与圆有关的基本概念(含答案)-
- 格式:doc
- 大小:136.50 KB
- 文档页数:4
与圆有关的概念有:
1.圆的基本性质:圆的定义、有关概念(弦、直径;弧、等弧、
优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆)、“三点定圆”
定理。
2.直线与圆、圆与圆的位置关系:相交、相切、相离。
3.与圆有关的角的定理:圆心角、弦心角。
4.与圆有关的比例线段定理:垂径定理、平分弦(不是直径)的
直径垂直于弦,并且平分弦所对的两条弧。
5.同心圆:圆心相同,半径不等的两个圆叫做同心圆。
6.等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是
等圆。
7.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
ECDOBA圆的知识及性质【基本概念】 1. 圆的定义在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.OA2.有关概念:弦:连接圆上任意的两点的线段叫做弦。
其中,直径是过圆心的弦,是最长的弦;弧:圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作AC ”,读作“圆弧AC ”或“弧AC ”; 等弧:如果两条弧完全..重合,那么这两条弧是等弧; 弧的分类:①大于半圆的弧称为优弧;②小于半圆的弧称为劣弧;③直径所对的弧称为半圆; 弦心距:圆心到弦的距离;等圆(半径相等的两个圆)、同圆(圆心和半径都相同)、同心圆(圆心相同,半径不一定相等)。
●圆既是轴对称图形(无数条对称轴,对称轴为过圆心的直线),又是中心对称图形,对称中心是圆心.【典型例题】1.在右图中,弦、直径、弧(劣弧、优弧)分别指的是什么?① 连接圆上任意两点的线段叫做弦,如图线段_____,______,______,______;② 经过圆心的弦叫做直径,如图线段_______;③ 圆上任意两点间的部分叫做圆弧,如__ __,______,______,_______,______,______,______,______等;2.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .mmααO 知识点1:圆心角——顶点在圆心的角。
等对等定理:圆心角、弦、弧之间关系:在一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦也相等; 如果弧相等,那么它所对的圆心角相等,所对的弦也相等; 如果弦相等,那么所对的圆心角相等,圆心角所对的弧相等。
【典型例题】1.如图在⊙O 中,圆心角有 , , , , ;它们所对的弧分别是 , , , , ;若AC BD =,∠1=45°,则∠2的度数为 。
与圆有关的概念——专题培优、能力提升复习讲义中考考点梳理1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、弦连接圆上任意两点的线段叫做弦。
(如图中的AB)3.直径经过圆心的弦叫做直径(如图中的CD);直径等于半径的2倍。
4.半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
5.弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)5、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
6、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
7、弦心距从圆心到弦的距离叫做弦心距。
中考典例精选考点典例一、★★★垂径定理【例1】如图所示,⊙O 的半径为13,弦AB 的长度是24,AB ON ⊥,垂足为N ,则=ON ( )A.5B.7C.9D. 11【答案】A.【解析】考点:垂径定理;勾股定理.【点睛】根据“两条辅助线(半径和边心距),一个直角三角形,两个定理(垂径定理、勾股定理)”解决即可。
