22.2 因式分解法解一元二次方程
- 格式:ppt
- 大小:1.37 MB
- 文档页数:15
22.2.3因式分解法解一元二次方程 习题精选(二) 直接开平方法1.如果(x -2)2=9,则x = .2.方程(2y -1)2-4=0的根是 .3.方程(x+m )2=72有解的条件是 .4.方程3(4x -1)2=48的解是 .配方法5.化下列各式为(x +m )2+n 的形式.(1)x 2-2x -3=0 .(2)210x = .6.下列各式是完全平方式的是( )A .x 2+7n =7B .n 2-4n -4C .211216x x ++D .y 2-2y +27.用配方法解方程时,下面配方错误的是()A .x 2+2x -99=0化为(x +1)2=0B .t 2-7t -4=0化为2765()24t -=C .x 2+8x +9=0化为(x +4)2=25D .3x 2-4x -2=0化为2210()39x -=8.配方法解方程.(1)x 2+4x =-3 (2)2x 2+x=0因式分解法9.方程(x +1)2=x +1的正确解法是( )A .化为x +1=0B .x +1=1C .化为(x +1)(x +l -1)=0D .化为x 2+3x +2=010.方程9(x +1)2-4(x -1)2=0正确解法是( )A .直接开方得3(x +1)=2(x -1)B .化为一般形式13x 2+5=0C .分解因式得[3(x +1)+2(x -1)][3(x +1)-2(x —1)]=0D .直接得x +1=0或x -l =011.(1)方程x (x +2)=2(z +2)的根是 .(2)方程x 2-2x -3=0的根是 .12.如果a 2-5ab -14b 2=0,则235a b b+= . 公式法13.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是 ,其中b 2—4ac .14.方程(2x +1)(x +2)=6化为一般形式是 ,b 2—4ac ,用求根公式求得x 1= ,x 2= ,x 1+x 2= ,12x x =g ,15.用公式法解下列方程.(1)(x +1)(x +3)=6x +4.(2)21)0x x ++=. (3) x 2-(2m +1)x +m =0.16.已知x 2-7xy +12y 2=0(y≠0)求x :y 的值.综合题17.三角形两边的长是3,8,第三边是方程x 2—17x +66=0的根,求此三角形的周长.18.关于x 的二次三项式:x 2+2rnx +4-m 2是一个完全平方式,求m 的值.19.利用配方求2x 2-x +2的最小值.20.x 2+ax +6分解因式的结果是(x -1)(x +2),则方程x 2+ax +b =0的二根分别是什么?21.a 是方程x 2-3x +1=0的根,试求的值.22.m 是非负整数,方程m 2x 2-(3m 2—8m )x+2m 2-13m+15=0至少有一个整数根,求m的值.23.利用配方法证明代数式-10x 2+7x -4的值恒小于0.由上述结论,你能否写出三个二次三项式,其值恒大于0,且二次项系数分别是l 、2、3.24.解方程(1)(x 2+x )·(x 2+x -2)=24;(2)260x x --=25.方程x 2-6x -k =1与x 2-kx -7=0有相同的根,求k 值及相同的根.26.张先生将进价为40元的商品以50元出售时,能卖500个,若每涨价1元,就少卖10个,为了赚8 000元利润,售价应为多少?这时,应进货多少?27.两个不同的一元二次方程x 2+ax +b =0与x 2+ax +a =0只有一个公共根,则( )A .a =bB .a -b =lC .a +b =-1D .非上述答案28.在一个50米长30米宽的矩形荒地上设计改造为花园,使花园面积恰为原荒地面积的寺,试给出你的设计.29.海洲市出租车收费标准如下(规定:四舍五入,精确到元,N≤15)N 是走步价,李先生乘坐出租车打出的电子收费单是:里程11公里,应收29.1元,你能依据以上信息,推算出起步价N 的值吗?30.(2004·浙江)方程(x -1)(x +2)(x -3)=0的根是 .31.(2004·河南)一元二次方程x 2—2x =0的解是( )A .0B .2C .0,-2D .0,232.(2004·南京)方程x 2+kx —6=0的一根是2,试求另一个根及k 的值.33.(2003·甘肃)方程(2)310m m x mx +++=是一元二次方程,则这方程的根是什么?34.(2003·深圳)x 1、x 2是方程2x 2—3x —6=0的二根,求过A (x 1+x 2,0)B (0,x l ·x 2)两点的直线解析式.35.a 、b 、c都是实数,满足2(2)80a c c -++=,ax 2+bx +c =0,求代数式x 2+2x +1的值. 36.a 、b 、c满足方程组求方程2848a b ab c +=⎧⎪⎨=+-⎪⎩的解。
【知识与技能】1.会用直接开平方法解形如a(x-k)2=b〔a≠0,ab≥0〕的方程.2.灵活应用因式分解法解一元二次方程.3.使学生了解转化的思想在解方程中的应用.【过程与方法】创设学生熟悉的问题情境,综合运用探究式、启发式、活动式等几种方法进展教学.【情感态度】鼓励学生积极主动的参与“教〞与“学〞的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心.【教学重点】利用直接开平方法和因式分解法解一元二次方程.【教学难点】合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入,初步认识问:怎样解方程(x+1)2=256?解:方法1:直接开平方,得x+1=±16所以原方程的解是x1=15,x2=-17方法2:原方程可变形为:〔x+1〕2-256=0,方程左边分解因式,得〔x+1+16〕〔x+1-16〕=0即〔x+17〕〔x-15〕=0所以x+17=0或x-15=0原方程的解x1=15,x2=-17【教学说明】让学生说出作业中的解法,教师板书.二、思考探究,获取新知例1 用直接开平方法解以下方程〔1〕〔3x+1〕2=7;〔2〕y2+2y+1=24;〔3〕9n2-24n+16=11.【教学说明】运用开平方法解形如〔x+m〕2=n〔n≥0〕的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解以下方程:〔1〕5x2-4x=0〔2〕3x〔2x+1〕=4x+2〔3〕〔x+5〕2=3x+15【教学说明】解这里的〔2〕〔3〕题时,注意整体划归的思想.三、运用新知,深化理解〔1〕3〔x-1〕2-6=0〔2〕x2-4x+4=5〔3〕〔x+5〕2=25〔4〕x2+2x+1=42.用因式分解法解以下方程:3.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为xm.那么可列方程2πx2=π〔x+5〕2.解得x1=5+52,x2=5-52〔舍去〕.答:小圆形场地的半径为〔5+52〕m.【教学说明】可由学生自主完成例题,分小组展示结果,教师点评.四、师生互动,课堂小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a〔x-k〕2=b〔a≠0,b≥0〕的方程,只要把〔x-k〕看作一个整体,就可转化为x2=n〔n≥0〕的形式用直接开平方法解.3.当方程出现一样因式〔单项式或多项式〕时,切不可约去一样因式,而应用因式分解法解.五、教学反思本节课教师引导学生探讨直接开平方法和因式分解法解一元二次方程,让学生小组讨论,归纳总结探究,掌握根本方法和步骤,合理、恰当、熟练地运用直接开平方法和因式分解法,在整个教学过程中注意整体划归的思想.2. 配方法【知识与技能】1.使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.“转化〞的思想,掌握一些转化的技能.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的兴趣.【教学重点】使学生掌握用配方法解一元二次方程.【教学难点】发现并理解配方的方法.