初中数学基本运算能力竞赛试题
- 格式:doc
- 大小:82.50 KB
- 文档页数:4
1999年全国初中数学竞赛试题及答案(推荐五篇)第一篇:1999年全国初中数学竞赛试题及答案1999年全国初中数学竞赛试卷一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A,B,C,D的四个结论,其中只有一个是正确的.请将正确答案的代号填在题后的括号里)1.一个凸n边形的内角和小于1999°,那么n的最大值是().A.11 B.12 C.13 D.142.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费().A.60元 B.66元 C.75元 D.78元3.已知,那么代数式的值为().A. B.- C.- D.4.在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是().A.30 B.36 C.72 D.1255.如果抛物线与x轴的交点为A,B,项点为C,那么三角形ABC的面积的最小值是().A.1 B.2 C.3 D.46.在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为().A.2 B.3 C.4 D.5二、填空题(本题共6小题,每小题5分,满分30分)7.已知,那么x + y的值为.28.如图1,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点2P在边DC上运动,EP与AB的交点为F.设DP=xcm,△EFB 与四边形AFPD的面积和为ycm,那么,y与x之间的函数关系式是(0<x<10).9.已知ab≠0,a + ab-2b = 0,那么的值为.10.如图2,已知边长为1的正方形OABC在直角坐标系中,A,B两点在第Ⅰ象限内,OA与x轴的夹角为30°,那么点B的坐标是.11.设有一个边长为1的正三角形,记作A1(如图3),将A1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图4);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图5);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长是. 2212.江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等.如果用两台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么至少需要抽水机台.三、解答题(本题共3小题,每小题20分,满分60分)13.设实数s,t分别满足19s + 99s + 1 = 0,t + 99t + 19 = 0,并且st≠1,求的值.14.如图6,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点是P,AB=BD,且PC=0.6,求四边形ABCD的周长.15.有人编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法)每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘2或乘3.例如,30可以这样得到:.(1)(10分)证明:可以得到22;10097(2)(10分)证明:可以得到2 + 2-2.1999年全国初中数学竞赛答案一、1.C 2.B 3.D 4.B 5.A 6.D二、7.10 8.y = 5x + 50 9. 10. 11. 12.6三、13.解:∵s≠0,∴第一个等式可以变形为:又∵st≠1,.∴,t是一元二次方程x + 99x + 19 = 0的两个不同的实根,于是,有.即st + 1 =-99s,t = 19s.∴.14.解:设圆心为O,连接BO并延长交AD于H.∵AB=BD,O是圆心,∴BH⊥AD.又∵∠ADC=90°,∴BH∥CD.从而△OPB∽△CPD.∴CD=1.于是AD=又OH=CD=,于是.,2AB=BC=所以,四边形ABCD的周长为15.证明:(1),...也可以倒过来考虑:.(或者(2.)).或倒过来考虑:.注意:加法与乘法必须是交错的,否则不能得分.第二篇:19届全国初中数学竞赛试题及答案“《数学周报》杯”2019年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若,则的值为().(A)(B)(C)(D)解:由题设得.2.若实数a,b满足,则a的取值范围是().(A)a≤(B)a≥4(C)a≤或a≥4(D)≤a≤4解.C因为b是实数,所以关于b的一元二次方程的判别式≥0,解得a≤或a≥4.3.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=,BC=,CD=,则AD边的长为().(A)(B)(C)(D)(第3题)解:D如图,过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F.由已知可得(第3题)BE=AE=,CF=,DF=2,于是EF=4+.过点A作AG⊥DF,垂足为G.在Rt△ADG中,根据勾股定理得AD=.4.在一列数……中,已知,且当k≥2时,(取整符号表示不超过实数的最大整数,例如,),则等于().(A)(B)(C)(D)解:B由和可得,,,,……因为2010=4×502+2,所以=2.5.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B 旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,……,重复操作依次得到点P1,P2,…,则点P2010的坐标是().(A)(2010,2)(B)(2010,)(C)(2012,)(D)(0,2)解:B由已知可以得到,点,的坐标分别为(2,0),(2,).(第5题)记,其中.根据对称关系,依次可以求得:,,.令,同样可以求得,点的坐标为(),即(),由于2010=4502+2,所以点的坐标为(2010,).二、填空题6.已知a=-1,则2a3+7a2-2a-12的值等于.解:0由已知得(a+1)2=5,所以a2+2a=4,于是2a3+7a2-2a-12=2a3+4a2+3a2-2a-12=3a2+6a-12=0.7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t分钟,货车追上了客车,则t=.解:15设在某一时刻,货车与客车、小轿车的距离均为S千米,小轿车、货车、客车的速度分别为(千米/分),并设货车经x分钟追上客车,由题意得,①,②.③由①②,得,所以,x=30.故(分).8.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l的函数表达式是.(第8题(第8题)解:如图,延长BC交x轴于点F;连接OB,AFCE,DF,且相交于点N.由已知得点M(2,3)是OB,AF的中点,即点M为矩形ABFO 的中心,所以直线把矩形ABFO分成面积相等的两部分.又因为点N (5,2)是矩形CDEF的中心,所以,过点N(5,2)的直线把矩形CDEF分成面积相等的两部分.于是,直线即为所求的直线.设直线的函数表达式为,则解得,故所求直线的函数表达式为.9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D.若CD=CF,则.(第9题)解:见题图,设.因为Rt△AFB∽Rt△ABC,所以.又因为FC=DC=AB,所以即,解得,或(舍去).又Rt△∽Rt△,所以,即=.10.对于i=2,3,…,k,正整数n除以i所得的余数为i-1.若的最小值满足,则正整数的最小值为.解:因为为的倍数,所以的最小值满足,其中表示的最小公倍数.由于,因此满足的正整数的最小值为.三、解答题(共4题,每题20分,共80分)11.如图,△ABC为等腰三角形,AP是底边BC上的高,点D是线段PC上的一点,BE和CF分别是△ABD和△ACD的外接圆直径,连接EF.求证:(第12A题).(第12B题)(第11题)(第12B题)证明:如图,连接ED,FD.因为BE和CF都是直径,所以ED⊥BC,FD⊥BC,因此D,E,F三点共线.…………(5分)连接AE,AF,则,所以,△ABC∽△AEF.…………(10分)(第11题)作AH⊥EF,垂足为H,则AH=PD.由△ABC∽△AEF可得,从而,所以.…………(20分)12.如图,抛物线(a0)与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a,b,k的值;(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标.解:(1)因为点A(1,4)在双曲线上,所以k=4.故双曲线的函数表达式为.(第12题)设点B(t,),AB所在直线的函数表达式为,则有解得,.于是,直线AB与y轴的交点坐标为,故,整理得,解得,或t=(舍去).所以点B的坐标为(,).因为点A,B都在抛物线(a0)上,所以解得…(10分)(2)如图,因为AC∥x轴,所以C(,4),于是CO=4.又BO=2,所以.设抛物线(a0)与x轴负半轴相交于点D,则点D的坐标为(,0).(第12题)因为∠COD=∠BOD=,所以∠COB=.(i)将△绕点O顺时针旋转,得到△.这时,点(,2)是CO的中点,点的坐标为(4,).延长到点,使得=,这时点(8,)是符合条件的点.(ii)作△关于x轴的对称图形△,得到点(1,);延长到点,使得=,这时点E2(2,)是符合条件的点.所以,点的坐标是(8,),或(2,).…………(20分)13.求满足的所有素数p和正整数m.解:由题设得,所以,由于p是素数,故,或.……(5分)(1)若,令,k是正整数,于是,故,从而.所以解得…………(10分)(2)若,令,k是正整数.当时,有,故,从而,或2.由于是奇数,所以,从而.于是这不可能.当时,;当,无正整数解;当时,无正整数解.综上所述,所求素数p=5,正整数m=9.…………(20分)14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?解:首先,如下61个数:11,,…,(即1991)满足题设条件.(5分)另一方面,设是从1,2,…,2010中取出的满足题设条件的数,对于这n个数中的任意4个数,因为,所以.因此,所取的数中任意两数之差都是33的倍数.…………(10分)设,i=1,2,3,…,n.由,得,所以,即≥11.…………(15分)≤,故≤60.所以,n≤61.综上所述,n的最大值为61.…………(20分)第三篇:1996年全国初中数学竞赛试题及答案1996年全国初中数学联赛试题A.M>NB.M=NC.M<ND.不确定A.有一组 B.有二组C.多于二组D.不存在3.如图,A是半径为1的圆O外的一点,OA=2,AB是圆O的切线,B是切点,弦BC∥OA,连结AC,则阴影部分的面积等于 [ ]4.设x1、x2是二次方程x2+x-3=0的两个根,那么x13-4x22+19的值等于 []A.-4B.8C.6D.05.如果一个三角形的面积和周长都被一直线所平分,那么该直线必通过这个三角形的 []A.内心 B.外心 C.重心 D.垂心6.如果20个点将某圆周20等分,那么顶点只能在这20个点中选取的正多边形的个数有 []A.4个 B.8个C.12个D.24个2.如图,在△ABC中,AB=AC,∠ABN=∠MBC,BM=NM,BN=a,则点N到边BC的距离等于______.3.设1995x3=1996y3=1997z3,xyz>0,且4.如图,将边长为1的正方形ABCD绕A点按逆时针方向旋转60°至AB'C'D'的位置,则这两个正方形重叠部分的面积是______.5.某校在向“希望工程”捐款活动中,甲班的m个男生和11个女生的捐款总数与乙班的9个男人和n个女生的捐款总数相等,都是(m·n+9m+11n+145)元,已知每人的捐款数相同,且都是整数元,求每人的捐款数.6.设凸四边形ABCD的对角线AC、BD的交点为M,过点M作AD的平行线分别交AB、CD于点E、F,交BC的延长线于点O,P是以O为圆心OM为半径的圆上一点(位置如图所示),求证:∠OPF=∠OEP.三、(本题满分25分)已知a、b、c都是正整数,且抛物线y=ax2+bx+c与x轴有两个不同的交点A、B,若A、B到原点的距离都小于1,求a+b+c的最小值.1996年全国初中数学联赛参考答案第一试一、选择题 1.B 2.A 3.B 4.D 5.A 6.C二、填空题一、据题意m+11=n+9,且整除mn+9m+11n+145mn+9m+11n+145=(m+11)(n+9)+46,故m+11,n+9都整除46,由此得综上可知,每人捐款数为25元或47元.二、作AD、BO的延长线相交于G,∵OE而,三、据题意,方程ax2+bx+c=0有两个相异根,都在( 1,0)中,故经检验,符合题意,∴a+b+c=11最小.第四篇:全国初中数学竞赛试题及答案(1995年)中国数学教育网1995年全国初中数学联赛试题第一试一、选择题1.已知a=355,b=444,c=533,则有[]A.a<b<c B.c<b<aC.c<a<bD.a<c<bA.1 B.2C.3D.4 3.如果方程(x-1)(x2-2x-m)=0的三根可以作为一个三角形的三边之长,那么实数m的取值范围是4.如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为[]A.62π B.63π C.64π D.65π 5.设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S△CAB-S△DAB|,N=2S△OAB,则 []A.M>NB.M=NC.M<N D.M、N的大小关系不确定6.设实数a、b满足不等式||a|-(a+b)|<|a-|a+b||,则[]A.a>0且b>0 B.a<0且b>0 C.a>0且b<0 D.a<0且b<0二、填空题1.在12,22,32…,952这95个数中,十位数字为奇数的数共有____个。
徐李中学八年级数学竞赛试题答题卡一.选择题(每题4分,共32分)1.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图,你能根据三视图,帮他清点一下箱子的数量吗?这些箱子的个数是( ) A .9 B .8 C . 7 D .6 2. 如果(x -2)(x + 3) = x 2 + px + q ,那么p ,q 的值分别为( )A. p = 5, q = 6B. p = 1, q = -6C. p = 1, q = 6D. p = 5, q = -63.阅读下面相关文字,象这样十条直线相交最多交点的个数是( ) 两条直线相交, 三条直线相交, 四条直线相交, 最多1个交点。
最多3个交点。
最多6个交点。
A .40 B .45 C. 50 D .554.若将2000名学生排成一列,按1,2,3,4,5,4,3,2,1,2,3,4,5……的规律报数, 第1999个学生所报的数是( ) A .1B .2C .3D .45.如右图是汽车行驶速度(千米/时)和时间(分) 的关系图,下列说法其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个 (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶; (3)在第30分钟时,汽车的速度是90千米/时; (4)第40分钟时,汽车停下来了.6.如图,光线a 照射到平面镜CD 上,然后在平面镜AB 和 CD 之间来回反射,这时光线的入射角等于反射角,即 ∠1=∠6,∠5=∠3,∠2=∠4。