【举一反三】如图,在⊙O 中,弦AB=6,圆心O 到AB 的距离OC=2,则⊙O 的半径长为 . N OBA【答案】13.【解析】试题分析:已知弦AB=6,圆心O到AB的距离OC为2,根据垂径定理可得AC=BC=3,∠ACO=90°,由勾股定理可求得OA=13.考点:垂径定理;勾股定理.考点典例二、求边心距【例2】小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.23cm B.43cm C.63cm D.83cm【答案】B.【解析】考点:三角形的外接圆与外心;等边三角形的性质.【点睛】作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径.【举一反三】 如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD. 已知DE=6,∠BAC+∠EAD=180°,则弦BC 的弦心距等于( )A. 241B. 234 C. 4 D. 3 【答案】D .考点:1.圆周角定理;2.全等三角形的判定和性质;3.垂径定理;4.三角形中位线定理.【分析】如答图,过点A 作AH ⊥BC 于H ,作直径CF ,连接BF ,考点典例三、最短路线问题【例3】如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为()A. B.1 C. 2 D. 2【答案】A.【解析】作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,则AB′与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,∴∠BON=12∠AON=12×60°=30°,由对称性,∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形,∴AB′=2OA=2×1=2,即PA+PB的最小值=2.故选A.【点睛】本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键.【举一反三】如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A . 6B . 1132C . 9D .332 【答案】C .【解析】考点:切线的性质;最值问题. 课后能力提升自测小练习一.选择题1.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .43【答案】A .【解析】考点:正多边形和圆.2. 如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°【答案】B.【解析】试题分析:∵CD⊥AB,∴∠AEC=90°,∵∠CAB=40°,∴∠C=50°,∴∠ABD=∠C=50°,∵OB=OD,∴∠ABD=∠ODB=50°,∴∠AOD=∠ABD+∠ODB=100°,故选B.考点:圆周角定理;垂径定理.3.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A. 25cmB. 45cmC. 25cm或45cmD.523cm或43cm【答案】C.【解析】考点:1.垂径定理;2.勾股定理;3.分类思想的应用.4.已知⊙O的面积为2π,则其内接正三角形的面积为【】A.33B.36C.332D.362【答案】C.【解析】5. 如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P是直径MN上一动点.若MN=22,则PA+PB的最小值是()A.22 B.2 C.1 D.2【答案】D.【解析】作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,PA,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=2,∴A′B=2.∴PA+PB=PA′+PB=A′B=2.故选D .二.填空题6. 如图,已知⊙O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP =2cm ,则tan ∠OPA 的值是 .【答案】53. 【解析】考点:垂径定理;解直角三角形.7. 如图,⊙O 的直径CD =20cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,若OM =6cm ,则AB 的长为 cm .【答案】16.【解析】试题分析:连接OA ,∵⊙O 的直径CD =20cm ,∴OA =10cm ,在Rt △OAM 中,由勾股定理得:A M =22106 =8cm ,∴由垂径定理得:A B =2AM =16cm .故答案为:16.考点:垂径定理.8.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=6cm,则OE= cm.【答案】4.【解析】考点:1.垂径定理;2.勾股定理.9.如图, AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为.【答案】3.【解析】连接OC,由AB=10得出OC的长,再根据垂径定理求出CE的长,根据勾股定理求出OE即可.试题解析:连接OC,∵AB 为⊙O 的直径,AB=10, ∴OC=5,∵CD⊥AB,CD=8,∴CE=4, ∴OE=2222543OC CE -=-=.