一、情境导入,初步认识问题要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽分别是多少?设场地的宽为xm,那么长为〔x+6〕m,根据矩形面积为16m2,得到方程x〔x+6〕=16,整理得到x2+6x-16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究如何解方程x2+6x-16=0?问题1 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明.【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即〔x+m〕2=n〔n≥0〕,运用直接开平方法可求解.问题2 你会用直接开平方法解以下方程吗?〔1〕〔x+3〕2=25〔2〕x2+6x+9=25〔3〕x 2+6x=16〔4〕x 2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x-16=0转化为〔x+3〕2=25的形式,从而求得方程的解.解:移项得:x2+6x=16, 两边都加上9即〔26〕2,使左边配成x 2+bx+〔b2〕2的形式,得: x 2+6x+9=16+9,左边写成完全平方形式,得:〔x+3〕2=25,开平方,得:x+3=±5,〔降次〕即x+3=5或x+3=-5解一次方程得:x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.例1填空:〔1〕x 2+8x+16=〔x+4〕2 〔2〕x 2-x+41=〔x-21〕2 〔3〕4x 2+4x+1=〔2x+1〕2例2 列方程:〔1〕x 2+6x+5=0 〔2〕2x 2+6x+2=0 〔3〕〔1+x 〕2+2〔1+x 〕-4=0【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳.【归纳总结】利用配方法解方程应该遵循的步骤:〔1〕把方程化为一般形式ax 2+bx+c=0;〔2〕把常数项移到方程的右边;〔3〕方程两边同时除以二次项系数a ;〔4〕方程两边同时加上一次项系数一半的平方;〔5〕此时方程的左边是一个完全平方形式,然后利用直接开平方法来解.三、运用新知,深化理解1.用配方法解以下方程:〔1〕2x 2-4x-8=0〔2〕x 2-4x+2=0〔3〕x 2-21x-1=0 2.如果x 2-4x+y2+6y+2 z +13=0,求〔xy 〕z 的值.【教学说明】学生独立解答,小组内交流,上台展示并讲解思路.四、师生互动,课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的考前须知.五、教学反思本节课先创设情境导入一元二次方程的解法,引导学生将要解决的问题转化为已学过的直接开平方法来解,从而探索出配方法的一般步骤,熟练运用配方法来解一元二次方程.3. 公式法【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.【过程与方法】通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系.【情感态度】经历探索求根公式的过程,培养学生抽象思维能力,渗透辩证唯物主义观点.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.一、情境导入,初步认识用配方法解方程:〔1〕x2+3x+2=0 〔2〕2x2-3x+5=0解:〔1〕x1=-1,x2=-2 〔2〕无解二、思考探究,获取新知如果这个一元二次方程是一般形式ax2+bx+c=0〔a≠0〕,你能否用上面配方法的步骤求出它们的两根?问题 ax2+bx+c=0〔a≠0〕,试推导它的两个根【分析】因为前面具体数字的题目已做得很多,现在不妨把a,b,c也当成具体数字,根据上面的解题步骤就可以推导下去.探究一元二次方程ax2+bx+c=0〔a≠0〕的根由方程的系数a,b,c而定,因此:〔1〕解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子a acbbx24 2-±-=就得到方程的根,当b2-4ac<0时,方程没有实数根.〔2〕aac b b x 242-±-=叫做一元二次方程ax 2+bx+c=0〔a ≠0〕的求根公式. 〔3〕利用求根公式解一元二次方程的方法叫公式法.【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示.例1 用公式法解以下方程:①2x 2-4x-1=0 ②5x+2=3x2 ③〔x-2〕〔3x-5〕=0 ④4x 2-3x+1=0解:①x 1=1+26,x 2=1-26 ②x 1=2,x 2=-31 ③x 1=2,x 2=35 ④无解【教学说明】〔1〕对②、③要先化成一般形式;〔2〕强调确定a,b,c 的值,注意它们的符号;〔3〕先计算b 2-4ac 的值,再代入公式.三、运用新知,深化理解1.用公式法解以下方程:〔1〕x 2+x-12=0〔2〕x 2-2x-41=0 〔3〕x 2+4x+8=2x+11〔4〕x 〔x-4〕=2-8x〔5〕x 2+2x=0〔6〕x 2+25x+10=0 解:〔1〕x 1=3,x 2=-4;〔2〕x 1=232+,x 2=232-; 〔3〕x 1=1,x 2=-3;〔4〕x 1=-2+6,x 2=-2-6;〔5〕x1=0,x2=-2;〔6〕无解.【教学说明】用公式法解方程关键是要先将方程化为一般形式.四、师生互动,课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.应用公式法解一元二次方程.五、教学反思在学习活动中,要求学生主动参与,认真思考,比拟观察,交流与表述,体验知识的获取的过程,激发学生的学习兴趣,利用师生的双边活动,适时调试,从而提高学习效率.4. 一元二次方程根的判别式【知识与技能】1.能运用根的判别式,判断方程根的情况和进展有关的推理论证;2.会运用根的判别式求一元二次方程中字母系数的取值范围.【过程与方法】1.经历一元二次方程根的判别式的产生过程;2.向学生渗透分类讨论的数学思想;3.培养学生的逻辑思维能力以及推理论证能力.【情感态度】1.体验数学的简洁美;2.培养学生的探索、创新精神和协作精神.【教学重点】根的判别式的正确理解与运用.【教学难点】含字母系数的一元二次方程根的判别式的应用.一、情境导入,初步认识用公式法解以下一元二次方程〔1〕x2+5x+6=0〔2〕9x2-6x+1=0〔3〕x2-2x+3=0解:〔1〕x1=-2,x2=-31〔2〕x1=x2=3〔3〕无解【教学说明】让学生亲身感知一元二次方程根的情况,回忆已有知识.二、思考探究,获取新知观察解题过程,可以发现:在把系数代入求根公式之前,需先确定a,b,c的值,然后求出b2-4ac的值,它能决定方程是否有解,我们把b2-4ac叫做一元二次方程根的判别式,通常用符号“Δ〞来表示,即Δ=b2-4ac.我们回忆一元二次方程求根公式的推导过程发现:【归纳结论】〔1〕当Δ>0时,方程有两个不相等的实数根:a acbbx24 21-+-=,aacbbx2422---=;〔2〕当Δ=0时,方程有两个相等的实数根,x1=x2=-ab2; 〔3〕当Δ<0时,方程没有实数根.例1利用根的判别式判定以下方程的根的情况:解:〔1〕有两个不相等的实数根;〔2〕有两个相等的实数根;〔3〕无实数根;〔4〕有两个不相等的实数根.例2 当m为何值时,方程〔m+1〕x2-〔2m-3〕x+m+1=0, 〔1〕有两个不相等的实数根?〔2〕有两个相等的实数根?〔3〕没有实数根?解:〔1〕m<41且m≠-1;〔2〕m=41;〔3〕m>41.【教学说明】注意〔1〕中的m+1≠0这一条件.三、运用新知,深化理解2-4x+4=0的根的情况是〔〕2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根.2.证明:∵x2+2x-m+1=0没有实数根,∴4-4〔1-m〕<0,∴2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.【教学说明】引导学生灵活运用知识.四、师生互动,课堂小结〔1〕Δ>0时,一元二次方程有两个不相等的实数根;〔2〕Δ=0时,一元二次方程有两个相等的实数根.