若已知∠1=55°, 题号1 2 3 4 5 6 7 8 选项∠3=75°,那么∠2等与( )A .50°B .55°C .66°D .65°7.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是 A 、2或2.5 B 、2或10 C 、10或12.5 D 、2或12.58.某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打( )销售。
二次根式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)4+15+4-15=.【答案】10【分析】本题考查二次根式的运算,将式子进行平方,运用完全平方公式展开后化简,即可解答.【详解】∵4+15+4-152=4+152+24+15⋅4-15+4-152=4+15+216-15+4-15=8+2=10,又4+15>0,4-15>0∴4+15+4-15=10.故答案为:10.2(2024·全国·九年级竞赛)已知x为实数,则x-2+4-x的最大值为.【答案】2【分析】本题考查二次根式有意义的条件和配方法,掌握被开方数为非负数和配方法是解题关键.先确定x的取值范围,然后利用配方法分析其最值.【详解】解:由题意可得x-2≥04-x≥0,解得2≤x≤4,令y=x-2+4-x y≥0,则y2=x-2+4-x2=x-2+2x-24-x+4-x=2+2-x2+6x-8=2+2-x-32+1∵0≤-x-32+1≤1∴y2的最大值为4,∴y的最大值为2,即x-2+4-x的最大值为2.故答案为:2.3(2024·全国·八年级竞赛)定义一种新的运算“@”:x@y=ax+by,其中a、b为常数,且使得等式a-2-8-4a+a b=12恒成立,那么2@3=.【答案】1【分析】本题考查了二次根式的意义,幂的运算,求代数式的值,正确理解二次根式的意义是解答本题的关键.先根据二次根式的意义列出不等式组并求解,得到a=2,再代入方程求出b的值,从而得到x@y=2x -y,依此即可求得答案.【详解】根据题意得a-2≥08-4a≥0 ,∴a≥2 a≤2 ,∴a=2,将a=2代入a-2-8-4a+a b=12得0-0+2b=12,解得b=-1,∴x@y=2x-y,∴2@3=2×2-3=1.故答案为:1.4(2024·全国·八年级竞赛)计算:2+520172-52017=.【答案】-1【分析】本题主要考查了分式混合运算,平方差公式和积的乘方运算,解题的关键是熟练掌握运算法则,准确计算.根据相关的运算法则进行计算即可.【详解】解:2+520172-52017=2+52-52017=4-52017=-12017=-1.故答案为:-1.5(2024·全国·八年级竞赛)若不等式x+4+x-1≥a-x-2-2对任意实数x都成立,则a的最大值为.【答案】8【分析】本题考查了绝对值不等式的解法,根据题设借助绝对值的几何意义得x+4+x-2有最小值为6,又由x-1≥0得出当x=1时,x+4+x-2+x-1的最小值为6,然后由不等式恒成立即可求解.【详解】解:x+4+x-1≥a-x-2-2,∴x+4+x-2+x-1≥a-2当-4≤x≤2时,x+4+x-2有最小值为6,∵x-1≥0,∴当x=1时,x+4+x-2+x-1的最小值为6,∴6≥a-2,∴解得a≤8,∴a的最大值为8,故答案为:8.6(2024·全国·八年级竞赛)计算12×1327+75+313-48-24-3232=.【答案】12【分析】本题考查了二次根式的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,解题的关键是掌握运算法则.【详解】解:原式=23×13×33+53+3×33-43-26-3×632=23×33-6=12.7(2024·全国·八年级竞赛)计算:2009×2010×2011×2012+1-2009=.【答案】2010【分析】本题考查整式的混合运算、二次根式的性质,设参数计算是解答的关键.设a=2009,利用整式的混合运算法则和二次根式的性质是解答的关键.【详解】解:记a=2009,则原式=a a+1+1-aa+3a+2=a a+3+1-aa+2a+1=a2+3a+1-aa2+3a+2=a2+3a2+2a2+3a+1-a=a2+3a+12-a=a2+3a+1-a=a+12=a+1=2010,故答案为:2010.8(2024·全国·八年级竞赛)化简:-(x+1)2=.【答案】0【分析】本题考查了二次根式有意义的条件,由被开方数为非负数得到-x+12≤0,可确2≥0,即x+1定x+12=0,进而求解,掌握二次根式有意义的条件是解题的关键.【详解】解:由题意可得,-(x+1)2≥0,∴x+12≤0∴(x+1)2=0,∴-x+12=0=0,故答案为:0.9(2024·全国·八年级竞赛)已知实数x满足20122-4024x+x2+x-2013=x,则x-20122=.【答案】2013【分析】本题考查了二次根式有意义的条件,二次根式的性质,熟练掌握各知识点是解答本题的关键.先根据二次根式有意义的条件求出x的取值范围,再根据二次根式的性质化简得x-2013=2012,然后两边平方即可求解.【详解】解:∵x-2013≥0,∴x≥2013,∴x>2012.∵20122-4024x+x2+x-2013=x,∴2012-x2+x-2013=x,∴2012-x+x-2013=x,∴x-2012+x-2013=x,∴x-2013=2012,即x-2013=20122,故x-20122=2013.故答案为:2013.10(2024·全国·八年级竞赛)计算:1+20092+2009220102-12010=.【答案】2009【分析】本题考查了完全平方公式和二次根式化简,熟练巧用完全平方公式是解本题的关键;首先化简为完全平方公式形式,然后根据二次根式开方即可解答.【详解】解:1+20092+20092 20102-12010=1+2010-12+20092 20102-12010=1+20102-2×2010+1+2009220102-1 2010=20102-2×2010+2+200920102-12010=20102-2×2010-1+200920102-12010=20102-2×2009+200920102-12010=2010-200920102-12010=2010-20092010-1 2010=2009.故答案为:2009.11(2024·全国·八年级竞赛)5+26+5-26=.【答案】23【分析】本题考查二次根式的化简,熟练利用完全平方公式化简二次根式是解本题的关键.把原式化为3+22+3-22,再利用二次根式的性质化简即可.【详解】解:5+26+5-26=3+22+3-22=3+2+3-2=23,故答案为:23.12(2024·全国·八年级竞赛)计算:(π+999)0-12+-3+8+(-1)3+(2+1)23-22=.【答案】22-3+1【分析】本题主要考查了二次根式的运算,先将二次根式化简,再根据二次根式的运算法则计算即可.【详解】原式=1-23+3+22-1+(3+22)(3-22)=22-3+(9-8)=22-3+1.故答案为:22-3+1.13(2024·全国·九年级竞赛)已知正整数a、b满足等式a+b=369,则a-b=.【答案】123或-123【分析】本题考查了二次根式的加减运算,掌握二次根式的运算法则是解题的关键.先把369化成最简二次根式,再把满足正整数a、b的所有值列举出来代入计算即可.【详解】解:∵369=341,正整数a、b满足等式a+b=369,∴a=41,b=241,即a=41,b=164,或a=241,b=41,即a=164,b=41,∴a-b=41-164=-123或a-b=164-41=123,故答案为:123或-123.14(2024·全国·七年级竞赛)计算:1-2=.+2-3+⋅⋅⋅+2016-2017+3-4【答案】2017-1/-1+2017【分析】本题主要考查了二次根式混合运算,解题的关键是根据绝对值的意义,去掉绝对值,然后根据二次根式加减运算法则进行计算即可.【详解】解:1-2+⋯+2016-2017+3-4+2-3=2-1+3-2+4-3+⋯+2017-2016=2017-1.故答案为:2017-1.15(2024·全国·九年级竞赛)计算:9+18-27=.【答案】3+32-33【分析】本题考查二次根式的加减运算,理解二次根式的性质,准确化简各数是解题关键.直接根据二次根式的性质化简即可.【详解】解:9+18-27=3+32-33故答案为:3+32-33.16(2024·全国·八年级竞赛)若实数a满足a-8+a-2015=a,则a=.【答案】2079【分析】本题考查二次根式有意义的条件、绝对值的化简、算术平方根,熟知二次根式有意义的条件是解答的关键.先求得a≥2015,则a-8=a-8,进而得到a-2015=8,然后求解即可.【详解】解:依题意得a-2015≥0,则a≥2015,∴a-8=a-8,∴原式化为a-8+a-2015=a,即a-2015=8,得a-2015=64,∴a=2079.故答案为:2079.17(2024·全国·八年级竞赛)已知-2<x<3,则x2-6x+9-x2+4x+4化简为.【答案】1-2x【分析】先判断出x-3<0,x+2>0,再根据二次根式的性质化简原式即可.此题考查了二次根式的化简,熟练掌握二次根式的性质是解题的关键.【详解】解:∵-2<x<3,∴x-3<0,x+2>0,∴x2-6x+9-x2+4x+4=x-32-x+22=x-3-x+2=3-x-x-2=1-2x故答案为:1-2x二、单选题18(2021·全国·九年级竞赛)设n,k为正整数,A1=(n+3)(n-1)+4,A2=(n+5)A1+4,A3= (n+7)A2+4,A4=(n+9)A3+4,⋯,A k=(n+2k+1)A k-1+4,⋯,已知A100=2005,则n的值为( ).A.1806B.2005C.3612D.4100【答案】A【详解】A1=[(n+1)+2][(n+1)-2]+4=(n+1)2-22+4=(n+1)2=n+1,A2=[(n+3)+2][(n+3)-2]+4=(n+3)2-22+4=(n+3)2=n+3,A3=[(n+5)+2][(n+5)-2]+4=(n+5)2-22+4=(n+5)2=n+5,同理A4=n+7,A5=n+9,⋯,A100=n+2×100-1=n+199=2005⇒n=2005-199=1806.故选:A.19(2011·湖北黄冈·九年级竞赛)设a、b是整数,方程x2+ax+b=0的一根是4-23,则a2+b2 ab的值为()A.2B.0C.-2D.-1【答案】C【分析】先化简4-23,再代入方程x2+ax+b=0并整理,根据题意列出二元一次方程组并求解求得a 和b的值,再代入计算即可.【详解】解:4-23=32-23+1==3-12=3-1.∵方程x2+ax+b=0的一根是4-23,∴4-232+4-23a+b=0.∴3-12+3-1a+b=0.∴a-23+4-a+b=0.∵a、b是整数,∴a-2=0,4-a+b=0.解得a=2, b=-2.∴a2+b2ab =22+-222×-2=-2.故选:C.【点睛】本题考查二次根式的化简,一元二次方程的解,二元一次方程组的应用,正确构造二元一次方程组是解题关键.20(2024·全国·八年级竞赛)若二次根式x-2在实数范围内没有意义,则x的取值范围是() A.x<2 B.x≤2 C.x>2 D.x≥2【答案】A【分析】此题主要考查了二次根式有意义的条件,根据二次根式没有意义的条件可得x-2<0,再解不等式即可,关键是掌握二次根式中的被开方数是非负数.【详解】解:二次根式x -2在实数范围内没有意义,∴x -2<0,解得:x <2故选:AD .21(2024·全国·八年级竞赛)已知13-7的整数部分是m ,小数部分是n ,则m m +7n +mn 的值为()A.10B.7C.6D.4【答案】A【分析】本题考查了无理数的估算,分母有理化,代数式求值,先根据无理数的估算求出m ,n 的值,再代入进行求解即可.【详解】解:13-7=3+73+7 3-7=3+72,∵4<7<9,∴2<7<3,∴2.5<3+72<3,∴m =2,n =3+72-2,∴m m +7n +mn =22+7×3+72-2+2×3+72-2 =10,故选:A .22(2024·全国·九年级竞赛)若1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,则ab的值为()A.18B.8C.2D.92【答案】B【分析】本题考查了根与系数的关系.先整理成一般式,利用根与系数的关系分另求得b 和a 的值,再代入求解即可.【详解】解:方程a (x -b )2=7整理得ax 2-2abx +ab 2-7=0,∵1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,∴1+72+1-72=1=--2ab a =2b ,∴b =12,1+72⋅1-72=-32=ab 2-7a ,∴-32=12 2-7a ,∴a =4,∴a b=412=8.故选:B .23(2024·全国·八年级竞赛)已知75m 是整数,则满足条件的最小正整数m =( ).A.5B.0C.3D.75【答案】C【分析】此题考查了无理数与有理数的联系,根据二次根式的定义进行解答,解题的关键是正确理解75m 什么情况下为正整数.【详解】解:∵75m =52×3m ,∴3m 是一个平方数,∴正整数m 最小是3,故选:C .24(2021·全国·九年级竞赛)已知实数a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,则bb a+aa b的值为()A.23 B.-23C.-2D.-13【答案】B【分析】由题意可得a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,根据根与系数的关系可得a +1+b +1=-3,a +1 b +1 =-3,整理可得a +b =-5,ab =1,即得a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,然后把所求的式子变形后整体代入即可求解.【详解】解:∵a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,∴a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,∴a +1+b +1=-3,a +1 b +1 =-3,整理,得a +b =-5,ab =1,∴a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,∴b b a +aa b =-b a ab -a b ab =-b a -a b =-a 2+b 2ab=-23;故选:B .【点睛】本题考查了一元二次方程根与系数的关系,二次根式的化简求值,由题意得出a +b =-5,ab =1,是解题的关键.三、解答题25(2024·全国·八年级竞赛)若m 满足关系式2x +3y +4x +5y -m =x -2012+y +2012-x -y ,求m 的值.【答案】4024【分析】本题考查了非负数的性质以及二次根式有意义的条件,得到x +y =2012是关键.根据二次根式的性质:被开方数是非负数求得2x +3y +4x +5y -m =0,然后根据非负数的性质得到关于x 和y 的方程组,然后结合x +y =2012即可求得m 的值.