考点:1.垂径定理;2.勾股定理.10.如图,AB 为⊙O 的直径,CD⊥AB,若AB=10,CD=8,则圆心O 到弦CD 的距离为 .【答案】3.【解析】考点:1.垂径定理;2.勾股定理.11.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.【答案】1或3【解析】试题分析:如图所示:∵⊙O的半径为2,弦BC=23,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=3,在Rt△OBD中,∵BD2+OD2=OB2,即(3)2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.考点:1、垂径定理;2、勾股定理.。
第五章中心对称图形(二)——知识点归纳以及相关题目总结一、和圆有关的基本概念1.圆:把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转1周,另一个端点P运动所形成的图形叫做圆。
其中,定点O叫做圆心,线段OP叫做半径。
以点O为圆心的圆,记作“⊙O”,读作“圆O”。
圆是到定点的距离等于定长的点的集合。
2.圆的内部可以看作是到圆心的距离小于半径的点的集合。
3.圆的外部可以看作是到圆心的距离大于半径的点的集合。
4.弦:连接圆上任意两点的线段。
5.直径:经过圆心的弦。
6.弧:圆上任意两点间的部分。
优弧:大于半圆的弧。
劣弧:小于半圆的弧。
半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
7.同心圆:圆心相同,半径不相等的两个圆叫做同心圆。
8.等圆:能够重合的两个圆叫做等圆。
(圆心不同)9.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
(在大小不等的两个圆中,不存在等弧。
10.圆心角:顶点在圆心的角。
11.圆周角:顶点在圆上,两边与圆相交的角。
12.圆的切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长。
13.正多边形:①定义:各边相等、各角也相等的多边形②对称性:都是轴对称图形;有偶数条边的正多边形既是轴对称图形有是中心对称图形。
14.圆锥:①:母线:连接圆锥的顶点和底面圆上任意一点的线段。
②:高:连接顶点与底面圆的圆心的线段。
15.三角形的外接圆:三角形三个顶点确定一个圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。
16.三角形的内切圆:与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
二、和圆有关的重要定理1.圆是中心对称图形,圆心是它的对称中心。
2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
3.在同圆或等圆中,如果两个圆心角、两条弦、两条弧中有一组量相等,那么它们所对应的其余各组量都分别相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
高中圆的基本概念与点圆关系 知识点与答案解析第一节 圆的基本概念1.圆的标准方程:222()()x a y b r (圆心(,)a b ,半径为r )例1 写出下列方程表示的圆的圆心和半径(1)x 2 + (y + 3)2 = 2; (2)(x + 2)2 + (y – 1)2 = a 2 (a ≠0)例2 圆心在直线x – 2y – 3 = 0上,且过A (2,–3),B (–2,–5),求圆的方程.例3 已知三点A (3,2),B (5,–3),C (–1,3),以P (2,–1)为圆心作一个圆,使A 、B 、C 三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.2.圆的一般方程:220x y Dx Ey F (其中2240D E F ),圆心为点)2,2(E D ——,半径2422F E D r —(Ⅰ)当2240D E F 时,方程表示一个点,这个点的坐标为(,)22D E (Ⅱ)当2240D E F 时,方程不表示任何图形。
例1:已知方程x 2+y 2+2kx+4y+3k+8=0表示一个圆,求k 的取值范围。
解: 方程x 2+y 2+2kx+4y+3k+8=0表示一个圆,∴0)83(44)2(22>+-+k k ,解得14-<>k k 或∴当14-<>k k 或时,方程x 2+y 2+2kx+4y+3k+8=0表示一个圆。
例2:若(2m2+m-1)x2+(m2-m+2)y2+m+2=0的图形表示一个圆,则m 的值是___。
答案:-3例3:求经过三点A (1,-1)、B (1,4)、C (4,-2)的圆的方程。