〔3〕Δ<0时,一元二次方程无实数根.2.运用根的判别式解决具体问题时,要注意二次项系数不为0这一隐含条件.【教学说明】可让学生分组讨论,回忆整理,再由小组代表陈述.五、教学反思本课时创设情境,启发引导,让学生充分感受理解知识的产生和开展过程,在教师适时点拨下,学生在发现归纳的过程中积极主动地去探索,发现数学规律,培养了学生的创新意识、创新精神及思维能力.5.一元二次方程的根与系数的关系【知识与技能】1.引导学生在已有的一元二次方程解法的根底上,探索出一元二次方程根与系数的关系,及其关系的运用.2.通过观察、实践、讨论等活动,经历从观察判断到发现关系的过程.【过程与方法】通过探究一元二次方程的根与系数的关系,培养学生观察分析和综合判断的能力,激发学生发现规律的积极性,鼓励学生勇于探索的精神.【情感态度】在积极参与数学活动的同时,初步体验发现问题,总结规律的态度及养成质疑和独立思考的习惯.【教学重点】一元二次方程根与系数之间的关系的运用.【教学难点】一元二次方程根与系数之间的关系的运用.一、情境导入,初步认识问题你发现了什么规律?①用语言表达你发现的规律:〔两根之和为一次项系数的相反数;两根之积为常数项〕②设方程x2+px+q=0的两根为x1,x2,用式子表示你发现的规律.〔x1+x2=-p,x1·x2=q〕问题 上面发现的结论在这里成立吗?〔不成立〕请完善规律:①用语言表达发现的规律:〔两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比〕②设方程ax 2+bx+c=0的两根为x 1,x 2,用式子表示你发现的规律.〔x 1+x 2=-a b ,x 1·x 2=ac 〕 二、思考探究,获取新知通过以上活动你发现了什么规律?对一般的一元二次方程ax 2+bx+c=0〔a ≠0〕这一规律是否成立?试通过求根公式加以说明. ax 2+bx+c=0的两根a ac b b x 2421-+-=,a ac b b x 2422---=,x1+x2=-a b , x 1·x 2=ac . 【教学说明】教师可引导学生根据求根公式推导出根与系数之间的关系,体会知识形成的过程,加深对知识的理解.例1 不解方程,求以下方程的两根之和与两根之积:〔1〕x 2-6x-15=0;〔2〕3x 2+7x-9=0;〔3〕5x-1=4x 2.解:〔1〕x1+x2=6,x1·x2=-15; 〔2〕x1+x2=-37,x1·x2=-3; 〔3〕x1+x2=45,x1·x2=41. 【教学说明】先将方程化为一般形式,找出对应的系数.例2 方程2x 2+kx-9=0的一个根是-3,求另一根及k 的值. 解:另一根为23,k=3.【教学说明】此题有两种解法,一种是根据根的定义,将x=-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.例3 α,β是方程x2-3x-5=0的两根,不解方程,求以下代数式的值.三、运用新知,深化理解1.不解方程,求以下方程的两根之和与两根之积:〔1〕x 2-3x=15〔2〕5x 2-1=4x 2〔3〕x 2-3x+2=10〔4〕4x 2-144=0〔5〕3x 〔x-1〕=2〔x-1〕〔6〕〔2x-1〕2=〔3-x 〕22.两根均为负数的一元二次方程是〔 〕2-12x+5=02-13x-5=02+21x+5=02+15x-8=0 【教学说明】两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.【答案】1.〔1〕x 1+x 2=3,x 1x 2=-15〔2〕x 1+x 2=0,x 1x 2=-1〔3〕x 1+x 2=3,x 1x 2=-8〔4〕x 1+x 2=0,x 1x 2=-36〔5〕x 1+x 2=35,x 1x 2=32 〔6〕x 1+x 2=-32,x 1x 2=-38【教学说明】可由学生自主完成抢答,教师点评.四、师生互动,课堂小结1.一元二次方程的根与系数的关系.2.一元二次方程根与系数的关系成立的前提条件.五、教学反思本节课先由学生探究特殊一元二次方程的根与系数的关系,再猜测一般一元二次方程的根与系数的关系,并从理论上加以推导证明,加深学生对知识的理解,培养学生严密的逻辑思维能力.。
22.2.3一元二次方程的解法——因式分解法(1课时)白泉中学郑卫东一、导学与检测引入新课:直接开平方解方程比较简单,配方法、公式法非常麻烦,运算量较大,有没有简单解一元二次方程的解法呢?(一)阅读P38,回答下列问题(1)因式分解法就是先把方程的右边化为,再把左边通过因式分解化为两个一次因式的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程,这两个一元一次方程的解,都是一元二次方程的解,这样也就把原方程进行了,把解一元二次方程转化为解一元一次方程的问题了。
(2)因式分解法解一元二次方程的步骤:①,使方程的右边为零;②将方程的左边分解为两个一次因式的;③令每个因式分别为,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的。
(二)合作探究:用因式分解法解方程(1)4x2=11x (2)= 2x-4(3)(4)二、巩固训练题:1.用因式分解法解方程,可把它化为两个一元一次方程,,求解。
2.如果方程x2-3x+c = 0有一个根为1,那么c= ,该方程的另一个根是,该方程可化为(x-1)(x )=0.3.方程(x-3)(x-1)= 3的根是().A、x1=3 , x2=1 B、x1=1 , x2=2C、x1=0 , x2=4 D、x1= , x2=4.用适当的方法解下列方程:(1)(2)5.用因式分解法解下列方程(1)(2)2x2+8x+8= 0(3)(4)x2-4x-3596=0三、课堂检测:1.用因式分解法解方程:(1)x-2=x(x-2) (2)(y+2)(2y+3)= 6(3)(1+x)(x-7) = -16 (4)参考答案:巩固训练: 1、x+3=0 5-2x=0 2、C=2 1 x-2 3、C 4、(1)101,219-(2)1,235.(1) x 1=0 , x 2=2 (2) x 1=x 2=-2 (3) x 1=1 , x 2=7 (4) x 1=-58 , x 2=62 课堂检测:(1)、x 1=1 , x 2=2 (2)、x 1=0 , x 2= 27-(3)、x 1=x 2=3 (4)x 1=7 , x 2= 319-。
22.2 一元二次方程的解法22.2.1 直接开平方法和因式分解法1.会用直接开平方法解形如a(x -k)2=b(a≠0,ab ≥0)的方程.2.灵活应用因式分解法解一元二次方程.3.使学生了解转化的思想在解方程中的应用.重点利用直接开平方法和因式分解法解一元二次方程.难点合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境引入教师提出问题,让学生说出作业中的解法,教师板书.问:怎样解方程(x +1)2=256?解:方法1:直接开平方,得x +1=±16,∴原方程的解是x 1=15,x 2=-17.方法2:原方程可变形为(x +1)2-256=0,方程左边分解因式,得(x +1+16)(x +1-16)=0,即(x +17)(x -15)=0,∴x+17=0或x -15=0,原方程的解是x 1=15,x 2=-17.二、探究新知教师多媒体展示,学生板演,教师点评.例1 用直接开平方法解下列方程:(1)(3x +1)2=7; (2)y 2+2y +1=24;(3)9n 2-24n +16=11.解:(1)-1±73; (2)-1±26;(3)4±113. 【教学说明】运用开平方法解形如(x +m)2=n(n≥0)的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x 2-4x =0;(2)3x(2x +1)=4x +2;(3)(x +5)2=3x +15.解:(1)x 1=0,x 2=45;(2)x 1=23,x 2=-12; (3)x 1=-5,x 2=-2.【教学说明】解这里的(2)(3)题时,注意整体划归的思想.三、练习巩固教师多媒体展示出题目,由学生自主完成,分组展示结果,教师点评.1.