【详解】解:由x -2012+y ≥02012-x -y ≥0 可得x +y =2012,∴x +y =20122x +3y =04x +5y -m =0∴m =4x +5y =2x +y +2x +3y =402426(2024·全国·八年级竞赛)设等腰三角形的腰为a ,底边为b ,底边上的高为h .(1)如果a =6+3,b =6+43,求h ;(2)如果b =46+2,h =26-1,求a .【答案】(1)32;(2)52.【分析】此题考查了等腰三角形的基本性质,学会在等腰三角形中构造直角三角形从而应用勾股定理来求解.(1)知道等腰三角形、底边利用等腰三角形高的特殊性质可构成直角三角形,再应用勾股定理求解h 值;(2)知道等腰三角底边和高,同理在等腰三角形中构造直角三角形,利用勾股定理来求a 值.【详解】(1)解:在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴6+3 2=146+43 2+h 2,∴36+123+3=1436+483+48 +h 2,∴39+123=9+123+12+h 2,∴h 2=18,∴h =18=32.(2)解:同理在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴a 2=12×46+22+26-1 2∴a 2=26+1 2+26-1 2∴a 2=50,∴a =52.27(2024·全国·八年级竞赛)先化简,再求值:(2x -1)2-(3x +2)(3x -2)+(5x -4)(x +2),其中x =2.【答案】2x -3,22-3【分析】本题考查平方差公式、完全平方公式及多项式乘多项式、整式的加减,熟练掌握并灵活运用它们是本题的关键.分别利用完全平方和、平方差公式、多项式乘多项式的法则、整式加减的运算法则计算即可.【详解】解:原式=4x 2-4x +1-9x 2+4+5x 2+6x -8,=2x -3当x =2时,原式=2x -3=22-3.28(2024·全国·八年级竞赛)已知:y =3x -15+15-3x +4,求2x +y 2-2x +y 2x -y ÷2y -12y 的值.【答案】12【分析】先根据二次根式有意义的条件得出x =5,进而得出y =4,再化简求值,代入即可得出答案.【详解】解:由3x -15≥0,15-3x ≥0,∴x =5,∴y =4,∴2x +y 2-2x +y 2x -y ÷2y -12y =2x +y 2x +y -2x +y ÷2y -12y=2x+y-12y=2x+12y=12.29(2024·全国·八年级竞赛)已知a=4-15,求:(1)a-1a;(2)a5-6a4-16a3+7a2+23a-42008.【答案】(1)-6(2)1【分析】本题考查完全平方公式,无理数的估算:(1)先根据完全平方公式变形得出a+1a =8,求出a-1a2=6,再估算出0<4-15<1,即0<a<1,最后求出答案即可;(2)将式子变形,再将a2-8a+1=0代入,进而可得出答案.【详解】(1)解:a=4-15,∴a-42=15,∴a2-8a+1=0.∴a+1a=8,∴a-1a2=a+1a-2=8-2=6,∵3<15<4,∴-4<-15<-3,∴0<4-15<1,即0<a<1,∴a-1a<0,∴a-1a=-6.(2)解:∵a5-6a4-16a3+7a2+23a-4=a3a2-8a+1+2a2a2-8a+1-a a2-8a+1 -3a2-8a+1-1=0+0-0-0-1=-1,∴a5-6a4-16a3+7a2+23a-42008=-12008=1.30(2024·全国·八年级竞赛)已知△ABC的三边长分别为a,b,c,且满足a-2+b2-10b+25=0.(1)求△ABC第三边c的取值范围;(2)求△ABC的周长l的取值范围;(3)若△ABC为等腰三角形,你能求出△ABC的周长吗?【答案】(1)3<c<7(2)10<l<14(3)12【分析】本题考查二次根式的非负性,等腰三角形的定义,三角形的三边关系:(1)先根据非负性得出∴a=2,b=5,再根据三角形第三边的取值范围即可得出答案;(2)根据周长三边之和,即可得出答案;(3)当c=2时,可知不能构成三角形,当c=5时,求出三边之和即可.【详解】(1)解:a-2+(b-5)2=0,∴a=2,b=5,∵b-a<c<a+b,∴3<c<7.(2)l=a+b+c=7+c,∴10<l<14.(3)c=2时,三边长(2,2,5)不能构成三角形,舍去.∴c=5,l=2+5+5=12.11。
浙江初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、单选题1.计算:()A.3B.C.0.14D.2.下列各组数中互为倒数的是().A.与2B.与C.与D.与3.下列计算结果等于1的是()A.(-2)+(-3)B.(-3)-(-2)C.D.(-3)-(-2)4.对于,下列说法错误的是()A.>B.其结果一定是负数C.其结果与-3相同D.表示5个-3相乘5.下列说法正确的是()A.是六次多项式B.是单项式C.的系数是,次数是2次D.+1是多项式6.已知代数式的值是5,则代数式的值是()A.6B.-6C.11D.-97.有下列说法:①无限小数都是无理数;②数轴上的点和有理数一一对应;③在1和3之间的无理数有且只有,,,,,这6个;④;⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305;其中正确的是()A.⑤B.④⑤C.③④⑤D.①④⑤8.有理数a,b在数轴上对应的位置如图所示,那么代数式-+-的值是()A.-1B.0C.1D.29.洪峰到来前,120名战士奉命加固堤坝,已知5人运沙袋3人堆垒沙袋,正好运来的沙袋能及时用上且不窝工,为了合理安排,如果设x人运送沙袋,其余人堆垒沙袋,那么以下所列方程正确的是()A.B.C.D.10.完成下列填空: ,解:化简,得:2.5-( )=0.6. 括号内填入的应该是( ) A .B .C .D .二、填空题1.在数轴上,与表示的点距离为5的数是____________ .2.用科学记数法表示-5259000=_______________;用科学记数法表示5259000≈ ____________(精确到万位)3.“x 的平方与 的算术平方根的和”用代数式可以表示为 ____________。
4.一件商品的进价是a 元,提高30%后标价,然后打9折销售,利润为 __________元.5.你的“24点游戏”玩的怎么样?(所给的四个数必须都使用一次且不能使用四个数之外的其他数)请你将“3,-3,8,-8”这四个数用加、减、乘、除或括号进行运算,使其结果为24,你写出的算式是________;如果可以用乘方、开方运算,那么3,4,8,8的“24点”算式是_______________(可以分步列式,每个数字只能用一次,例如:)6.先阅读再计算:取整符号[a ]表示不超过实数a 的最大整数,例如:[ 3.14 ]=3;[0.618]=0;如果在一列数X 1、X 2、X 3、……X n 中,已知X 1="2" ,且当k≥2 时, 满足,则求X 2016的值等于_____________三、解答题1.解下列方程 (1) (2)2.计算 (1) (2)(3)3.在一组实数,,,, 1+,(1)将它们分类,填在相应的括号内: 有理数{ … }; 无理数{ …};(2)请你选出2个有理数和2个无理数, 再用 “+,-,×,÷” 中的3种不同的运算符号将选出的4个数进行运算(可以用括号), 使得运算的结果是一个正整数. 4.(1)已知是有理数且满足:是-27的立方根,,求的值; (2)已知5.若,则单项式和是同类项吗?如果是,请把它们进行加法运算;如果不是同类项,请从下列代数式中找出同类项进行加法运算:,6.为了节约用水,某市居民生活用水按级收费,下面是东东家收到的自来水公司水费专用发票。
初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。
则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。
七年级数学竞赛试题一.选择题(每小题4分,共32分) 1.x 是随意有理数,则2 的值( ).A .大于零B . 不大于零C .小于零D .不小于零 2.在-0.1428中用数字3交换其中的一个非0数码后,使所得的数最大,则被交换的数字是( ) A .1 B .4 C .2 D .83.如图,在数轴上1的对应点A 、B , A 是线段的中点,则点C 所表示的数是( )A.2 B2 C1 D.14.桌上放着4张扑克牌,全部正面朝下,其中恰有1张是老K 。
两人做嬉戏,嬉戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜。
则赢的时机大的一方是( )A .红方B .蓝方C .两方时机一样D .不知道 5.假如在正八边形硬纸板上剪下一个三角形(如图①中的阴影局部),那么图②,图③,图④中的阴影局部,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影局部,依次进展的变换不行行...的是( )A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转 D.旋转、对称、旋转6.计算:22221111(1)(1)(1)(1)2342007---⋅⋅⋅-等于( ) A .10042007 B .10032007 C .20082007D .200620077.如图,三个天平的托盘中一样的物体质量相等。
图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置( )(3)(2)(1)A. 3个球B. 4个球C. 5个球D. 6个球8.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是( ) A .15 B .16 C .18 D .19 二.填空题(每题4分,共28分)x图①图②图③ 图④9.定义a*,若3*31,则x 的值是。
最新初中数学有理数的运算基础测试题含解析(1)一、选择题1.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.2.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【答案】A【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】3.电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是( )A .10.9×104B .1.09×104C .10.9×105D .1.09×105【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将10.9万用科学记数法表示为:1.09×105.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.计算﹣6+1的结果为()A.﹣5 B.5 C.﹣7 D.7【答案】A【解析】【分析】根据有理数的加法法则,|﹣6|>|1|,所以结果为负号,并把它们的绝对值相减即可.【详解】解:﹣6+1=﹣(6﹣1)=﹣5故选:A.【点睛】本题考查了有理数的加法,注意区别同号相加与异号相加,把握运算法则是关键.5.23+23+23+23=2n,则n=()A.3 B.4 C.5 D.6【答案】C【解析】【分析】原式可化为:23+23+23+23=4×23235=⨯=,之后按照有理数乘方运算进一步求解即可.222【详解】∵23+23+23+23=4×23235=⨯=222n=,∴5所以答案为C选项.【点睛】本题主要考查了有理数的乘方运算,熟练掌握相关概念是解题关键.6.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.7.温州市2019年一季度生产总值(GDP)为129 800 000 000元.将129 800 000 000用科学记数法表示应为()A.1298×108B.1.298×108C.1.298×1011D.1.298×1012【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】129 800 000 000=1.298×1011,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.9.已知:||2||3||a b b c c amc a b+++=++,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=()A.4 B.3 C.2 D.1【答案】B【解析】【分析】根据绝对值的意义分情况说明即可求解.【详解】∵abc>0,a+b+c=0,∴a、b、c为两个负数,一个正数,a+b=﹣c,b+c=﹣a,c+a=﹣b,m23c a bc a b---=++,∴分三种情况讨论:当a<0,b<0,c>0时,m=1﹣2﹣3=﹣4,当a<0,c<0,b>0时,m=﹣1﹣2+3=0,当a>0,b<0,c<0时,m=﹣1+2﹣3=﹣2,∴x=3,y=0,∴x+y=3.故选:B.【点睛】本题考查了有理数的混合运算和绝对值,解答本题的关键是分类讨论.10.据资料显示,地球的海洋面积约为36000万平方千米,请用科学记数法表示地球海洋面积约为多少平方千米( ).A .73610⨯B .83.610⨯C .90.3610⨯D .43.610⨯ 【答案】B【解析】【分析】先将36000万平方千米化为360000000平方千米,再根据科学计数法的概念进行表示,即可得到答案.【详解】36000万平方千米=360000000平方千米,将360000000用科学记数法表示为83.610⨯,则用科学记数法表示地球海洋面积约为83.610⨯平方千米,故选:B .【点睛】本题考查科学计数法.科学记数法的形式为:10n a ⨯,其中110a ≤≤,n 为整数.11.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为( )A .1.361×104B .1.361×105C .1.361×106D .1.361×107【答案】D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:13610000用科学记数法表示为1.361×107,故选D .【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.6万亿=296000000000000=2.96×1013.故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示的关键是要正确确定a 的值以及n 的值.14.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是( )A .1.598×1110B .15.98×1010C .1.598×1010D .1.598×810【答案】A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】用科学记数法表示数1598亿是1.598×1011.故选A .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.2019年4月10日,天文学家召开全球新闻发布会,发布首次直接拍摄到的黑洞照片,这颗黑洞位于代号为M87的星系当中,距离地球5500万光年,质量相当于65亿颗太阳,太阳质量大约是2.1×1030千克,那么这颗黑洞的质量约是()A.130×1030千克B.1.3×1030千克C.1.3×1040千克D.1.3×1041千克【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【详解】16.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108B.5.6×108C.5.6×109D.0.56×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=9.【详解】56亿=56×108=5.6×109,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.17.按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.下列用科学记数法表示正确的是()A.10.000567 5.6710-=-⨯B.40.0012312.310=⨯C.20.0808.010-=⨯D.5696000 6.9610--=⨯【答案】C【解析】分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解: A. 40.000567 5.6710--=-⨯,故错误;B. 30.0012312.310,-=⨯故错误;C. 20.0808.010-=⨯,正确;D. 5696000 6.9610-=⨯,故错误.故选:C.点睛: 本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .81B .508C .928D .1324【答案】B【解析】【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B .【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.。