解:设所求圆的方程为022=++++F Ey Dx y x ,A (1,-1)、B (1,4)、C (4,-2)三点在圆上,代入圆的方程并化简,得⎪⎩⎪⎨⎧-=+--=++-=+-20241742F E D F E D F E D ,解得D =-7,E =-3,F =2∴所求圆的方程为023722=+--+y x y x 。
初中数学知识归纳圆的概念与性质圆是初中数学中的重要概念,在本文中将对圆的概念与性质进行归纳和总结。
文章将从圆的定义开始,逐步介绍圆的基本要素、圆心角、内接外接等重要性质,并辅以相关的定义、公式和图示,以便读者更好地理解和掌握。
1. 圆的定义圆是由平面上所有距离固定点(圆心)的点构成的集合。
圆的平面被称为圆面,圆上的每一个点到圆心的距离都相等,这个相等的距离被称为圆的半径。
2. 圆的基本要素(1)圆心:圆心是圆的中心点,通常用字母O表示。
(2)半径:圆心到圆上任一点的距离为圆的半径,通常用字母r表示。
(3)直径:直径是通过圆心且两端在圆上的线段,直径的长度为半径的两倍。
(4)弦:连接圆上两点的线段被称为弦,弦的长度可以小于或等于直径。
3. 圆的性质(1)圆的周长:圆的周长是圆上一周的长度,用C表示,可通过公式C = 2πr计算,其中π是一个常数,近似值为3.14。
(2)圆的面积:圆的面积是圆内部的所有点构成的区域,用S表示,可通过公式S = πr²计算。
(3)圆心角:以圆心为顶点的角被称为圆心角,圆心角所对的弧称为圆心角所对的弧。
(4)弧长:弧长是圆的一部分,通常通过弧度来度量,弧长的计算公式是L = rθ,其中θ是圆心角的弧度数。
(5)切线和法线:切线是与圆相切于一点并且与圆的切点的切线垂直的直线,而法线是与切线垂直的直线。
4. 圆的内接和外接(1)内接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为内接多边形,内接多边形的顶点都落在圆上。
(2)外接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为外接多边形,外接多边形的每个顶点都在圆上。
综上所述,圆是一种特殊的几何图形,其定义、基本要素、性质和内接外接等概念是初中数学中必须掌握的内容。
通过对圆的学习,我们可以应用圆的性质解决实际问题,如计算圆的周长、面积,进行内接外接多边形的相关计算等。
深入理解和掌握圆的概念和性质能够夯实数学基础,为进一步学习和应用提供坚实的基础。
圆的基本概念与性质内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题1. 圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. 2. 弧与弦:弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 弦心距:从圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作»AB ,读作弧AB . 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 3. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
一 与圆有关概念【例1】 判断题(1)直径是弦 ( ) (2)弦是直径( )中考说明自检自查必考点中考必做题(3)半圆是弧( )(4)弧是半圆( )(5)长度相等的两条弧是等弧( )(6)等弧的长度相等( )(7)两个劣弧之和等于半圆( )(8)半径相等的两个圆是等圆( )(9)两个半圆是等弧( )(10)圆的半径是R,则弦长的取值范围是大于0且不大于2R( )【答案】(1)√;(2)×;(3)√;(4)×;(5)×;(6)√;(7)×;(8)√;(9)×;(10)√【例2】如图,点A D G M、、、在半圆O上,四边形ABOC DEOF HMNO、、均为矩形,设BC a=,EF b=,NH c=则下列格式中正确的是( )A.a b c>>B.a b c==C.c a b>>D.b c a>>ONMHGFEDCB A【答案】B【例3】如图,直线12l l∥,点A在直线1l上,以点A为圆心,适当长为半径画弧,分别交直线12l l、于B、C两点,连接AC BC、.若54ABC∠=︒,则∠1的大小为________【答案】72°【例4】如图,ABC∆内接于Oe,84AB AC D==,,是AB边上一点,P是优弧¼BAC的中点,连接PA、PB、PC、PD,当BD的长度为多少时,PAD∆是以AD为底边的等腰三角形?并加以证明.【答案】解:当4BD=时,PAD∆是以AD为底边的等腰三角形.