用直接开平方法解下列方程:(1)3(x -1)2-6=0;(2)x 2-4x +4=5;(3)(x +5)2=25;(4)x 2+2x +1=4.解:(1)x 1=1+2,x 2=1-2;(2)x 1=2+5,x 2=2-5;(3)x 1=0,x 2=-10;(4)x 1=1,x 2=-3.2.用因式分解法解下列方程:(1)x 2+x =0; (2)x 2-23x =0;(3)3x 2-6x =-3; (4)4x 2-121=0;(5)(x -4)2=(5-2x)2.解:(1)x 1=0,x 2=-1;(2)x 1=0,x 2=23;(3)x 1=x 2=1;(4)x 1=112,x 2=-112; (5)x 1=3,x 2=1.3.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m .则可列方程2πx 2=π(x +5)2,解得x 1=5+52,x 2=5-52(舍去).答:小圆形场地的半径为(5+52) m .四、小结与作业小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a(x -k)2=b(a≠0,ab ≥0)的方程,只要把(x -k)看作一个整体,就可转化为x 2=n(n≥0)的形式用直接开平方法解.3.当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解.布置作业从教材相应练习和“习题22.2”中选取.本节课教师引导学生探讨直接开平方法和因式分解法解一元二次方程,让学生小组讨论,归纳总结探究,掌握基本方法和步骤,合理、恰当、熟练地运用直接开平方法和因式分解法,在整个教学过程中注意整体划归的思想.一.选择题(共15小题)1.下列说法中正确的是()A.平分弦的直径一定垂直于弦B.长度相等的弧是等弧C.平行弦所夹的两条弧相等D.相等的圆心角所对的弦相等2.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6C.3D.93.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD 4.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2 B.3 C.4 D.3.55.如图,在⊙O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则⊙O的半径是()A.6cm B.10cm C.8cm D.20cm6.在半径为25cm的⊙O中,弦AB=40cm,则弦AB所对的弧的中点到AB的距离是()A.10cm B.15cm C.40cm D.10cm或40cm 7.下列说法中正确的个数有()①相等的圆心角所对的弧相等;②平分弦的直径一定垂直于弦;③圆是轴对称图形,每一条直径都是对称轴;④直径是弦;⑤长度相等的弧是等弧.A.1个B.2个C.3个D.4个8.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=2,BC=8.则⊙O的半径为()A.B.5 C.D.69.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.610.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸11.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm12.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm13.如图,圆弧形桥拱的跨度AB=16m,拱高CD=4m,则圆弧形桥拱所在圆的半径为()A.6 m B.8 m C.10 m D.12 m14.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为()A.8cm B.12cm C.16cm D.20cm15.“圆材埋壁”是我国古代《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代的数学语言表示是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD的长”.依题意,CD长为()A.寸B.13寸C.25寸D.26寸二.填空题(共10小题)16.如图,在⊙O中,半径OC⊥弦AB,垂足为点D,AB=12,CD=2.则⊙O半径的长为.17.如图,AB是⊙O的弦,OC⊥AB于点C,且AB>OC,若OC和AB是方程x2﹣11x+24=0的两个根,则⊙O的半径OA= .18.半径等于16的圆中,垂直平分半径的弦长为.19.在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是.21.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升cm.22.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径为cm.23.如图,小强为了帮助爸爸确定残破轮子的直径,先在轮子上画出一个弓形(如图中阴影部分),然后量得弦AB的长为4cm,这个弓形的高为1cm,则这个轮子的直径长为cm.24.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD 长为寸.25.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.三.解答题(共6小题)26.如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O的半径长.27.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.28.已知:如图,⊙O的直径AB与弦CD(不是直径)交于点F,若FB=2,CF=FD=4,求AC 的长.29.一条排水管的截面如图所示,已知排水管的半径OA=10m,水面宽AB=12m,某天下雨后,水管水面上升了2m,求此时排水管水面的宽CD.30.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.31.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?参考答案与试题解析一.选择题(共15小题)1.【解答】解:A、当两条弦都是直径时不成立,故本选项错误;B、在同圆或等圆中,两个长度相等的弧是等弧,故本选项错误;C、如图所示,两弦平行,则圆周角相等,圆周角相等,则弧相等;故本选项正确;D、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误.故选:C.2.【解答】解:连接DF,∵直径CD过弦EF的中点G,∴=,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×=6,故选:B.3.【解答】解:连接DA,∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB,∵2∠DAB=∠BOD,∴∠CAD=∠BOD,故选:D.4.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.5.【解答】解:过点O作OE⊥AB于点E,连接OC,∵弦AB的长为16cm,圆心O到AB的距离为6cm∴OE=6cm,AE=AB=8cm,在Rt△AOE中,根据勾股定理得,OA==10cm 故选:B.6.【解答】解:点C和D为弦AB所对弧的中点,连结CD交AB于E,连结OA,如图,∵点C和D为弦AB所对弧的中点,∴CD为直径,CD⊥AB,∴AE=BE=AB=20,在Rt△OAE中,∵OA=25,AE=20,∴OE==15,∴DE=OD+OE=40,CE=OC﹣OE=10,即弦AB和弦AB所对的劣弧的中点的距离为10cm,弦AB和弦AB所对的优弧的中点的距离为40cm.故选:D.7.【解答】解:①相等的圆心角所对的弧相等;错误.