《分式》竞赛专题训练1 分式的概念分母中含有字母的有理式叫做分式.分式的分母不能为零;只有当分式的分母不为零,而分式的分子为零时,分式的值为零.经典例题(1)当x 为何值时,分式22211x x有意义?(2)当x 为何值时,分式22211x x的值为零?解题策略(1)要使分式22211x x有意义,应有分母不为零这个分式有两个分母x 和11x,它们都不为零,即0x 且110x,于是当0x 且1x 时,分式22211x x有意义,(2)要使分式22211x x的值为零,应有2220x且110x,即1x 且1x ,于是当1x 时,分式22211x x的值为零画龙点睛1.要使分式有意义,分式的分母不能为零.2.要使分式的值为零,应有分式的分母不为零,而分式的分子等于零,以上两条,缺一不可.举一反三1.(1)要使分式24x x 有意义的x 的取值范围是()(A)2x (B) 2x ( C)2x (D)2x (2)若分式的的值为零,则x 的值为() (A)3(B)3或3(C)3(D)02.(1)当x时,分式23(1)16x x 的值为零;(2) 当x时,分式2101x x 3.已知当2x 时,分式x b xa无意义;当4x时,分式的值x b xa为零,求a b .融会贯通4.若201a a ,求a 值的范围.2 分式的基本性质分式的基本性质是:分式的分子和分母都乘以或除以同一个不等于0的整式,分式的值不变.分式的基本运算,例如改变分子、分母或分式的符号以及通分、约分等,都要用到这个性质.本节主要讲解它在解答一些分式计算综合题时的应用.经典例题若2731x xx ,求2421x xx 的值解题策略因为2731x xx ,所以0x 将等式2731x xx 的左边分子、分母同时除以x ,得1713x x,所以有1227xx因此242222211149112214351()1()17xx xxxxx画龙点睛对于含有1xx 形式的分式,要注意以下的恒等变形:22211()2x x x x 22211()2x xx x 2211()()4xxxx举一反三1.(1)不改变分式的值,使分式的分子和分母的系数都化为整数;10.50.2210.20.53a b ca b c(2)不改变分式的值,使分式的分子和分母的最高次项系数是正数:3211a aa 2.已知13xy xy,求2322x xy y xyxy的值.3.已知13xx,求2421x xx 的值.融会贯通4.已知3a b ba,求22224a ab baabb的值.3 分式的四则运算分式的四则运算和分数的四则运算是一致的,加减法的关键是通分和约分.综合运算时要遵循先乘除后加减,以及先做括号内的,再做括号以外的次序.经典例题计算:22448()()[3()]y x xy x yx yx y xyxyxy解题策略原式2222()4()43()()8xy y x y xxy x y xyx y x yx yg()(3)(3)()(3)(3)x y x y x y yx xy x y x y xy xy ggyx画龙点睛在进行分式的四则运算时,要注意运算次序.在化简时,因式分解是重要的恒等变形方法;在解答求值问题时,一般应该先化简分式,再将字母对应的值代入计算.举一反三1.先化简,再求值:262393m m mm ,其中2m .2.计算:322441124a aa babab ab3.(1)已知实数a 满足2280aa ,求22213211143a aa a aaa的值(2)已知a 、b 为实数,且1ab ,设11a b Ma b ,1111Na b ,试比较M 、N 的大小关系.融会贯通4.甲、乙两位采购员同去一家肥料公司购买两次肥料,两次肥料的价格有变化,两位采购员的购货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.请问谁的购货方式更合算?4 分式的运算技巧——裂项法我们知道,多个分式的代数和可以合并成一个分式,如134512(1)(2)x x xx x 反过来,由右边到左边的计算往往可以使一些复杂的分式计算变得简捷常见的裂项有:11A B ABBA,111(1)1n n nn 经典例题已知54(1)(21)121x A B x x x x ,求A 、B 的值解题策略由54(21)(1)(1)(21)121(1)(21)x A B A x B x x x x x x x (2)(1)(21)A B x B Ax x ,可得254A B BA,解得13A B画龙点睛已知等式右边通分并利用同分母分式的减法法则计算,利用分式相等的条件求出A 、B的值即可. 举一反三1.若在关于x 的恒等式222Mx N c xxxax b中,22Mx N xx 为最简分式,且有a b ,abc ,求M ,N .2.化简:222211113256712xxxx xx xx 3.计算:222222a b c b c a c a b aabacbcbabbcaccacbcab融会贯通4.已知21(2)(3)23xb c ax x x x ,当1,2,3x时永远成立,求以a 、b 、c为三边长的四边形的第四边d 的取值范围.5 含有几个相等分式问题的解法有一类化简求值问题,已知条件中含有若干个相等的分式,其本质是几个比的比值相等的问题.解决此类问题常将这个相等的比用一个字母表示,从而将其转化为一个整式的问题来解决. 经典例题已知x y z x y z x y zzyx,且()()()1x y y z z x xyz,求x y z 的值解题策略由x y z x y z x y zzyx得111x yx zy zz y x 从而xy x z yz z yx设x yxz y zk zyx,则x y kz ,x z ky ,y z kx三式相加得2()()x yz k xyz ,即()(2)0x y z k ,所以0xy z ,或2k若0xy z ,则1x y xz y zzy x g,符合条件;若2k ,则()()()81x y y z zx xyz与题设矛盾,所以2k 不成立因此0x yz画龙点睛1.将相等的比用一个字母表示,是解决含有连等分式问题的常见解法.2.在得到等式2()()x yz k x y z 后.不要直接将等式的两边除以x y z ,因为此式可能等于0.3.在求出值后.要注意验证,看是否与已知条件矛盾.举一反三1.(1)已知275x y z ,求值①x y zz;②x yz;③x y zx(2)已知2310254a b b c c a,求56789a b cab的值2.若a b c d bcaa,求a b c d abcd的值3.已知实数a 、b 、c 满足0a b c,并且a b c k bccaab,则直线3y kx 一定通过()(A)第一、二、三象限(B)第一、二、四象限(C)第二、三、四象限(D)第一、三、四象限融会贯通4.已知9pq r ,且222p qrxyzyzxzxy,求px qy rz xyz的值6 整数指数幂一般地,当n 是正整数时,1(0)nnaaa,这就是说(0)na a是na 的倒数.引入了负整数指数幂后,指数的取值范围就推广到全体整数.经典例题已知2mx ,3ny,求24()mn xy 的值解题策略242(4)(4)84()mn m n mnxy xyxyg g 848481()()23256mn xy 画龙点睛将所求的代数式转化为以mx、ny 为底的乘方,进而代入相应的值进行计算.举一反三1.计算(1)222242(2)()ab a b a b g (2)541321111(1)()()()()21023(3)10222(510)(0.210)(200)2.水与我们日常生活密不可分,科学家研究发现,一个水分子的质量大约是26310kg ,8 g 水中大约有多少个水分子?通过进一步研究科学家又发现,一个水分子是由2个氢原子和一个氧原子构成的.已知一个氧原子的质量约为262.66510kg ,求一个氢原子的质量.3.已知2310aa ,求(1)1a a ;(2)22aa ;(3)44aa融会贯通4.如图,点O 、A 在数轴上表示的数分别是0、0. 1.将线段(OA 分成100等份,其分点由左向右依次为1M 、2M ,…,99M ;再将线1OM 分成100等份,其分点由左向右依次为1N 、2N ,…,99N ;继续将线段1ON 分成100等份,其分点由左向右依次为1P 、2P …,99P .则点37P 所表示的数用科学记数法表示为7 分式方程的解法分母中含有未知数的方程是分式方程.通常我们采用去分母的方法,将其变形为整式方程来解答. 经典例题解方程52432332x x x x 解题策略解法一去分母,得(52)(32)(43)(23)x x x x 2215610486129xxxxxx所以1x 验根知1x 为原方程的解.解法二方程两边加1,得5243112332x x x x 即222332x x 所以2332x x 解得1x 验根知1x 为原方程的解.解法三原式可化为22112332x x所以222332xx以下同解法二画龙点睛1.通常我们采用去分母的方法来解分式方程,先将其变形为整式方程,再用解整式方程的方法来解答.2.除了用去分母的方法来解分式方程外,采用部分分式的方法,即将分式分解为一个整式和一个分式之和,这样可以使解方程的过程变得简单.3.解完分式方程后,要进行检验,这是一个必不可少的步骤.因为在去分母时容易产生增根.举一反三1.(1)解方程2227461xxxxx。
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)20022003200420052006200720082009201020112012201320142015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cbc a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、的面积等于( ) 4 5a 、b )共有( 6E 、F 分别是垂足,那么7、___________。
89、a=___________。
10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。
三、解答题:(每小题20分,共60分)11、如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F在底边BC 上,且FE ⊥BE ,求△CEF 的面积。
12、设抛物线()452122++++=a x a x y 的图象与x 轴只有一个交点,(1)求a 的值;(2)求618323-+a a 的值。
13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器ABCEF支援给D市18台,E市10台。
初一数奥数题题目一:某网吧有8台电脑,每台电脑的工作时间分别为1小时30分钟、2小时、2小时15分钟、1小时45分钟、1小时、1小时30分钟、2小时30分钟、1小时45分钟。
请问这8台电脑累计工作了多少时间?解析与计算:- 将每台电脑的工作时间转换为分钟数:1小时30分钟 = 90分钟,2小时 = 120分钟,2小时15分钟 = 135分钟,1小时45分钟 = 105分钟,1小时 = 60分钟,1小时30分钟 = 90分钟,2小时30分钟 = 150分钟,1小时45分钟 = 105分钟。
- 累计工作时间 = 90 + 120 + 135 + 105 + 60 + 90 + 150 + 105 = 855分钟。
答案:这8台电脑累计工作了855分钟。
题目二:某班级有50名学生,其中男生占总人数的40%。
请问班级中男生和女生的人数分别是多少?解析与计算:- 班级中男生的人数 = 总人数 ×男生占比 = 50 × 0.4 = 20人。
- 班级中女生的人数 = 总人数 - 男生人数 = 50 - 20 = 30人。
答案:班级中男生的人数为20人,女生的人数为30人。
题目三:某超市举办了一次促销活动,原价10元的商品打7折出售。
小明买了3个,小红买了5个。
他们一共支付了多少钱?解析与计算:- 单个商品的折后价格 = 原价 ×折扣 = 10 × 0.7 = 7元。
- 小明购买3个商品的总价格 = 单个商品折后价格 ×数量 = 7 × 3 = 21元。
- 小红购买5个商品的总价格 = 单个商品折后价格 ×数量 = 7 × 5 = 35元。
- 他们一共支付的金额 = 小明购买总价 + 小红购买总价 = 21 + 35 = 56元。
答案:他们一共支付了56元。
题目四:在一个三位数中,百位数是个位数和十位数之和,百位数比个位数大3。
请问这个三位数是多少?解析与计算:- 设个位数为x,则十位数为x+3,百位数为2x+3。