证明:∵P是优弧¼ABC的中点∴»»PBPC = ∴PB PC =在PBD ∆与PCA ∆中, ∵4PB PC PBD PCB BD AC =⎧⎪∠=∠⎨⎪==⎩∴PBD PCA SAS ∆∆≌().∴PD PA =,即4BD =时,PAD ∆是以AD 为底边的等腰三角形.【例5】 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A B C D A ⇒⇒⇒⇒滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B C D A B ⇒⇒⇒⇒滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为_________【答案】4π- 【解析】根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M 到正方形各顶点的距离都为1,故点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.二 垂径定理及其应用【例6】 如图,AB 是O e 的直径,BC 是弦,OD BC ⊥于E ,交弧BC 于D .(1)请写出五个不同类型的正确结论; (2)若82BC ED ==,,求O e 的半径.【答案】(1)不同类型的正确结论有:22290•ABC BE CE BD DC BED BOD A AC OD AC BC OE BE OB S BC OE BOD BOE BAC ==∠=︒∠=∠⊥+==⋯V P V V V ①;②弧弧;③;④;⑤;⑥;⑦;⑧;⑨是等腰三角形;⑩∽(2)∵OD BC ⊥,∴12BE CE ==4BC =设O e 的半径为R ,则2OE OD DE R =-=-,在Rt OEB V中,由勾股定理得: 22222224OE BE OB R R +=-+=,即(),解得:5R = ,∴O e 的半径为5.【例7】 如图,在O e 中,120,3AOB AB ∠=︒=,则圆心O 到AB 的距离=_______BAO【答案】23【例8】 如图,D 内接于O e ,D 为线段AB 的中点,延长OD 交O e 于点E , 连接,AE BE 则下列五个结论①AB DE ⊥,②AE BE =,③OD DE =,④AEO C ∠=∠,⑤»¼12AB ACB =,正确结论的个数是( )DCBAA .2B .3C . 4D .5【答案】A【例9】 如图,AB 为O e 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )ODCAA . 70︒B . 35︒C . 30︒D .20︒【答案】B【例10】 如图,AB 是O e 的在直径,弦CD AB ⊥于点E ,若8CD =,3OE =,则O e 的直径为( )EO BDCAA .10B .12C .14D .16【答案】A【例11】 如图,O e 是ABC ∆的外接圆,60BAC ∠=︒,若O e 的半径OC 为2,则弦BC 的长为( ) A .1 B 3 C .2 D .23OCBA【答案】D【例12】 小英家的圆镜子被打破了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )A .2B 5C .22D .3【答案】B【解析】考查垂径定理与勾股定理的应用.此题关键找到圆心,由不在同一条直线上的三点确定唯一一个圆.如图,作线段,AB BC 的垂直平分线交于点O ,点O 即为圆镜的圆心,连结OA ,由图可知 1,2AD OD ==,由勾股定理得半径2222125OA AD OD +=+ODCBA【例13】 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得=∠DOE sin 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5m 的速度下降,则经过多长时间才能将水排干?【答案】(1)∵OE ⊥CD 于点E ,CD =24, ∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ). (2)OE 22OD ED -2213125-=. ∴将水排干需:50.510÷=小时.【例14】 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )OEC DABCDA .5米B . 8米C .7米D .53米 【答案】B【例15】 如图,AB 为O e 的直径,弦CD AB ⊥,垂足是E ,连接OC ,若5,8OC CD ==,则AE =_______BEO DCA【答案】2【例16】 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )OCBAA .16B .10C .8D .6 【答案】A【例17】 已知,如图,1O e 与坐标轴交与A (1,0)、B ( 5,0)两点,点1O 的纵坐标为5,求1O e 的半径。