必须在同圆或等圆中;②平分弦的直径一定垂直于弦;错误,此弦不是直径;③圆是轴对称图形,每一条直径都是对称轴;错误,应该是每一条直径所在的直线都是对称轴;④直径是弦;正确;⑤长度相等的弧是等弧.错误.能够完全重合的两条弧是等弧;故选:A.8.【解答】解:延长AO交BC于点D,连接OB,由对称性及等腰Rt△ABC,得到AD⊥BC,∴D为BC的中点,即BD=CD=BC=4,AD=BC=4,∵OA=2,∴OD=AD﹣OA=4﹣2=2,在Rt△BOD中,根据勾股定理得:OB==2,则圆的半径为2.故选:C.9.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.10.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.11.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.12.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.13.【解答】解:如图,设OA=r,则OD=r﹣4,∵AB=16m,∴AD=8m.在Rt△AOD中,∵OD2+AD2=OA2,即(r﹣4)2+82=r2,解得r=10(m).故选:C.14.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=4,OD=10,∴OC=6,又∵OB=10,∴Rt△BCO中,BC=,∴AB=2BC=16.故选:C.15.【解答】解:连接OA.设圆的半径是x尺,在直角△OAE中,OA=x,OE=x﹣1,∵OA2=OE2+AE2,则x2=(x﹣1)2+25,解得:x=13.则CD=2×13=26(cm).故选:D.二.填空题(共10小题)16.【解答】解:连接AO,∵半径OC⊥弦AB,∴AD=BD,∵AB=12,∴AD=BD=6,设⊙O的半径为R,∵CD=2,∴OD=R﹣2,在Rt△AOD中,OA2=OD2+AD2,即:R2=(R﹣2)2+62,∴R=10,答:⊙O的半径长为10.17.【解答】解:x2﹣11x+24=0(x﹣3)(x﹣8)=0x﹣3=0,x﹣8=0,x1=3,x2=8,∵AB>OC,∴AB=8,OC=3,∵OC⊥AB,∴AC=AB=4,由勾股定理得,OA==5,故答案为:5.18.【解答】解:如图,OA=16,则OC=8,根据勾股定理得,AC==8,∴弦AB=16.故答案为:16.19.【解答】解:已知A(0,0),B(2,2),C(4,0),如图:可设:AB的垂直平分线解析式为:y=kx+b,把(0,2),(2,0)代入解析式可得:,解得:,所以AB的垂直平分线解析式是y=﹣x+2,设AC的垂直平分线解析式为x=m,把(2,2)代入解析式,可得:x=2,所以AC的垂直平分线解析式是x=2,∴过A、B、C三点的圆的圆心坐标为(2,0).故答案为:(2,0).20.【解答】解:连接OC,由题意,得OE=OA﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故答案为2.21.【解答】解:作半径OD⊥AB于C,连接OB由垂径定理得:BC=AB=30cm,在Rt△OBC中,OC==40cm,当水位上升到圆心以下时水面宽80cm时,则OC′==30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.22.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故答案为:2.523.【解答】解:连接OB;Rt△OBD中,BD=AB=2cm,根据勾股定理得:OD2+BD2=OB2,即:(OB﹣1)2+22=OB2,解得:OB=2.5;所以轮子的直径为5cm.故答案为:5.24.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.25.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为: +1=+1,故答案为:(+1)m.三.解答题(共6小题)26.【解答】解:过点O作OM⊥CD于点M,联结OD,∵∠CEA=30°,∴∠OEM=∠CEA=30°,在Rt△OEM中,∵OE=4,∴,,∵,∴,∵OM过圆心,OM⊥CD,∴CD=2DM,∴,∵,∴在Rt△DOM中,,∴弦CD的长为,⊙O的半径长为.27.【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得 x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2.28.【解答】解:连接BC,∵AB是直径,CF=FD=4,∴AB⊥CD,∵∠ACB=90°∴∠A=∠BCF,∴△BCF∽△CAF,∴=,∴CF2=AF•BF,设AF=x,∴16=2x,∴x=8,∴由勾股定理可知:AC=429.【解答】解:如图:作OE⊥AB于E,交CD于F,∵AB=12m,OE⊥AB,OA=1m,∴OE=8m.∵水管水面上升了2m,∴OF=8﹣2=6m,∴CF==8m,∴CD=16m.30.【解答】解:过点O作OC⊥AB于D,交⊙O于C,连接OB,∵OC⊥AB∴BD=AB=×16=8cm由题意可知,CD=4cm∴设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2(x﹣4)2+82=x2解得:x=10.答:这个圆形截面的半径为10cm.31.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.第21章 二次函数与反比例函数 周周测921.5反比例函数一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为( ) A.y =2x +1 B.y =22x C.y =-15xD.y =x 2-2x 2﹒函数y =k 23kx 是反比例函数,则k 的值是( )A.-1B.2C.±2D.±2 3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 4﹒一次函数y =-x +a -3(a 为常数)与反比例函数y =-4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时,a 的值是( )A.0B.-3C.3D.4 5﹒反比例函数y =-2x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A.y 1<y 2<0B.y 1<0<y 2C.y 1>y 2>0D. y 1>0>y 2 6﹒如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =kx(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A.y =4xB.y =-4xC.y =2xD.y =-2x7﹒已知反比例函数y =kx的图象经过点P (-1,2),则这个函数的图象位于( )A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限8﹒如果等腰三角形的底边长为x ,底边上的高为y ,它的面积为10时,则y 与x 的函数关系式为( )A.y =10x B.y =5x C.y =20x D.y =20x 9﹒已知变量y 与x 成反比例函数关系,当x =3时,y =-6,那么当y =3时,x 的值是( )A.6B.-6C.9D.-910. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )m 1 2 3 4 5 6 7 v-6.10-2.90-2.01-1.51-1.19-1.05-0.86A.v =m 2-2 B.v =-6m C.v =-3m -1 D.v =-6m二、细心填一填11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.14.