求ax by +的最大值。
解 由224a b +=,可设2cos ,2sin a b αα==;由229x y +=,可设3cos ,3sin x y ββ==.于是6cos cos 6sin sin 6cos()6ax by αβαβαβ+=+=-≤又当2()k k Z αβπ-=∈时,上式中等号成立。
即ax by +的最大值是6.例3.求函数的值域21xx y -=。
解:令=x t sin ,t ⎪⎭⎫⎝⎛-∈2,2ππ则:tt y 2sin1sin -=∵t t cos sin 12=-当t ⎪⎭⎫⎝⎛-∈2,2ππ时∴t y tan = ,⎪⎭⎫⎝⎛-∈2,2ππt ∴值域为()∞∞-, 例4.已知R b a ∈,,且122≤+b a ,求证:2222≤-+b ab a 。
证明:设θθsin ,cos r b r a ==,其中[)πθ2,0,1∈≤r 则θθθθ2222222sin cos sin 2cos 2r r r b ab a -+=-+242sin 22sin 2cos 222≤⎪⎭⎫ ⎝⎛+=+=πθθθr r r∴2222≤-+b ab a 。
原不等式得证。
题型四:解析几何中换元法的运用1. 已知实数y x ,满足01)2()2(22=--+-y x ,求yx y x ,2+的最大值与最小值。
2. 已知椭圆192522=+yx,直线04054:=+-y x l ,椭圆是是否存在一点,它到直线的距离最小?最小距离是多少? 3. 已知xx y 264++-=的最大值。
解:令xv x u 26,4+=-=;易得1147722222=+⇒=+vuvu ;令θθsin 14,cos 7==v u ;所以)sin(21sin 14cos 7ϕθθθ+=+=y21max =y。