初中数学教师基本功竞赛试卷(附答案)第一题 - 四则运算计算下列各式的结果:1. $12 + 5 =$2. $20 - 8 =$3. $4 \times 7 =$4. $36 \div 9 =$答案:1. $12 + 5 = 17$2. $20 - 8 = 12$3. $4 \times 7 = 28$4. $36 \div 9 = 4$第二题 - 分数计算对下列各题进行分数计算:1. $\frac{3}{4} + \frac{1}{2} =$2. $\frac{5}{8} - \frac{1}{4} =$3. $\frac{2}{3} \times \frac{3}{5} =$4. $\frac{2}{9} \div \frac{1}{3} =$答案:1. $\frac{3}{4} + \frac{1}{2} = \frac{5}{4}$2. $\frac{5}{8} - \frac{1}{4} = \frac{3}{8}$3. $\frac{2}{3} \times \frac{3}{5} = \frac{6}{15}$4. $\frac{2}{9} \div \frac{1}{3} = \frac{6}{9}$第三题 - 方程求解解下列方程:1. $2x + 3 = 9$2. $\frac{3}{4}x - \frac{1}{2} = 1$3. $5 - 2x = 8$4. $\frac{1}{3}x + 5 = 7$答案:1. $x = 3$2. $x = \frac{9}{5}$3. $x = -1.5$4. $x = 6$第四题 - 几何图形选择正确的答案:1. 三角形的内角和为多少?- A. 90度- B. 180度- C. 360度- D. 45度答案:B. 180度2. 一个正方形有几条对角线?- A. 1条- B. 2条- C. 4条- D. 0条答案:C. 4条3. 直线与平行线相交,对应角为:- A. 互补角- B. 对顶角- C. 相等角- D. 余角答案:B. 对顶角4. 直角三角形的斜边是:- A. 最长边- B. 最短边- C. 邻边- D. 对边答案:A. 最长边第五题 - 数学推理根据给定的条件选择正确的答案:1. 如果$a = 3$,$b = 5$,则$a + b =$ _____?- A. 7- B. 8- C. 9- D. 15答案:A. 82. 如果$a = 2$,$b = 4$,则$a \times b =$ _____?- A. 2- B. 4- C. 6- D. 8答案:D. 83. 如果$a = 6$,$b = 2$,则$a - b =$ _____?- A. 2- B. 3- C. 4- D. 5答案:C. 44. 如果$a = 10$,$b = 2$,则$a \div b =$ _____?- A. 1- B. 2- C. 5- D. 10答案:B. 5以上是初中数学教师基本功竞赛试卷及答案。
专题分式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)如图,已知在△ABC 中,点D 、E 、F 分别为边AB 、BC 、AC 上的点,且AE 、BF 、CD 相交于点G ,如果AG GE +BG GF +CG GD =2014,那么AG GE ⋅BG GF ⋅CGGD的值为.【答案】2016【分析】本题主要考查了三角形面积的计算,分式化简求值,解题的关键是设S △ABG =a ,S △ACG =b ,S △BCG =c ,得出AG GE =a +b c ,BG GF =a +c b ,CG DG =b +c a ,根据AG GE +BG GF +CG GD=2014,得出a +b c +a +cb +b +c a =2014,将a +b c ⋅a +c b ⋅b +c a 化简为a +b c +a +c b +a +b c +2即可得出答案.【详解】解:设S △ABG =a ,S △ACG =b ,S △BCG =c ,则AG GE=S △ABG S △BEG =S △ACG S △CEG =S △ABG +S △ACG S △BEG +S △CEG =S △ABG +S △ACG S △BCG =a +bc ,同理可得:BG GF =a +c b ,CG DG=b +ca ,∵AG GE +BG GF +CG GD =2014,∴a +b c +a +c b +b +c a =2014,∴AG GE ⋅BG GF ⋅CG GD =a +b c ⋅a +c b⋅b +c a =a +b a +c b +c abc=a 2b +a 2c +abc +ac 2+ab 2+abc +b 2c +bc 2abc=a +b c +a +c b +a +b c +2=2014+2=2016.故答案为:2016.2(2024·全国·八年级竞赛)设a 、b 、c 是互不相等的实数,且a +4b=b +4c =c +4a ,则abc =.【答案】±8【分析】本题考查分式的化简求值,由a +4b =b +4c 可得bc =4b -c a -b ,同理可得ac =4c -a b -c,ab =4a -bc -a,由此三式相乘即可解答.【详解】解:∵a +4b=b +4c =c +4a ,∴a -b =4c -4b =4b -c bc ,b -c =4a -4c =4c -a ac ,c -a =4b -4a =4a -b ab ,∴bc =4b -c a -b ,ac =4c -a b -c,ab =4a -bc -a ,∴a 2b 2c 2=4(b -c )a -b ⋅4(c -a )b -c.4(a -b )c -a =64,∴abc =±8.故答案为:±8.3(2024·全国·八年级竞赛)已知6x 3+2x 2-8x -1x 2-1 x 2-2 =Ax +B x 2-1+Cx +Dx 2-2其中A 、B 、C 、D 为常数,则A ⋅B ⋅C ⋅D =.【答案】-24【分析】此题主要考查了分式的加减运算,先对Ax +B x 2-1+Cx +D x 2-2进行计算,然后根据题意列出关于A 、B 、C 、D 的方程组即可解决问题,解题的关键是熟练掌握分式的运算及法则的应用.【详解】解:6x 3+2x 2-8x -1x 2-1 x 2-2 =A +C x 3+B +D x 2-2A +C x -2B +D x 2-1 x 2-2 Ax +B x 2-1+Cx +Dx 2-2=Ax +B x 2-2 x 2-1 x 2-2 +Cx +D x 2-1 x 2-1 x 2-2=A +C x 3+B +D x 2-2A +C x -2B +Dx 2-1 x 2-2,∵6x 3+2x 2-8x -1x 2-1 x 2-2 =Ax +B x 2-1+Cx +D x 2-2,∴A +C =6,B +D =2,2A +C =8,2B +D =1,解得A =2,B =-1,C =4,D =3,∴A ⋅B ⋅C ⋅D =2×-1 ×4×3=-24,故答案为:-24.4(2024·全国·八年级竞赛)已知实数x ,y 满足条件1x -1y =2x +y ,则代数式y 2x -x2y=.【答案】1【分析】本题主要考查代数式求值,先将1x -1y =2x +y 变形为2xy =y -x y +x ,再把y 2x -x2y变形为y -x y +x2xy,然后代入计算即可.【详解】解:∵1x -1y =2x +y,∴2xy =y -x y +x ,∴y 2x -x 2y=y2-x2 2xy=y-xy+x2xy=y-xy+xy-xy+x=1,故答案为:1.5(2024·全国·七年级竞赛)已知实数a、b、c满足等式a2013=b2014=c2015,且2a+b-c=8050,则a-b+12c+1=.【答案】2014【分析】本题考查了分式的化简求值,代数式求值;解题的关键是令a2013=b2014=c2015=k求出a、b、c的值.令a2013=b2014=c2015=k,求得a=2013k,b=2014k,c=2015k,结合题意求出a、b、c的值,代入即可求解.【详解】解:设a2013=b2014=c2015=k,故a=2013k,b=2014k,c=2015k,则2a+b-c=2×2013k+2014k-2015k,即2×2013k+2014k-2015k=8050,解得:k=2;∴a=4026,b=4028,c=4030,∴a-b+12c+1=4026-4028+12×4030+1=2014.故答案为:2014.6(2024·全国·八年级竞赛)已知实数x、y、z满足下列等式:xyx+y =1b-1,yzy+z=1b,xzx+z=1b+1,那么代数式xyzxy+xz+yz的值为.【答案】1 6【分析】本题考查了分式的混合运算,熟练掌握分数的混合运算法则是解题的关键.根据分式的性质将分式适当变形后进行计算即可.【详解】由题意知xy、yz、xz都不为零,∴x+yxy=b-1 y+zyz=bx+zxz=b+1,即1x+1y=3 1y+1z=4 1x+1z=5,∴1x +1y +1z =6,即xy +yz +xz xyz =6,∴xyz xy +xz +yz =16.故答案为:16.7(2024·全国·八年级竞赛)已知三个数x ,y ,z 满足xy x +y =2015,yz y +z =43,zx z +x =-43,则xyzxy +yz +zx 的值为.【答案】4030【分析】本题考查分式的化简求值,灵活运用分式的运算法则是解答的关键.将所有分式的分子和分母颠倒位置,然后利用分式的混合运算法则化简求解即可.【详解】解:将所有分式的分子和分母颠倒位置,则由xy x +y =2015得x +y xy =1x +1y =120151 ,由yz y +z =43得y +z yz =1y +1z =342 ,由zx z +x =-43得x +z xz =1x +1z =-343 ,三式相加得21x +1y +1z=12015,则1x +1y +1z =xy +yz +zx xyz =12⋅12015=14030,∴xyzxy +yz +zx=4030.8(2024·全国·八年级竞赛)如图,将一张矩形卡片按图1所示的方式分成四块后,恰好能拼成图2所示的矩形,若S ①:S ③=1:5,则a :b =.【答案】2∶3【分析】本题主要考查了整式混合运算的应用,求比值,解题的关键是理解题意,根据S ①:S ③=1:5,得出S 矩形ABFE :S 矩形EFCD =1:5,求出AE ED=15,设AE =x ,则ED =5x ,得出a +b x +5x =b ⋅5x +5x ,求出3a =2b ,即可求出结果.【详解】解:如图所示,∵S ①:S ③=1:5,∴S 矩形ABFE :S 矩形EFCD =1:5,∴a +b ⋅AE a +b ⋅ED=15,∴AE ED=15,设AE =x ,则ED =5x ,∴a +b x +5x =b ⋅5x +5x ,整理得:3a =2b ,∴a :b =2:3.故答案为:2:3.9(2024·全国·八年级竞赛)对于正数x ,规定f x =x x +1,例如f 1 =11+1=12,f 2 =22+1=23,f 12 =1212+1=13,则f 12017 +f 12016 +⋯+f 12 +f 1 +f 2 +⋯+f 2016 +f 2017 =.【答案】40332【分析】本题考查代数式求值,分式的加法以及数字类规律探究,理解新定义函数的意义,掌握数字所呈现的规律是解决问题的关键.利用加法结合律以及探究所得规律得出答案.【详解】解:∵f x =xx +1,∴f x +f 1x =x x +1+1x1x+1=x x +1+1x +1=1,∴f 12017+f 12016 +⋯+f 12 +f 1 +f 2 +⋯+f 2016 +f 2017 =f 12017 +f 2017 +f 12016 +f 2016 +⋯+f 12 +f 2+f 1 =2016+11+1=40332.故答案为:40332.10(2024·全国·八年级竞赛)若x 为正数,且x -1x =3,则x x 2-x +1=.【答案】13+112【分析】先求出x 2+1x 2=11,再求出x +1x =13,最后整体代入x x 2-x +1=1x -1+1x进求解即可,此题考查了分式的运算和二次根式的运算,熟练掌握运算法则和灵活变形是解题的关键.【详解】解:∵x 为正数,且x -1x=3,∴x -1x 2=9,x +1x >0,即x 2+1x 2=11,∴x +1x 2=x 2+1x 2+2=13,∴x +1x =13,∴x x 2-x +1=1x -1+1x =113-1=13+112,故答案为:13+11211(2024·全国·八年级竞赛)已知x =2y +33y -2,则3x -2 3y -2 的值为.【答案】13【分析】本题考查了分式的混合运算,多项式乘以多项式,根据x 的值和题中式子即可求解,根据解题的关键是明确它们各自的计算方法.【详解】解:∵x =2y +33y -2,∴3x -2=6y +93y -2-2=6y +9-6y +43y -2=133y -2,∴3x -2 3y -2 =133y -2×3y -2 =13,故答案为:13.12(2024·全国·八年级竞赛)比较大小:22000+122001+1-22001+122002+10(填“>”、“=”或“<”).【答案】>【分析】本题考查了实数的比较大小,异分母分式的运算.熟练掌握以上知识点并灵活运用是解题的关键.设a =22000,根据22000+122001+1-22001+122002+1=a +12a +1-2a +14a +1=a 8a 2+6a +1>0作答即可.【详解】解:设a =22000,∴22000+122001+1-22001+122002+1=a +12a +1-2a +14a +1=a 8a 2+6a +1>0,故答案为:>.13(2024·全国·八年级竞赛)已知11的小数部分为a .则a 2-6a +9a 2+7a +12÷a -3a +4-aa +3=.【答案】-31111/-31111【分析】本题考查了分式的混合运算,无理数的估算,分母有理化,先根据分式的运算法则把所给代数式化简,再求出a 的值,然后代入化简后的结果计算即可.【详解】解:a 2-6a +9a 2+7a +12÷a -3a +4-aa +3=a -3 2a +3 a +4 ×a +4a -3-a a +3=a -3a +3-a a +3=-3a +3,∵3<11<4,∴11的整数部分3,∴a =11-3.∴-3a +3=-31111.故答案为:-31111.14(2024·全国·八年级竞赛)函数y =x -4-2-x -3x -5的自变量x 的取值范围是.【答案】x ≥3且x ≠4且x ≠5【分析】本题考查确定函数自变量取值范围.熟练掌握负整指数幂有意义的条件,二次根式有意义的条件,分式有意义的条件是解题的关键.根据题意得不等式组x -3≥0x -4≠0,x -5≠0求解即可.【详解】解:根据题意,得x -3≥0x -4≠0,x -5≠0∴x ≥3且x ≠4且x ≠5.故答案为:x ≥3且x ≠4且x ≠5.15(2024·全国·八年级竞赛)如果对于分式3x 2+4x +m,存在两个数使分式没有意义,则m 的取值范围是.【答案】m <4【分析】本题主要考查了分式有意义的条件、一元二次方程根的判别式等知识点,理解分式有意义的条件是解题的关键.由存在两个数使分式没有意义,则对于x 2+4x +m =0的判别式Δ>0,据此列不等式求解即可.【详解】解:∵分式3x 2+4x +m,存在两个数使分式没有意义,∴x 2+4x +m =0有两个解,∴Δ=42-4m >0,解得:m <4,∴当m <4时,存在两个实数使原式没有意义.故答案为m <4.二、单选题16(2024·全国·九年级竞赛)要使式子x +6x有意义,则x 的取值范围是()A.x ≥-6B.x ≠0C.x >6D.x ≥-6且x ≠0【答案】D【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件.熟练掌握概念是解题的关键.分子上的二次根式要有意义,根号里面的式子为非负数,且分母不为零,分别求解满足条件的x 值.【详解】∵式子x +6x有意义,∴x +6≥0,x ≠0,∴x ≥-6且x ≠0.故选:D .17(2024·全国·八年级竞赛)已知1x +1y =2,则2x +3xy +2y 3x -2xy +3y的值为()A.74B.72C.5D.12【答案】A【分析】本题考查分式的化简求值,根据1x +1y =2得x +y =2xy ,再将2x +3xy +2y 3x -2xy +3y的分子分母变形为含xy 的式子,即可解题.