如图,直线y =-x +b 与双曲线y =-1x(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=__________.(第14题图)15.一批零件300个,一个工人每小时做15个,用关系表示人数x 与完成任务所需时间y 之间的函数关系为_______________________.16.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (cm 2)与高h (cm )之间的函数关系式为________________________. 三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式;(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M(件)与所需天数t(天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件?19.已知y=y1+y2,y1与x2成正比例关系,y2与x成反比例关系,且当x=1时,y=3;当x=-1时,y=1.(1)求y与x之间的函数表达式;(2)当x=-12时,求y的值.20.反比例函数y=kx(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(小时)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x(元)与销售量y(张)之间有如下关系:x/元 3 4 5 6y/张20 15 12 10(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.21.5 反比例函数课时练习题(1)参考答案一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为() A.y =2x +1 B.y =22x C.y =-15xD.y =x 2-2x 解答:A.y=2x +1,y 是x 的一次函数,故A 不合题意;B.y =22x ,y 是x 2的反比例函数,故B 不合题意; C.y =-15x,y 是x 的反比例函数,故C 符合题意;D.y =x 2-2x ,y 是x 的二次函数,故D 不合题意, 故选:C. 2﹒函数y =k 23k x-是反比例函数,则k 的值是( )A.-1B.2C.±2D.解答:∵y =k 23k x-是反比例函数,∴k 2-3=-1,且k ≠0, 解得:k 故选:D.3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 解答:∵y 与x 成反比例,x 与z 成反比例, ∴设y =1k x①,x =k 2z ②, 把②代入①得:y =12k k z, 故y 与z 成反比例函数关系, 故选:B.4﹒一次函数y=-x+a-3(a为常数)与反比例函数y=-4x的图象交于A、B两点,当A、B两点关于原点对称时,a 的值是()A.0B.-3C.3D.4【解答】设A(t,-4t),∵A、B两点关于原点对称,∴B(-t,4t),把A(t,-4t),B(-t,4t),分别代入y=-x+a-3得:4343t att at⎧-=-+-⎪⎪⎨⎪=+-⎪⎩①②,①+②得:2a-6=0,则a=3,故选:C.5﹒反比例函数y=-2x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0B.y1<0<y2C.y1>y2>0D. y1>0>y2【解答】∵反比例函数y=﹣2x中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选:D.6﹒如图,直线y=-x+3与y轴交于点A,与反比例函数y=kx(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=4xB.y=-4xC.y=2xD.y=-2x【解答】∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),把C(﹣1,4)代入y=kx得:k=-4,∴反比例函数的解析式为:y=-4x.故选:B.7﹒已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限【解答】∵反比例函数y=kx的图象经过点P(-1,2),∴k=-1×2=-2<0,∴反比例函数的图象分布在二、四象限,故选:D.8﹒如果等腰三角形的底边长为x,底边上的高为y,它的面积为10时,则y与x的函数关系式为()A.y=10xB.y=5xC.y=20xD.y=20x解答:根据题意,得:12xy=10,∴y=20x,故选:C.9﹒已知变量y与x成反比例函数关系,当x=3时,y=-6,那么当y=3时,x的值是()A.-6B. 6C.-9D.9解答:设y=kx,把x=3,y=-6代入得:k=-18,∴y=18x,∴当x=3时,y=-6,故选:A.10. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )A.v =m 2-2 B.v =-6m C.v =-3m -1 D.v =-m解答:将m 的值代入各选项的函数关系式中,看v 的值是否与表中数据相近,若相近,则为正确的解析式,如把m =1代入各式:A.v =-1;B.v =-6;C.v =-4;D.v =-6.再把m =2代入各式:A.v =2;B.v =-12;C.v =-7;D.v =-3.由此可发现D 选项的值与表中数据相近,故D 选项符合题意, 故选:D. 二、细心填一填11. 3; 12. m ≠1,4; 13. y =6x; 14. 2; 15. y =20x ; 16. S =6h.11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 解答:∵函数y =(m +3)28m x -是反比例函数, ∴8-m 2=-1,且m +3≠0, ∴m =3, 故答案为:3. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 解答:∵函数y =1m x-是反比例函数, ∴m -1≠0,则m ≠1, 由m -1=3得:m =4, 故答案为:m ≠1,4.13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.【解答】把方程组22y kx kkyx=-++⎧⎪⎨=⎪⎩消去y得:-kx+2k+2=kx,整理得:kx2-(2k+2)x+k=0,由题意得:△=(2k+2)2-4k2>0,解得:k>-12,∴当k>-12时,函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,故答案为:k>-12且k≠0.14.如图,直线y=-x+b与双曲线y=-1x(x<0)交于点A,与x轴交于点B,则OA2-OB2=__________.【解答】∵直线y=﹣x+b与双曲线y=﹣1x(x<0)交于点A,设A的坐标(x,y),∴x+y=b,xy=﹣1,而直线y=﹣x+b与x轴交于B点,∴OB=b,∴又OA2=x2+y2,OB2=b2,∴OA2﹣OB2=x2+y2﹣b2=(x+y)2﹣2xy﹣b2=b2+2﹣b2=2.故答案为:2.15.一批零件300个,一个工人每小时做15个,用关系表示人数x与完成任务所需时间y之间的函数关系为_______________________.解答:由题意得:人数x与完成任务所需时间y之间的函数关系为y=30015x=20x,故答案为:y=20x.16.把一个长、宽、高分别为3cm,2cm,1cm的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________________________. 解答:由题意得:Sh=3×2×1,则S=6h,故答案为:S=6h.三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?