圆的认识与性质知识点总结圆是几何学中常见的图形,具有独特的性质和特点。
在本文中,我们将对圆的基本概念、性质和相关定理进行总结和归纳。
一、圆的基本概念圆是由平面上距离一个固定点(圆心)相等的所有点组成的集合,这些点到圆心的距离称为半径。
以圆心为中心,半径为半径的线段称为半径线。
常用符号表示圆的半径为r,直径为d,周长为C,面积为S。
二、圆的性质1. 圆的直径和半径的关系:直径是圆中任意两点之间的最长线段,它等于半径的两倍,即d=2r。
2. 圆的周长和直径的关系:圆的周长是圆的一周的长度,它等于直径乘以π,即C=πd或C=2πr。
3. 圆的面积公式:圆的面积等于半径的平方乘以π,即S=πr²。
4. 圆的对称性:圆具有轴对称性和中心对称性,对圆上的任意一点P,以圆心O为对称中心,关于O对称的点P'也在圆上。
5. 圆的切线和法线:圆上一点的切线与半径垂直,并且切线的方向与该点对应的半径线相同,切线的两个端点都在圆上;圆上一点的法线与切线垂直。
三、圆的相关定理1. 弧度制:圆的度数制和弧度制是两种常用的角度制度。
弧度制是以弧长相等的圆心角所对应的圆心角的大小为单位。
一个圆的弧长等于半径长的弧所对应的圆心角的弧度数,即弧长L=rθ,其中θ是角度,L是弧长,r是半径。
2. 圆的圆心角和弧度的关系:一个圆的圆心角所对应的弧长等于半径长的弧所对应的圆心角的弧度数,即L=rθ,其中L是弧长,r是半径,θ是圆心角的角度,根据该定理,可以将角度和弧度进行相互转换。
3. 相交弧定理:在同一个圆或者等圆中,两条弦所对应的弧相等,两条切线所对应的弧相等。
4. 等弧的定理:在同一个圆或者等圆中,等长的弧所对应的圆心角相等。
5. 弧与切线的关系:一个角的顶点在圆上,角的一边是切线,另一边是割线,则这个角等于其所对应的弧所对应的圆心角的一半。
6. 弦切角的定理:两条切线所夹的角等于这两条切线所对应的弧之间的角的一半。
热点16 与圆有关的基本概念
(时间:100分钟 总分:100分)
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)
1.在同圆或等圆中,如果 AB C
D ,则AB 和CD 的关系( ) A .AB=CD B .AB>CD C .AB<CD D .AB=2CD
2.已知⊙O 1和⊙O 2的半径分别为3cm 和5cm ,两圆的圆心距是6cm ,•则两圆的位置关系是( ) A .内含 B .外离 C .内切 D .相交
3.下列命题中,不正确的是( )
A .圆是轴对称图形;
B .圆是中心对称图形
C .过三点一定确定一个圆;
D .一个三角形只有一个外接圆 4.到△ABC 的三个顶点距离相等的点是△ABC 的( ) A .三条中线的交点; B .三条角平分线的交点
C .三条高的交点;
D .三条边的垂直平分线的交点
5.下列命题中是假命题的是( )
A .直径是弦;
B .等弧所在的圆是同圆或等圆
C .弦的垂直平分线经过圆心;
D .平分弦的直径垂直于弦
6.若圆的半径是5cm ,圆心的坐标是(0,0),点P 的坐标是(4,2),则点P 与⊙O•的位置关系是( ) A .点P 在⊙O 外 B .点P 在⊙O 内 C .点P 在⊙O 上 D .点P 在⊙O 外或⊙O 上
7.已知等边△ABC 的边长为
,如图所示,以A 为圆心的各圆中,•半径是3cm 的圆是( )
8.一个点与圆上最近点的距离是4cm ,最远点的距离是为9cm ,则此圆的半径为(• ) A .2.5cm 或6.5cm B .2.5cm C .6.5cm D .13cm 或5cm
9.已知⊙O 1和⊙O 2的半径分别为R 、r ,O 1O 2=d ,且R 2-r 2+d 2
=2Rd ,则两圆的位置关系是(• ) A .内含 B .内切 C .相交 D .相切
10.如图1,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,•则经过A 、B 两点且圆心在L 上的圆有( )
A .0个
B .1个
C .无数个
D .0个或1个或无数个
l B
A
(1) (2) (3)
二、填空题(本大题共8小题,每小题3分,共24分)
11.半径为2,圆心角为120°的扇形的面积为_________.
12.已知⊙O1和⊙O2外切,且圆心距为10cm,若⊙O1•的半径为3cm,⊙O2•的半径为_____.
13.圆的半径为3,则弦长x的取值范围是________.
14.如图2,圆周角∠ACB=34°,则圆心角∠AOB的度数为________.
15.已知一弧的半径为3,弧长为2 ,则此弧所对的圆心角为________.
16.•若一个圆锥的母线长是5cm,•底面半径是3cm,•则它的侧面展开图的面积是_______.