【详解】解:由1x +1y=2得x +y =2xy ,则2x +3xy +2y 3x -2xy +3y =2x +y +3xy 3x +y -2xy =7xy 4xy =74.故选:A .18(2024·全国·八年级竞赛)已知实数x ,y 满足x +y =2,xy =-5,则xy +y x 的值为( ).A.65B.-145C.-65D.-45【答案】B【分析】本题考查了分式的化简求值,配方法,熟练掌握完全平方公式是解答本题的关键.先将xy +y x通分,然后将分子配方,并将分式化简成只含x +y ,xy 的代数式,最后将x +y ,xy 的值代入并计算即得答案.【详解】xy +y x =x 2+y 2xy=x 2+2xy +y 2-2xy xy=(x +y )2xy -2,当x +y =2,xy =-5时,原式=22-5-2=-145.故选B.19(2024·全国·八年级竞赛)若分式x-1x -2的值为正数,则x的取值范围是()A.1<x<2或x<-2B.x<-2或x>2C.-2<x<1或x>2D.-2<x<2【答案】C【分析】根据题意列出不等式组,解不等式组则可.此题考查分式的值,解不等式组,解题关键在于根据题意列出不等式组.【详解】解:∵分式x-1x -2的值为正数,∴x -2>0x-1>0或x -2<0x-1<0,解得:-2<x<1或x>2.故选:C.20(2024·全国·七年级竞赛)灰太狼在跑一段山路时,上山速度是80米/分,到达山顶后再下山,下山的速度是上山速度的3倍,如果上、下山的路程相同,那么灰太狼跑这段山路的平均速度是()A.160米/分B.140米/分C.60米/分D.120米/分【答案】D【分析】本题考查了分式乘除的应用,整式加减的应用,正确理解题中的数量关系是解答本题的关键,设上坡的路程为S,则上、下坡的总路程为2S,可逐步求得上下坡的总时间,最后利用平均速度等于上、下坡的总路程除以总时间,计算即得答案.【详解】设上坡的路程为S,则上、下坡的总路程为2S,上坡时间为S80,下坡时间为S80×3=S240,总时间为S80+S240=S60,所以平均速度为2S÷S60=120(米/分).故选D.21(2024·全国·八年级竞赛)若xx2+x+1=15,则x2x4+x2+1=()A.5B.115C.4 D.14【答案】B【分析】本题考查分式的化简求值和完全平方公式,根据xx2+x+1=15得出x+1x=4,再将x2x4+x2+1变形为1x+1x2-1,将x+1x=4整体代入求值即可.【详解】解:∵xx2+x+1=1x+1x+1=15,∴x+1x=4,∴x2x4+x2+1=1x2+1x2+1=1x+1x2-1=142-1=115,故选B.22(2024·全国·八年级竞赛)若x2-3x+1=0,则x2x4+x2+1的值是( ).A.8B.110C.18D.14【答案】C【分析】本题考查了分式的混合运算,完全平方公式变形求值,换元法,由x2-3x+1=0得到x2+1x2=7,设x2x4+x2+1=A,得到1A=x2+1x2+1,代入即可求解,掌握完全平方公式是解题的关键.【详解】解:由x2-3x+1=0知x≠0,∴x+1x=3,∴x2+1x2=7,设x2x4+x2+1=A,则1A=x2+1x2+1=8,∴A=18,即x2x4+x2+1=18,故选:C.三、解答题23(2024·全国·九年级竞赛)若x-3x-2=13+2+1,求1-1x-2÷x-4+1x-2的值.【答案】3+2【分析】本题考查了分式的化简求值,涉及整体代入法;先化简分式,再由x-3x-2=13+2+1,得到x-2 x-3=3+2+1,变形为1+1x-3=3+2+1,即可求得1x-3的值.关键是由已知变形求得1x-3.【详解】解:1-1 x-2÷x-4+1x-2=x-3 x-2÷x2-6x+9x-2=x-3 x-2·x-2 x-3 2=1x-3;∵x-3 x-2=13+2+1,∴x-2x-3=3+2+1,∴1+1x-3=3+2+1,∴1x-3=3+2,即原式=3+2.24(2024·全国·九年级竞赛)已知实数a 满足a 2+2a -2016=0,求a 2-2a +1a 2+5a +4×a +4a 2-1-1a +1的值.【答案】-22017.【分析】此题考查了分式的化简求值,先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a 2+2a -2016=0进行配方,得到a +1 2=2017的值,再把它整体代入即可求出答案,解题的关键是熟练掌握分式化简的步骤.【详解】解:由a 2+2a -2016=0可得(a +1)2=2017,a 2-2a +1a 2+5a +4×a +4a 2-1-1a +1=(a -1)2a +1 a +4 ×a +4a -1 a +1-1a +1,=a -1(a +1)2-1a +1,=-2(a +1)2,=-22017.25(2024·全国·八年级竞赛)先化简,再求值:x 2-1x 2+x÷x +1x -2 ,其中x =2.【答案】1x -1,2+1【分析】本题考查了分式的混合运算以及分母有理化,解答时,先进行分式运算,再代入求值即可.【详解】解:x 2-1x 2+x÷x +1x -2 =x -1 x +1 x x +1 ÷x 2+1-2x x =x +1 x -1x x +1÷x -12x =x +1 x -1 x x +1 ⋅x x -1 2=1x -1,当x =2时,原式=12-1=2+1.26(2024·全国·八年级竞赛)如图1,有一个高为hcm 的瓶子,瓶中水面的高度为acm ,盖好瓶盖后倒置,这时瓶中水面的高度为bcm ,如图2,用代数式表示瓶中水的体积与瓶子容积之比;当a =9,b =15,h =21时,求出这个比值.【答案】a a +h -b ,35【分析】此题考查圆柱体体积的应用,解题的关键是理解掌握“转化”的思想方法在推导过程中的应用.根据“瓶子容积等于正放时水的体积加倒放时空白的体积”,即可列式;瓶子容积等于正放时水的体积加倒放时空白的体积,即底面积×9+底面积×21-15 ,也就是底面积×15;水的体积为底面积×9,即可得到答案.【详解】解:瓶子容积等于正放时水的体积加倒放时空白的体积,设瓶子的底面积为S ,即Sa +S h -b ;水的体积为Sa ,∴瓶中水的体积与瓶子容积之比为Sa Sa +S h -b=aa +h -b ,∵瓶子的容积=底面积×9+底面积×21-15 =底面积×15,水的体积=底面积×9,∴瓶中水的体积:瓶子容积=(底面积×9):(底面积×15)=35,答:这个比值是35.27(2024·全国·八年级竞赛)(1)求证:1+1n 2+1(n +1)2=1+1n 2+n2;(2)计算:1+112+122+1+122+132+⋯+1+120162+120172.【答案】(1)证明见解析(2)201620162017【分析】本题主要考查了分式的化简求值,数字规律的运算;对于(1),先将等式左边通分,再根据完全平方公式整理可得答案;对于(2),先根据(1)整理得1+1n 2+1n +1 2=1+1n n +1 =1+1n -1n +1,再计算加减即可得出答案.【详解】(1)解:1+1n 2+1n +12=n 2n +1 2+n +1 2+n 2n 2n +1 2=n 2n +1 2+2n n +1 +1n 2n +1 2=n n +1 +1n n +12=1+1n 2+n2;(2)由(1)可知1+1n 2+1n +1 2=1+1n n +1=1+1n -1n +1,则原式=1+11-12+1+12-13+1+13-14+⋯+1+12016-12017=1×2016+1-12017=201620162017.28(2024·全国·八年级竞赛)(1)计算24×13-4×18×(2015-2016)0;(2)先化简,再求值:x 2-y 2x 2-2xy +y 2+xy -x÷y 2x 2-xy,其中x 、y 满足x +1+(y -3)2=0.【答案】(1)2(2)化简得:x y ;原式=33【分析】本题考查有理数的运算和分式的化简求值,熟练掌握二次根式的运算和正确化简分式是解题的关键,(1)根据二次根式的运算法则和零指数幂即可得到结果;(2)直接利用括号里面因式分解进行化简,再利用分式乘除运算法则化简,再根据二次根式、绝对值的性质得出x 、y 的值,进行代入求出答案.【详解】解:(1)原式=26×33-4×24×1=22-2=2;(2)原式=x -y x +y x -y2+x y -x ×x x -y y 2=x +y x -y -xx -y×x x -y y 2=yx -y ×x x -y y 2=x y.∵x +1+(y -3)2=0,∴x -1=0,y -3=0,∴x =1,y =3,故原式=x y =13=33.29(2024·全国·七年级竞赛)已知a 、b 、c 均为大于1的正整数,且1a <1b <1c ,1a +1b +1c -1abc为正整数.求a +b +c 的值.【答案】10【分析】本题考查异分母分式的加减,先得出1<1a +1b+1c <3c ,求出c =2,进而得出a =4或5,当a =4,b =3,c =2时,1a +1b +1c -1abc =2524(舍).当a =5,b =3,c =2时,1a +1b +1c -1abc=1,进而可得出答案.【详解】解:因为1a +1b +1c -1abc 为正整数,且a 、b 、c 为大于1的正整数,1a <1b <1c ,所以1<1a +1b+1c <3c ,得1<c <3,所以c =2,∴1a +1b >1-1c =12,得12<1a +1b <2b ,所以c <b <4,∴b =3.∴1a >1-1b -1c =16,得b <a <6,所以a =4或5,当a =4,b =3,c =2时,1a +1b +1c -1abc =2524(舍).当a =5,b =3,c =2时,1a +1b+1c -1abc=1,所以a +b +c =5+3+2=10.30(2024·全国·八年级竞赛)如果a 、b 、c 是不同的实数,且a 3+3a +15=b 3+3b +15=c 3+3c +15=0,求1a +1b+1c 的值.【答案】-15【分析】本题考查分式的求值,根据a 3+3a +15=b 3+3b +15=c 3+3c +15=0,得到a 、b 、c 都是方程x 3+3x +15=0的根,进而得到x 3+3x +15=x -a x -b x -c ,推出abc =-15,ab +bc +ac =3,即可得出1a +1b+1c 的值.解题的关键是得到x 3+3x +15=x -a x -b x -c .【详解】解:1a +1b +1c =ac +bc +acabc,∵a 、b 、c 是不同的实数,且a 3+3a +15=b 3+3b +15=c 3+3c +15=0,∴a 、b 、c 都是方程x 3+3x +15=0的根.∴x 3+3x +15=x -a x -b x -c ,∴abc =-15,ab +bc +ac =3.∴1a +1b+1c =3-15=-15.31(2024·全国·八年级竞赛)求值:12+13+14+15+1⋯+12007+11+11+13+14+15+1⋯+【答案】1【分析】本题考查了繁分式的计算,设1+13+14+1⋯+12007=x ,变形计算即可.【详解】解:设1+13+14+1⋯+12007=x ,则原式=11+x +11+1x=11+x +x x +1=1+x1+x =1.32(2024·全国·八年级竞赛)设a ,b ,c 都是实数,若(a -2b +c )2+(a -2c +b )2+(b -2a +c )2=(a -b)2+(b-c)2+(c-a)2,求分式2ab2+7(2ab+6)2bc2+7(bc+3)的值.【答案】2【分析】本题主要考查了分式化简求值,解题的关键是熟练掌握分式的性质.设a-b=x,b-c=y,c-a =z,得出x2+y2+z2-2xy-2yz-2zx=0①,x+y+z2=x2+y2+z2+2xy+2yz+2zx=0②,由①+②得x2+y2+z2=0,求出x=y=z=0,则a=b=c,代入进行变形求值即可.【详解】解:设a-b=x,b-c=y,c-a=z,由已知得:(x-y)2+(y-z)2+(z-x)2=x2+y2+z2,故x2+y2+z2-2xy-2yz-2zx=0,①又x+y+z=a-b+b-c+c-a=0,故x+y+z2=x2+y2+z2+2xy+2yz+2zx=0,②①+②得x2+y2+z2=0,故x=y=z=0,则a=b=c,∴原式=22a3+7a2+32a3+7a2+3=2.。
初中数学竞赛题库-有理数的运算二、填空题1、 (-7)7)71(71⨯-÷⨯=________。
2、 199719972000200020001997⨯-⨯=_________.3、 |79||91||79||91|-+-+-+的负倒数是_________。
4、 如果x =3,y=—1,则表达式333)(yx y x ++的值是________ 。
5、 322)211(35)3(7-+--÷=____________。
6、 若0,0≠≠b a ,且0)(21122=++++b a b a b a ,那么ba 的值是_______。
7、 计算:199720002000-200019971997=____________.8、 计算:19197676767676191919-=______________. 9、 已知a <0,且|a |x a ≤,则|2x —6|—|x -2|的最小值是_________。
10、 某小组共有7名学生,在一次“俯卧撑”测试中他们分别作了18,20,19,16,14,22,17个,这7个学生平均做“俯卧撑”的个数是_______。
11、 某商店选用每千克28元的甲种糖块3千克,每千克20元的乙种糖块2千克,每千克12元的丙种糖块5千克混合成杂拌糖出售,那么这种杂拌糖每千克的售价应不低于________ 元。
12、 有下列6个有理数:—1,3,—20,7,—20。
7,3。
5,7.8,-12.9,13.7,他们两两之差的绝对值最大的等于______________ 。
13、 |-1|—|—2|+(—3)-(—4)+|—5|—(-6)=____________.14、 a ,b 为整数,且满足|a —b|+|ab |=2,则ab =_______.15、 若有理数x ,y 满足2001(x -1)2+|x -12y +1|=0,则x 2+y 2=________。