解答:(1)每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式为:w =1600t(t >4), (2)由题意,得:16004t --1600t =16001600(4)(4)t t t t ---=264004t t -, 答:每天要多做264004t t-(t >4)件夏凉小衫才能完成任务.18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件? 解答:(1)60×8=480(件), 故答案为:480;(2)乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式为y =480t(t >0), (3)把t =5代入上式得M =96,故如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工96件.19.已知y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系,且当x =1时,y =3;当x =-1时,y =1.(1)求y 与x 之间的函数表达式; (2)当x =-12时,求y 的值. 解答:∵y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系, ∴可设y 1=k 1x 2,y 2=2k x,把x =1时,y =3和x =-1时,y =1代入得:121231k k k k +=⎧⎨-=⎩,解得:1221k k =⎧⎨=⎩,∴y 与x 之间的函数表达式为y =2x 2+1x, (2)当x =-12时, y =2×(-12)2+(-2)=-32. 20.反比例函数y =kx(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图于点D ,且AB =3BD . (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标. 【解答】(1)∵A (1,3), ∴AB =3,OB =1, ∵AB =3BD , ∴BD =1, ∴D (1,1),将D (1,1)代入反比例函数解析式得:k =1; (2)由(1)知,k =1, ∴反比例函数的解析式为:y =1x, 由31y xy x =⎧⎪⎨=⎪⎩得:333x y ⎧=⎪⎨⎪=⎩或333x y ⎧=-⎪⎨⎪=-⎩, ∵x >0,∴C (33,3), (3)如图,作C 关于y 轴的对称点C ′,连接C ′D 交y 轴于M ,则d =MC +MD 最小, ∴C ′(-33,3), 设直线C ′D 的解析式为y =kx +b ,∴3331k b k b ⎧=-+⎪⎨⎪=+⎩,解得:323232k b ⎧=-⎪⎨=-⎪⎩, ∴y =(3-23)x +23-2, 当x =0时,y =23-2, ∴M (0,23-2).21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【解答】(1)当0≤x <4时,设直线解析式为:y =kx , 将(4,8)代入得:8=4k , 解得:k =2,故直线解析式为:y =2x ,当4≤x ≤10时,设直反比例函数解析式为:y =k x, 将(4,8)代入得:8=4k , 解得:k =32,故反比例函数解析式为:y =32x; 因此血液中药物浓度上升阶段的函数关系式为y =2x (0≤x <4),下降阶段的函数关系式为y =32x(4≤x ≤10). (2)当y =4,则4=2x ,解得:x =2, 当y =4,则4=32x,解得:x =8, ∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x (元)与销售量y(张)之间有如下关系:(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解答:(1)由表中数据可以发现x与y的乘积是一个定值,所以可知y与x成反比例,设y=kx,把(3,20)代入得:k=60,∴y与x的函数关系式为y=60x;(2)当x=10时,y=6,所以日销售单价为10元时,贺卡的日销售量是6张;(3)∵W=(x-2)y=60-120x,又∵x≤10,∴当x=10时,W最大=60-12010=48,故日销售单价为10元时,每天获得的利润最大,最大利润为48元.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.解答:∵点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,∴a=4,∵点M(2,4)在反比例函数y=kx(k为常数,k≠0)图象上∴k=2×4=8,∴反比例函数的解析式为y=8x;(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x), 则有3mx-1=2x,整理得:(3m-2)x=1,当3m-2≠0,即m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当3m-2=0,即m=23时,x无解,综合上述,当m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当m=23时,函数图象上不存在“理想点”.。
人教版数学九年级上册22.2.3《解一元二次方程—因式分解法》教学设计一. 教材分析人教版数学九年级上册22.2.3《解一元二次方程—因式分解法》的内容,是在学生已经掌握了方程的解法、一元二次方程的定义等知识的基础上进行讲解的。
本节内容主要让学生掌握因式分解法解一元二次方程的方法,通过具体例题让学生理解并掌握因式分解法解题的步骤和技巧。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,但是对于一元二次方程的解法可能还存在着一些困惑。
因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握因式分解法解一元二次方程的方法。
三. 教学目标1.让学生掌握因式分解法解一元二次方程的方法。
2.培养学生运用因式分解法解决问题的能力。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.重点:因式分解法解一元二次方程的方法。
2.难点:因式分解法解题的步骤和技巧。
五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握因式分解法解一元二次方程的方法。
六. 教学准备1.教学PPT。
2.相关例题及练习题。
3.教学黑板。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元二次方程的解法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示因式分解法解一元二次方程的方法,并结合具体例题进行讲解。
3.操练(10分钟)教师给出几个典型例题,让学生独立运用因式分解法进行解答,教师巡回指导。
4.巩固(10分钟)教师给出一些练习题,让学生运用因式分解法进行解答,以此巩固所学知识。
5.拓展(10分钟)教师引导学生思考:还有没有其他方法可以解一元二次方程?让学生进行拓展思考。
6.小结(5分钟)教师引导学生总结因式分解法解一元二次方程的步骤和技巧。
7.家庭作业(5分钟)教师布置一些课后练习题,让学生巩固所学知识。
8.板书(5分钟)教师在黑板上列出因式分解法解一元二次方程的步骤和技巧。