17.已知⊙O的半径为6.5cm,点P为直线L上一点,且OP=6.5cm,则直线与⊙O•的位置关系是________.18.已知⊙O1、⊙O2的半径都等于1,有下列命题:①若O1O2=1,则⊙O1和⊙O2•有两个公共点;②若O1O2=2,则⊙O1与⊙O2外切;③若O1O2≤3,则⊙O1和⊙O2必有公共点.其中正确的命题的序号是_________.
三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤)
19.求证:直径是圆中最长的弦.
20.某市为筹办一个大型运动会,该市政府打算修建一个大型体育中心,•在选址过程中,有人建议该体育中心所在位置到该市三条主要公路的距离相等,若采纳此人建议,请你在图3中作出体育中心的位置(不写作法,只保留作图痕迹).
21.已知直线L:y=x-2,点A(0,-2),点B(2,0),设点P为L上一点,试判断过P、A、•B三点能否作一个圆.
22.如图,在△ABC中,∠A=30°,AC=8,BC=5,以直线AB为轴将△ABC旋转一周得到一个旋转体,求这个旋转体的表面积.
23.已知:如图,梯形ABCD中,AB∥CD,∠A=90°,BC=AB+CD,BC是⊙O的直径,•求证:⊙O与AD相切.
24.相交两圆的公共弦为6,两圆的半径分别为5,则这两圆的圆心距为多少?
25.如图,BC为⊙O的直径,G是半圆上任一点,点A为 B G的中点,AD⊥BC,求证:(1)BE=AE;(2)AB是BE、BG的比例中项.
答案:
一、选择题
1.A 2.D 3.C 4.D 5.D 6.B 7.B 8.A 9.D 10.B 二、填空题
11.
43
π 12.7cm 13.0<x ≤6 14.68° 15.120°
16.15πcm 2 17.相交或相切 •18.①② 三、解答题
19.解:已知:如图,在⊙O 中,AB 是直径,CD 是任意的一条非直径弦. 求证:AB>CD .
证明:连结OC 、OD ,则AB=OA+OB=OC+OD .
在△OCD 中,OC+OD>CD ,所以AB>CD . 20.解:有四种情况(图略).
21.解:点A (0,-2),点B (2,0)均在直线y=x-2上,而点P 也为L 上一点,
故过P 、A 、B 三点不能作一个圆.
22.解:过点C 作CD ⊥AB ,则由∠A=30°,知CD=4,则旋转一周的周长为8π,
设旋转体上半部分与下半部分的侧面展开图中的圆心角分别为θ1与θ2,
则1360θ︒
·2π·AC=8π,2360θ
︒
·2π·BC=8π,
∴θ1=180°,θ2=288°. 则全面积为
180360
·π·AC 2+
288360
·π·BC 2=52π.
23.证明:过点O 作OE ⊥AD 于E ,则:
//////90AB C D C D O E BA A O B O C O E AD ⎫
⎫⎪
∠=︒⇒⇒⎬⎬=⎭
⎪⊥⎭
OE 是梯形的中位线
⇒OE=
12
(BA+CD )=
12
BC .
∴OE 是半径,∴AD 与⊙O 相切.
24.解:当两圆的圆心在公共弦同侧时,圆心距为1,•
当两圆的圆心在公共弦异侧圆心距为7. 25.证明:(1)BC 是直径 ∠BAC=90°,
9090ABC C AD BC ABC BAD ⇒∠+∠=︒
⎫⎬⊥⇒∠+∠=︒⎭
C BAD
A BG C ABG ⇒∠=∠⎫
⎬⇒∠=∠⎭
点是的中点⇒∠BAD=∠ABG ⇒BE=AE .
(2)连结CG ,则在Rt △ABC 中,AD ⊥BC , ∴AB 2
=BD·BC .
又∵∠BDE=∠BGC=90°,∠GBC=∠GBC , ∴△GBC ∽△DBE ,
B D B E B G
B C
=.
∴BD·BC=BE·BG . ∴AB 2=BE·BG .。