2005 年第 20 届江苏省初中数学比赛试卷(初三第 2 试)一、选择题(共8 小题,每题8 分,满分 64 分)1.( 8 分)定义运算符号“﹡”的意义为:a﹡b=(此中a、b均不为0).下边有两个结论:( 1)运算“﹡”知足互换律;(2)运算“﹡”知足联合律.此中()A .只有( 1)正确B.只有( 2)正确C.(1)和( 2)都正确D.( 1)和( 2)都不正确2.( 8 分)下边有4 个正整数的会合:(1) 1~ 101 中 3 的倍数;(2) 1~ 101 中 4 的倍数;(3) 1~ 101 中 5 的倍数;( 4) l~ 101 中 6 的倍数.此中均匀数最大的会合是()A .( 1)B .(2)C.( 3)D.( 4)3.( 8 分)下边有3 个结论:(1)存在两个不一样的无理数,它们的差是整数;(2)存在两个不一样的无理数,它们的积是整数;(3)存在两个不一样的非整数的有理数,它们的和与商都是整数.此中正确的结论有()A .0 个B .1 个C. 2 个D. 3 个4.( 8 分)假如△ ABC 的两边长分别为a、 b,那么△ ABC 的面积不行能等于()2 2 2 2)C.( a+b)2A .( a +b )B .( a +b D. ab25.( 8 分)假如 m、n 是奇数,对于 x 的方程 x +mx+n= 0 有两个实数根,则其实根的状况是()A.有奇数根,也有偶数根B.既没有奇数根也没有偶数根C.有偶数根,没有奇数根D.有奇数根,没有偶数根6.( 8 分)如图, AB 为⊙ O 的直径,诸角p,q, r, s 之间的关系(1) p= 2q;( 2) q= r;( 3) p+s= 180°中,正确的选项是()A .只有( 1)和( 2)B.只有( 1)和( 3)C.只有( 2)和( 3)D.( 1),( 2)和( 3)7.( 8 分)有 6 个量杯 A、B、C、D、E、F ,它们的容积分别是16 毫升、 18 毫升、 22 毫升、23 毫升、 24 毫升和 34 毫升.有些量杯中注满了酒精,有些量杯中注满了蒸馏水,还剩下一个空量杯,而酒精的体积是蒸馏水体积的两倍.那么注满蒸馏水的量杯是()A .B、 DB .D 、E C. A、E D. A、C8.( 8 分)如图,表示暗影地区的不等式组为()A .B.C.D.二、填空题(共8 小题,每题8 分,满分 64 分)9.( 8 分)若 a, b,c 是△ ABC 三边,则=.10 .( 8 分)如图, DC ∥ AB ,∠ BAE =∠ BCD , AE ⊥ DE ,∠ D = 130 °,则∠ B =度.11.( 8 分)同时掷出七颗骰子后,向上的七个面上的点数的和是10 的概率与向上的七个面的点数的和是 a ( a≠ 10)的概率相等,那么 a=.213.(8 分)如图,已知直角坐标系中四点A(﹣ 2,4),B(﹣ 2,0),C( 2,﹣ 3),D( 2,0)、设 P 是 x 轴上的点,且PA、PB、 AB 所围成的三角形与PC、PD 、CD 所围成的三角形相像,请写出所有切合上述条件的点P 的坐标:.14.( 8 分)已知 R、x、y、z 是整数,且 R> x> y> z,若 R、x、y、z 知足方程R x y z)16( 2 +2 +2 +2= 330,则 R=.15.( 8 分)以下图,在斜坡的顶部有一铁塔AB, B 光的照耀下,塔影DE 留在坡面上.已知铁塔底座宽明和小华的身高都是 1.6 米,同一时刻,小明站在点地上,影子也在平川上,两人的影长分别为 2 米和是 CD 的中点, CD 是水平的,在阳 CD = 12 米,塔影长 DE = 18 米,小E处,影子在坡面上,小华站在平1 米,那么塔高AB 为米.16.( 8 分)设 2005 的所有不一样正约数的积为a,a 的所有不一样正约数的积为b,则 b=.三、解答题(共 4 小题,满分52 分)17.( 13 分)某仓储系统有20 条输入传递带, 20 条输出传递带.某日,控制室的电脑显示,每条输入传递带每小时进库的货物流量如图(1),每条输出传递带每小时出库的货物流量如图( 2),而该日库房中原有货物8 吨,在 0 时至 5 时,库房中货物存量变化状况如图( 3),则在 0 时至 2 时有多少条输入传递带和输出传递带在工作在 4 时至 5 时有多少条输入传递带和输出传递带在工作?18.( 13 分)已知直角三角形ABC 和 ADC 有公共斜边AC ,M、N 分别是 AC,BD 中点,且M、 N 不重合.(1)线段 MN 与 BD 能否垂直?请说明原因;(2)若∠ BAC= 30°,∠ CAD= 45°, AC= 4,求 MN 的长.19.( 13 分)已知x、 y 为正整数,且知足xy﹣(x+y )= 2p+q,此中 p、 q 分别是 x 与 y 的最大条约数和最小公倍数,求所有这样的数对(x,y )(x≥y).20.( 13 分)若干个1 和 2 排成一行: 1, 2, 1, 2, 2, 1, 2, 2,2, 1, 2, 2, 2,2,,其规则是:第一个数是 1,第二个数是 2,第三个数是 1.一般地,先写一行 1,再在第 k 个 1 与第 k+1 个 1 之间插入 k 个 2( k=1,2,3,).试问:(1)第 2007 个数是 1 仍是2?( 2)前2007 个数的和是多少?2005 年第 20 届江苏省初中数学比赛试卷(初三第 2 试)参照答案与试题分析一、选择题(共8 小题,每题8 分,满分 64 分)1.( 8 分)定义运算符号“﹡”的意义为:a﹡b=(此中a、b均不为0).下边有两个结论:( 1)运算“﹡”知足互换律;(2)运算“﹡”知足联合律.此中()A .只有( 1)正确B.只有( 2)正确C.(1)和( 2)都正确D.( 1)和( 2)都不正确【剖析】本题可依照题意进行剖析,a﹡ b=(此中a、 b 均不为0).可平等号右边的式子形式进行变换.【解答】解: a﹡ b===,所以得运算“﹡”知足互换律,故( 1)正确;又∵( a﹡ b)﹡ c=*c,=,a﹡( b﹡ c)= a*,=,∴( a﹡ b)﹡ c≠a﹡( b﹡c)∴结论( 2)不必定建立.应选: A.【评论】本题考察有理数的运算,联合题中给出的新观点,进行剖析即可.2.( 8 分)下边有4 个正整数的会合:(1) 1~ 101 中 3 的倍数;(2) 1~ 101 中 4 的倍数;( 3) 1~ 101 中 5 的倍数;( 4) l~ 101 中 6 的倍数.此中均匀数最大的会合是()A .( 1)B .(2)C.( 3)D.( 4)【剖析】分别列出切合( 1)、( 2)、( 3)、( 4)条件的正整数会合,而后分别求出它们的均匀数,最后比较一下,找出均匀数最大的会合.【解答】解:∵每一个正整数会合中所包括的数的均匀数是第一个数与最后一个数的和的一半,∴( 1) 1~ 101 中 3 的倍数的正整数会合是 {3 、 6、9、 12 99} 的均匀数是= 51 ( 2) 1~ 101 中 4 的倍数的正整数会合是{4 、 8、 12、 16 100} 的均匀数是= 52 ( 3)1~ 101 中 5 的倍数的正整数会合是{5 、10、15、20 100} 的均匀数是= 52.5 ( 4) l~ 101 中 6 的倍数的正整数会合是{6 、 12、 18、 24 96} 的均匀数是= 51 综上所述, 51=51< 52<52.5,即( 1)=( 4)<( 2)<( 3);应选: C.【评论】解答本题的难点是找出每一个正整数会合的均匀数的计算公式.3.( 8 分)下边有3 个结论:(1)存在两个不一样的无理数,它们的差是整数;(2)存在两个不一样的无理数,它们的积是整数;(3)存在两个不一样的非整数的有理数,它们的和与商都是整数.此中正确的结论有()A .0 个B .1 个C. 2 个D. 3 个【剖析】( 1)+1 和﹣1,差为2,正确;( 2)与﹣积为﹣2,正确;( 3)与,和与商分别为2, 5,正确.【解答】解:( 1)存在,+1 和﹣1;( 2)存在,与﹣;( 3)存在,与,应选: D .4.( 8 分)假如△ ABC 的两边长分别为a、 b,那么△ ABC 的面积不行能等于()2 2 2 2)C.( a+b)2D. abA .( a +b )B .( a +b【剖析】因为是随意三角形,故需用含三角函数的式子表示三角形的面积,即 S△ABC=absinC,那么当∠ C= 90°时,△ ABC 的面积最大,且最大值是ab,再联合完整平方公式( a﹣ b)2≥ 0,可得ab≤( a2+b2),再联合每一个选项,经过计算即可判断.【解答】解:∵△ ABC 的两边长时a、 b,∴S△ABC= absinC,当∠ C= 90°时,△ ABC 的面积最大,且S△ABC=ab,又∵( a﹣ b)2≥ 0,即ab≤(a 2+b2),2 2A、∵ S=( a +b ),故此选项可能;B、∵2 2 2 2),( a +b )>( a +b故此选项不行能;C、∵2 2 2) + ab] ≥ ab,(a+b)= [ ( a +b故此选项可能;D 、∵ab<ab,故此选项可能.应选: B.【评论】本题考察了三角形面积公式、三角形函数值、完整平方公式、不等式的计算.解答本题的重点是用含三角函数值的式子表示三角形的面积.2A.有奇数根,也有偶数根B.既没有奇数根也没有偶数根C.有偶数根,没有奇数根D.有奇数根,没有偶数根【剖析】依据两根之和为﹣ m,两根之积为 n,分类判断两个根均为整数,和一个根为整数的状况与所给条件能否切合即可.【解答】解:∵两个数的和是﹣ m 是奇数,积是 n 是奇数,①若两数都是整数,由积是奇数可得两数都是奇数,∴和是偶数,与﹣ m 奇数矛盾;②如有一个是整数,那么和﹣m 必定不是整数,与m 是奇数矛盾;∴只可能都不是整数.应选: B.【评论】考察依据一元二次方程根与系数的关系判断整数解的状况;依据根的不一样状况分类商讨是解决本题的打破点.6.( 8 分)如图, AB 为⊙ O 的直径,诸角p,q, r, s 之间的关系(1) p= 2q;( 2) q= r;( 3) p+s= 180°中,正确的选项是()A .只有( 1)和( 2)B.只有( 1)和( 3)C.只有( 2)和( 3)D.( 1),( 2)和( 3)【剖析】由图知: q 与∠ A 是等腰三角形的底角,所以q=∠ A,依据圆周角定理可得:q=r=∠ A,p=r +q= 2q,故( 1)(2)正确;由圆内接四边形的对角互补知,∠A+s=180°,故( 3)不正确.【解答】解:∵ q=∠ A, r=∠ A;∴ r = q;∵p=2∠A,∴p=2q.所以(1)(2)正确.∵∠ A+s= 180°, p= 2∠ A;【评论】本题考察等腰三角形的性质、圆周角定理、圆内接四边形的性质等知识的应用能力.7.( 8 分)有 6 个量杯 A、B、C、D、E、F ,它们的容积分别是16 毫升、 18 毫升、 22 毫升、23 毫升、 24 毫升和 34 毫升.有些量杯中注满了酒精,有些量杯中注满了蒸馏水,还剩下一个空量杯,而酒精的体积是蒸馏水体积的两倍.那么注满蒸馏水的量杯是()A .B、 DB .D 、E C. A、E D. A、C【剖析】将 6 个数去掉一个数,将其他数分别组合相加,直到发现一组数据的和是另一组数据和的 2 背即可.【解答】解:在 6 个数中,24+34+18 = 2×( 16+22 ),可见, D 杯为空杯,A、C 杯中为蒸馏水.应选: D .【评论】本题考察了推理与论证问题,将原题转变为数字的和与倍数的问题是解题的基本思路,将数字正确组合是解题的重点.8.( 8 分)如图,表示暗影地区的不等式组为()A .B.C.D.【剖析】依据图形即可判断暗影部分是由x= 0, y=﹣ 2x+5 , y=﹣x+三条直线围起来的地区,再依据一次函数与一元一次不等式的关系即可得出答案.【解答】解:∵ x≥ 0 表示直线x= 0 右边的部分,2x+y≤ 5 表示直线y=﹣ 2x+5 左下方的部分, 3x+4 y≥ 9 表示直线 y=﹣x+右上方的部分,故依据图形可知:知足暗影部分的不等式组为:.应选: D .【评论】本题考察了一次函数与一元一次不等式,属于基础题,重点是依据图形利用一次函数与一元一次不等式的关系正确解答.二、填空题(共8 小题,每题8 分,满分 64 分)9.( 8 分)若 a,b,c 是△ ABC 三边,则=a+b+c.【剖析】本题可依据三角形的三边关系“随意两边之和大于第三边,随意两边之差小于第三边”,判隔离对值内和根号内的底数的式子的符号,再进一步依据二次根式和绝对值的性质进行化简.【解答】解:∵ a, b, c 是△ ABC 三边,∴ a﹣ b﹣ c< 0,b﹣ c﹣ a< 0, c﹣ a﹣ b< 0.∴=b+c﹣a+c+a﹣ b+a+b﹣ c=a+b+c.【评论】本题考察了二次根式的化简、绝对值的化简和三角形的三边关系.10.( 8 分)如图,D C ∥ AB ,∠ BAE =∠ BCD , AE⊥ DE ,∠ D= 130°,则∠B=40度.【剖析】可连结 AC ,得出 AE∥ BC,从而利用同旁内角互补求解∠ B 的大小.【解答】解:如图,连结AC∵ AB∥ CD ,∴∠ DCA=∠ BAC,又∠ BAE=∠ BCD ,∴∠ EAC=∠ ACB,∴ AE∥ BC,在四边形 ACDE 中,∠ D = 130°,∠ E = 90°,∴∠ EAC+∠ ACD =140°,即∠ EAB =140°,又∠ B+∠ EAB = 180°,∴∠ B = 40°.故应填 40.【评论】 掌握多边形的内角和,能够利用平行线的性质求解一些简单的计算问题.11.( 8 分)同时掷出七颗骰子后,向上的七个面上的点数的和是10 的概率与向上的七个面的点数的和是 a ( a ≠ 10)的概率相等,那么a = 39 .【剖析】 先算出 7 个骰子 7 对正反面的总和,正面向上的概率和反面向上的概率相等,减去 10 即为 a 的值.【解答】 解:∵骰子的正反面加起来为7,∴ 7 个骰子 7 对正反面的总和是 7× 7= 49;∴反面和= 49﹣正面和 10= 39即 a =39,故答案为 39.【评论】考察推理与论证; 用到的知识点为: 正面向上的概率与相对面向上的概率相等.12.( 8 分)方程 2= 0 的正整数解( x , y )共有4 对.2x ﹣ xy ﹣ 3x+y+2006【剖析】 要求方程 2x 2﹣ xy ﹣ 3x+y+2006 = 0 的正整数解( x ,y )得对数,第一要化简,而后分状况进行议论,由 2x 2﹣ xy ﹣ 3x+y+2006 = 0,可化为( x ﹣ 1)(y+1﹣ 2x )= 2005= 5× 401,而后分状况议论便可求解.【解答】 解: 2x 2﹣ xy ﹣ 3x+y+2006= 0,∴﹣ 2x 2+xy+2x+x ﹣ y = 2006∴( 2x ﹣ 2x 2) +( xy ﹣y ) +( x ﹣1)= 2006﹣ 1,∴﹣ 2x ( x ﹣ 1) +y ( x ﹣ 1) +(x ﹣ 1)= 2005,∴( x ﹣1)( y+1﹣ 2x )= 2005= 5× 401当① x﹣ 1= 1, y+1﹣2x= 2005,即( x,y)=( 2,2008 )当② x﹣ 1= 5, y+1﹣2x= 401,即( x,y)=( 6,412)当③ x﹣ 1= 401, y+1﹣ 2x= 5,即( x,y)=( 402, 808)当④ x﹣ 1= 2005, y+1﹣ 2x= 1,即( x,y)=( 2006, 4012).故答案为 4 对【评论】这道题考察了一元二次方程的整数根与有理根,以及等式的化简,同学们应娴熟掌握.13.(8 分)如图,已知直角坐标系中四点A(﹣ 2,4),B(﹣ 2,0),C( 2,﹣ 3),D( 2,0)、设 P 是 x 轴上的点,且PA、PB、 AB 所围成的三角形与PC、PD 、CD 所围成的三角形相像,请写出所有切合上述条件的点P 的坐标:(,0),( 14,0),( 4,0),(﹣ 4,0).【剖析】本题需要分状况剖析,当点 P 在 AB 左侧,在 AB 与 CD 之间,在 CD 的右边,经过相像三角形的性质:相像三角形的对应边成比率即可求得.【解答】解:设 OP= x( x> 0),分三种状况:一、若点P 在 AB 的左侧,有两种可能:①此时△ ABP∽△ PDC,则 PB: CD= AB: PD,则( x﹣2): 3=4:( x+2)解得 x=4,∴点 P 的坐标为(﹣4,0);②若△ ABP∽△ CDP,则 AB: CD =PB: PD,则(﹣ x﹣ 2):(2﹣ x)= 4:3解得: x= 14,与假定在 B 点左侧矛盾,舍去.二、若点P 在 AB 与 CD 之间,有两种可能:①若△ ABP∽△ CDP,则 AB: CD =BP: PD,∴4: 3=( x+2):( 2﹣ x)解得: x=,∴点 P 的坐标为(, 0);②若△ ABP∽△ PDC,则 AB: PD = BP:CD ,∴4:(2﹣ x)=( x+2 ): 3,方程无解;三、若点P 在 CD 的右边,有两种可能:①若△ ABP∽△ CDP,则 AB: CD =BP: PD,∴4: 3=( 2+x):( x﹣ 2),∴x= 14,∴点 P 的坐标为( 14, 0),②若△ ABP∽△ PDC,则 AB: PD = BP:CD ,∴4:(x﹣ 2)=( x+2 ): 3,∴x= 4,∴点 P 的坐标为( 4, 0);∴点 P 的坐标为(,0)、(14,0)、(4,0)、(﹣4,0).