教学设计一元二次方程的解法【教学目标】1.让学生知道一元二次方程的重要性.2.复习一元二次方程及其有关概念.3.会用直接开平方法、因式分解法、配方法、公式法解简单的一元二次方程(数字系数),并在解一元二次方程的过程中体会转化等数学思想.【教学重点】一元二次方程的解法是本节课的重点.【课型】复习课课时1课时教学过程一复习:1.什么叫一元二次方程?化简后只含有一个未知数,并且未知数的次数为 2 次的整式方程.2.一元二次方程的一般形式是什么?ax2+bx+c=0(a≠0)3.解一元二次方程的基本方法有哪几种?(1)直接开平方法;(2)因式分解法;(3)配方法;(4)公式法二、例题讲解例1(1)下列方程中,关于x 的一元二次方程有几个?( ) ①x 2=0 ,②ax 2+bx+c=0,③x 2-3=x ,④a 2+a -x=0,⑤ x 21 + x 1 =31 , ⑥ 12-x =2, ⑦(x+1)2=x 2-9A 、2个B 、3个C 、4个D 、5个例2 关于x 的方程是一元二次方程,则a=3解:∵a+1≠0∴a ≠-1∵a ²-2a-1=2a ²-2a-3=0∴a=-1或a=3∴a=3例3 选用适当的方法解下列方程(1)(x-2)2-9=0(2)m 2-6m+5=0(3) x 2+4x-1=0(3) y(y-1)=2(1)(x-2)2-9=0解:移项,得:(x-2)²=9两边直接开平方,得: 221(1)50a a a x x --++-=x-2= ±3 ∴ 51=x ,12-=x(2) m 2-6m+5=0解:分解因式,得 (m-1)(m-5)=0∴m ₁=1,m ₂=5(3)x 2+4x-1=0解: 配方,得:x ²+4x+4=1+4 (x+2)²=5∴x ₁= 5-2 x₂=-5-2(4) y(y-1)=2解:去括号,得: y ²-y=2y ²-y-2=0∵a=1,b=-1,c=-2 b ²-4ac=1-4×(-2)=9 ∴y= 291±∴y ₁=2 y ₂=-1三、课堂训练(1) (2) (3) (4)392+=-x x(5) 22)3(4)23(-=+x x 2)3(2=+x 562=+x x )32(4)32(2+=+x x四、课外作业1.4x²-25=02.x²-6x-391=0=03.y²-3y+14.y²+6y+5=0。
22.2 一元二次方程的解法第2课时教学目标1.认识用因式分解法解方程的依据.2.会用因式分解法解一些特殊的一元二次方程.教学重难点【教学重点】用因式分解法解方程.【教学难点】用因式分解法解一些特殊的一元二次方程.课前准备无教学过程一、情境导入我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求出(x+3)(x-5)=0的解吗?二、合作探究探究点一:用因式分解法解一元二次方程【类型一】利用提公因式法分解因式解一元二次方程用因式分解法解以下方程:(1)x2+5x=0;(2)(x-5)(x-6)=x-5.解析:变形前方程右边是零,左边是能分解的二次三项式,可用因式分解法.解:(1)原方程转化为x(x+5)=0,∴x=0或x+5=0,∴原方程的解为x1=0,x2=-5;(2)原方程转化为(x-5)(x-6)-(x-5)=0,∴(x-5)[(x-6)-1]=0,∴(x-5)(x-7)=0,∴x-5=0或x-7=0,∴原方程的解为x1=5,x2=7.【类型二】利用公式法分解因式解一元二次方程用因式分解法解以下方程:(1)x2-6x=-9;(2)4(x-3)2-25(x-2)2=0.解:(1)原方程可变形为:x2-6x+9=0,那么(x-3)2=0,∴x-3=0,因此原方程的解为:x1=x2=3.(2)[2(x-3)]2-[5(x-2)]2=0,[2(x-3)+5(x-2)][2(x-3)-5(x-2)]=0,(7x-16)(-3x +4)=0,∴7x -16=0或-3x +4=0,∴原方程的解为x 1=167,x 2=43. 方法总结:因式分解法解一元二次方程的一般步骤是:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③令每一个因式分别为零,就得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.探究点二:用因式分解法解决问题假设a 、b 、c 为△ABC 的三边,且a 、b 、c 满足a 2-ac -ab +bc =0,试判断△ABC 的形状.解析:先分解因式,确定a ,b ,c 的关系,再判断三角形的形状.解:∵a 2-ac -ab +bc =0,∴(a -b )(a -c )=0,∴a -b =0或a -c =0,∴a =c 或a =b ,∴△ABC 为等腰三角形.三、板书设计四、教学反思利用因式分解法解一元二次方程,能否分解是关键,因此,要熟练掌握因式分解的知识,提高用分解因式法解方程的能力.在使用因式分解法时,先考虑有无公因式,如果没有再考虑公式法.3.乘、除混合运算1.能熟练地运用有理数的运算法那么进行有理数的加、减、乘、除混合运算;(重点) 2.能运用有理数的运算律简化运算;(难点)3.能利用有理数的加、减、乘、除混合运算解决简单的实际问题.(难点)一、情境导入 1.在小学我们已经学习过加、减、乘、除四那么运算,其运算顺序是先算________,再算________,如果有括号,先算__________里面的.2.观察式子3×(2+1)÷⎝ ⎛⎭⎪⎫5-12,里面有哪几种运算,应该按什么运算顺序来计算? 二、合作探究探究点一:有理数乘、除混合运算计算:(1)-2.5÷58×⎝ ⎛⎭⎪⎫-14; (2)⎝ ⎛⎭⎪⎫-47÷⎝ ⎛⎭⎪⎫-314×⎝ ⎛⎭⎪⎫-112. 解析:(1)把小数化成分数,同时把除法变成乘法,再根据有理数的乘法法那么进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可. 解:(1)原式=-52×85×⎝ ⎛⎭⎪⎫-14=52×85×14=1; (2)原式=⎝ ⎛⎭⎪⎫-47×⎝ ⎛⎭⎪⎫-143×⎝ ⎛⎭⎪⎫-32=-⎝ ⎛47× ⎭⎪⎫143×32=-4. 方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算.探究点二:有理数的加、减、乘、除混合运算及乘法的运算律 【类型一】 有理数加、减、乘、除混合运算计算:(1)⎝ ⎛⎭⎪⎫2-13×(-6)-⎝ ⎛⎭⎪⎫1-12÷⎝ ⎛⎭⎪⎫1+13; (2)⎝ ⎛⎭⎪⎫-316-113+114×(-12). 解析:(1)先计算括号内的,再按“先乘除,后加减〞的顺序进行;(2)可考虑利用乘法的分配律进行简便计算.解:(1)⎝ ⎛⎭⎪⎫2-13×(-6)-⎝ ⎛⎭⎪⎫1-12÷⎝ ⎛⎭⎪⎫1+13=53×(-6)-12÷43=(-10)-12×34=-10-38=-1038; (2)⎝ ⎛⎭⎪⎫-316-113+114×(-12)=⎝⎛-3-16 ⎭⎪⎫-1-13+1+14×(-12)=⎝ ⎛⎭⎪⎫-3-14×(-12)=-3×(-12)-14×12=3×12-14×12=36-3=33.方法总结:在进行有理数的混合运算时,应先观察算式的特点,假设能应用运算律进行简化运算,就先简化运算.【类型二】 有理数乘法的运算律 计算: (1)⎝ ⎛⎭⎪⎫-56+38×(-24); (2)(-7)×⎝ ⎛⎭⎪⎫-43×514. 解析:第(1)题括号外面的因数-24是括号内每个分数的倍数,相乘可以约去分母,使运算简便.利用乘法分配律进行简便运算.第(2)题-7可以与514的分母约分,因此可利用乘法的交换律把它们先结合运算.解:(1)⎝ ⎛⎭⎪⎫-56+38×(-24)=⎝ ⎛⎭⎪⎫-56×(-24)+38×(-24)=20+(-9)=11; (2)(-7)×⎝ ⎛⎭⎪⎫-43×514=(-7)×514×⎝ ⎛⎭⎪⎫-43=⎝ ⎛⎭⎪⎫-52×⎝ ⎛⎭⎪⎫-43=103. 方法总结:当一道题按照常规运算顺序去运算较复杂,而利用运算律改变运算顺序却能使运算变得简单些,这时可用运算律进行简化运算.【类型三】 有理数混合运算的应用海拔高度每升高1000m ,气温下降6℃.某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是-1℃,热气球的高度为________m.解析:此类问题考查有理数的混合运算,解题时要正确理解题意,列出式子求解,由题意可得[8-(-1)]×(1000÷6)=1500(m),故填1500.方法总结:此题的考点是有理数的混合运算,熟练运用运算法那么是解题的关键.三、板书设计1.有理数加减乘除混合运算的顺序:先算乘除,再算加减,有括号的先算括号里面的,同级运算从左到右依次进行.2.利用运算律简化运算3.有理数混合运算的应用这节课主要讲授了有理数的加减乘除混合运算.运算顺序“先乘除后加减〞学生早已熟练掌握,让学生学会分析题目中所包含的运算是本节课的重难点.在教学时,要注意结合学生平时练习中出现的问题,及时纠正和指导,培养学生良好的解题习惯.。