【评论】 本题考察相像三角形的性质.解题的重点是数形联合思想的应用.注意分类讨论,当心别漏解.R x y z14.( 8 分)已知 R 、x 、y 、z 是整数, 且 R > x > y > z ,若 R 、x 、y 、z 知足方程 16( 2 +2 +2 +2 ) = 330,则 R = 4 .Rx yzR +3x+3y+3 z+3【剖析】 先依据 16(2+2 +2 +2 )= 330 可得 2 +2 +2 +2 = 165,再依据 R , x ,y , z 是整数,且 R > x > y > z , 2 n( 0 除外)均为偶数,可得2R +3、 2x+3、2y+3、 2z+3 中必有一个为 1,即 z =﹣ 3,由 z =﹣ 3 可知 2R +1x+1y+1+2 +2 = 41,故 y =﹣ 1,同理即可求出【解答】解:由 16( 2R x y z得,+2 +2 +2 )= 330R +3 x+3 y+3 z+32 +2 +2 +2 = 165,∵ R, x, y, z 是整数,且R> x> y> z,n∴2R+3、 2x+3、 2y+3、2z+3中必有一个为 1,则z+3= 0,则 z=﹣ 3,∴2R+3+2x+3+2y+3+2z+3= 165,∴2R+1+2x+1+2y+1= 41,∴y+1 =0, y=﹣ 1,∴2R+1+2x+1= 40,R x∴2 +2 = 20,∵ R、 x 是整数,且R>x,4 2∵ 2 +2 =20,∴ R= 4.故答案为: 4.【评论】本题考察的是一元二次方程的整数根与有理根,能依据题意得出z=﹣ 3 是解答本题的重点.15.( 8 分)以下图,在斜坡的顶部有一铁塔AB, B 是 CD 的中点, CD 是水平的,在阳光的照耀下,塔影DE 留在坡面上.已知铁塔底座宽CD = 12 米,塔影长DE = 18 米,小明和小华的身高都是 1.6 米,同一时刻,小明站在点 E 处,影子在坡面上,小华站在平地上,影子也在平川上,两人的影长分别为 2 米和 1 米,那么塔高AB 为24米.【剖析】本题的重点是认真察看图形,理解铁塔AB 的影子是由坡面DE 与平川 BD 两部分构成.塔影落在平川部分的塔高:塔影BD 长=小华的身高:小华的影长.设塔影留在坡面DE 部分的塔高为h1、塔影留在平川BD 部分的塔高为h2,则铁塔的高为 h1+h2.【解答】解:过 D 点作 DF ∥ AE,交 AB 于 F 点,设塔影留在坡面DE 部分的塔高 AF= h1、塔影留在平川BD 部分的塔高 BF= h2,则铁塔的高为 h1+h2.∵h1: 18m=1.6m: 2m,∴ h1= 14.4m;∵h2: 6m= 1.6m:1 m,∴ h2=9.6m.∴ AB= 14.4+9.6 = 24(m).∴铁塔的高度为 24m.故答案为: 24.【评论】解决本题的难点是把塔高的影长分为在平川和斜坡上两部分;重点是利用平川和斜坡上的物高与影长的比获得相应的部分塔高的长度.16(. 8 分)设 2005 的所有不一样正约数的积为a,a 的所有不一样正约数的积为b,则 b=9.2005【剖析】由 2005= 1× 5× 401,可得其不一样的正约数为:1,5,401,2005 ,从而 a= 1×5× 401× 2005 =5× 5× 401× 401,可得 a 的不一样正约数为: 1,5,25,401,2005 ,10025,160801, 804005, 4020025,从而可求出 b 的值.【解答】解:∵ 2005= 1×5× 401,∴其不一样的正约数为:1,5, 401, 2005,∴a= 1× 5× 401× 2005=5× 5× 401× 401,∴a 的不一样正约数为: 1,5, 25,401, 2005, 10025, 160801 ,804005,4020025,∴b= 1× 5× 25× 401× 2005× 10025× 160801× 804005× 4020025= 20059.故答案为: 20059.【评论】本题考察了最大条约数,难度较大,重点是正确的找出 a 的不一样正约数.三、解答题(共 4 小题,满分52 分)17.( 13 分)某仓储系统有20 条输入传递带, 20 条输出传递带.某日,控制室的电脑显示,每条输入传递带每小时进库的货物流量如图(1),每条输出传递带每小时出库的货物流量如图( 2),而该日库房中原有货物8 吨,在 0 时至 5 时,库房中货物存量变化状况如图( 3),则在 0 时至 2 时有多少条输入传递带和输出传递带在工作在 4 时至 5 时有多少条输入传递带和输出传递带在工作?【剖析】依据题意列出二元一次方程13x﹣15y= 2 和 12+13x﹣ 15y= 0,并依据 x,y 的取值范围( x≤ 20,y≤ 20,且都是正整数)可得出对应的答案.【解答】解:设在 0 时至 2 时内有 x 条输入传递带和y 条输出传递带在工作,则13x﹣15y = 2,因为 x≤ 20, y≤ 20,且都是正整数,所以x= 14,y= 12;设在 4 时至 5 时内有 x 条输入传递带和y 条输出传递带在工作,则12+13x﹣ 15y= 0,因为 x≤ 20, y≤ 20,且都是正整数,所以x= 6, y=6;所以在 0 时至 2 时内有 14 条输入传递带和12 条输出传递带在工作;在 4 时至 5 时内有 6 条输入传递带和 6 条输出传递带在工作.【评论】主要考察了函数的图象的应用,解题的重点是依据图象获得有关的信息,依据题意列出方程,联合未知数的实质意义求解.18.( 13 分)已知直角三角形ABC 和 ADC 有公共斜边 AC ,M、N 分别是 AC,BD 中点,且M、 N 不重合.(1)线段 MN 与 BD 能否垂直?请说明原因;(2)若∠ BAC= 30°,∠ CAD= 45°, AC= 4,求 MN 的长.【剖析】( 1)依据题意画出图形,再作出协助线构成等腰三角形,利用等腰三角形的性质进行证明;(2)注意要分二种状况议论:即 B、 D 在 AC 双侧和 B、D 在 AC 同侧.【解答】解:( 1)线段 MN 与 BD 垂直.第 17 页(共 21 页)MB=,MD=,所以MB=MD.三角形 MBD 中, N 是底边上的中点,等腰三角形的性质能够说明:MN 垂直 BD .(2)如图一:连结 BM 、MD ,延伸 DM ,过 B 作 DM 延伸线的垂线段 BE,∵ M 是 AC 的中点,∴ MD ⊥ AC,△ BCM 是等边三角形,∴在 Rt△ BEM 中,∠ EMB= 30°,∵AC= 4,∴ BM = 2,∴ BE= 1, EM=,MD=2,从而可知BD==2∴ BN=.由Rt△BMN 可得:MN ==.如图二:连结BM、 MD ,延伸 AD ,过 B 作垂线段BE,∵M、 N 分别是 AC,BD 中点,∴ MD = AC, MB AC,∴MD = MB ,∵∠ BAC= 30°,∠ CAD =45°,∴∠ BMC = 60°,∠ DMC =90°,∴∠ BMD = 30°,∴∠ BDM == 75°,∵∠ MDA = 45°∴∠ EDB= 180°﹣∠ BDM ﹣∠ MDA = 60°,令 ED = x,则 BE=x,AD= 2 , AB= 2 ,∴由 Rt△ ABE 可得:( 2 )2=(x)2+( x+2 )2,解得 x=,则 BD= 2 ,∵ M、 N 分别是 AC,BD 中点,∴ MD = 2DN=.由Rt△MND 可得:MN ==.【评论】本题综合考察了等腰三角形的性质和解直角三角形的方法,同时考察了分类议论思想.19.( 13 分)已知x、 y 为正整数,且知足xy﹣(x+y )= 2p+q,此中 p、 q 分别是 x 与 y 的最大条约数和最小公倍数,求所有这样的数对(x,y )(x≥y).【剖析】本题需分类议论,①当 x 是 y 的倍数时,设 x= ky( k 是正整数).解方程 k( y ﹣2)= 3;②当 x 不是 y 的倍数时,令 x= ap, y=bp, a,b 互质,则 q= abp.解方程abp﹣ 1=( a﹣ 1)( b﹣ 1)即可.【解答】解:①当 x 是 y 的倍数时,设x= ky( k 是正整数).则由原方程,得ky?y﹣( ky+y)= 2y+ky,∵y≠ 0,∴ky﹣( k+1)= 2+k,∴k( y﹣2)= 3,当k= 1 时, x= 5,y= 5;当k= 3 时, x= 9,y= 3;∴,;②当 x 不是 y 的倍数时,令x= ap, y= bp, a, b 互质,则 q= abp,代入原式得: abp 2﹣( ap+bp)= 2p+abp,即 abp﹣ 1=( a+1)( b+1)当p=1 时, a+b=﹣ 2,可求得 a=﹣ 1, b=﹣ 1,此时不知足条件;当p>1 时, abp≥ 2ab﹣ 1= ab+( ab﹣ 1)≥ ab>( a﹣1)( b﹣ 1)此时, abp﹣ 1=( a﹣ 1)(b+1)不知足条件;综上所述,知足条件的数对有:,.【评论】本题主要考察的是最大条约数与最小公倍数.因为两个数的乘积等于这两个数的最大条约数与最小公倍数的积.即(a,b)× [a,b] = a× b.所以,求两个数的最小公倍数,就能够先求出它们的最大条约数,而后用上述公式求出它们的最小公倍数.20.( 13 分)若干个 1 和 2 排成一行: 1, 2, 1, 2, 2, 1, 2, 2,2, 1, 2, 2, 2,2,,其规则是:第一个数是 1,第二个数是 2,第三个数是 1.一般地,先写一行 1,再在第 k 个 1 与第 k+1 个 1 之间插入k 个 2( k=1,2,3,).试问:(1)第 2007 个数是 1 仍是2?( 2)前 2007 个数的和是多少?【剖析】( 1)依据规则可知第n﹣ 1 行共有数字个数为2+3+4+ +n=,因为n= 63 时,数字个数为2015 个,从而得出第2007 个数;(2)察看数的摆列可知每行有一个1,其他都是 2,得出前 2007 个数中 1 的个数和 2 的个数.【解答】解:( 1)摆列规律以下:1 行 122 行 1223 行 12224 行 12222n 行∴到第 n﹣ 1 行共有数字个数为2+3+4+ +n=∵ n= 63 时,数字个数为2015 个,即第 62 行结束时共有2015 个数字且该行有63 个数字,∴第 2007 个数是 2.(2)前 2007 个数字中共有 62 个 1,其他所有是 2.∴前 2007 个数的和是: 62× 1+( 2007﹣ 62)× 2= 3952【评论】本题考察了规律型:数字的变化,解题的重点是得出每行有一个1,其他都是2,第 20 页(共 21 页)而且 2 的个数为公差为 1 的等差数列.第 21 页(共 21 页)。
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. -3.5B. √4C. 0.1D. π2. 下列运算中,正确的是()A. (-2)×(-3)=-6B. (-2)×3=6C. (-2)÷(-3)=2/3D. (-2)÷3=-2/33. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 长方形C. 平行四边形D. 正方形4. 在直角坐标系中,点A(-1,2)关于y轴的对称点是()A. (1,2)B. (-1,-2)C. (-1,-2)D. (1,-2)5. 下列代数式中,同类项是()A. 3a^2B. 4a^2C. 3a^2 + 2bD. 5a^2 - 2a6. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 5 = 0C. 5x - 10 = 0D. 2x + 3 = 3x7. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°8. 下列各数中,能被3整除的是()A. 123B. 456C. 789D. 2469. 若x + 2 = 5,则x的值是()A. 3B. 4C. 5D. 610. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = k/x (k≠0)D. y = 3x - 5二、填空题(每题5分,共20分)11. 5的倒数是______。
12. 下列分数中,最大的是______。
13. (-3)^2 = ______。
14. 0.125的小数点向右移动两位后是______。
15. 在直角坐标系中,点P(2,3)到原点O的距离是______。
三、解答题(每题10分,共30分)16. 解下列方程:(1)2x - 3 = 7(2)5(x + 2) - 3x = 1617. 在△ABC中,已知AB = 6cm,AC = 8cm,∠BAC = 90°,求BC的长度。
重庆市初中数学竞赛试题一、选择题1. 下列运算中,结果等于零的是()A. 5 ÷ 2 - 1B. 2 + 7 - 2 × 3C. 6 ÷ (2 - 1)D. (2 + 5) × 0.32. 若a、b、c为正整数,且a + b = 75,b + c = 95,c + a = 115,则a +b + c的值为()A. 95B. 105C. 115D. 1253. 用尺测量一段绳子,测得长度为1.3米,所用尺上刻度最大为1厘米,其中准确度最高的测量结果是()A. 0.9米B. 1.2米C. 1.25米D. 1.3米4. 设a,b为正整数,且a + b = 12,a + 2b = 18,则a的值为()A. 3B. 6C. 9D. 125. 若(x - 1)(x - 3) = 0,则x的值为()A. 0B. 1C. 2D. 3二、填空题6. 在刻度尺上,长度为8.2厘米表示成毫米为()毫米。
7. 已知边长为3厘米的正方形面积为()平方厘米。
8. 若两条边长分别为3厘米和4厘米的直角三角形,其斜边长为()厘米。
9. 若3x + 2 = 11,则x = ()。
10. 在(2a - 1) × 5 = 45的等式中,a的值为()。
三、解答题11. 将5升的一桶水倒入容量为2升的瓶子中,剩下的水又倒入另一个容量为3升的瓶子中,问最后每个瓶子里各有多少升水?12. 给定一个直角三角形,已知一条直角边长为6厘米,另一条边长大于直角边2厘米,求斜边的最大可能长度。
13. 将一根长为24厘米的木棍剪成两段,这两段木棍的长度成等差数列,且较短的一段长12厘米,求较长的一段长度。
14. 一根高为20米的旗杆,从旗杆底部看旗面的角度为30°,旗杆顶部向上看旗面的角度为45°,求旗面的面积。
15. 一位运动员训练时,每隔12秒站起一次,每隔16秒躺下一次,若他初始时躺下,问这位运动员在30分钟内总共站起多少次?四、解题步骤和答案11. 解答:首先将5升水倒入2升的瓶子中,剩下3升水。
新初中数学有理数的运算基础测试题及答案解析(1)一、选择题1.国家发改委2020年2月7日紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为( )A .2×710B .2×810C .20×710D .0.2×810【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2亿=200000000=2×108.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.为促进义务教育办学条件均衡,2019年某地区计划投入4200000元资金为该地区农村学校添置实验仪器,4200000这个数用科学记数法表示为( )A .44210⨯B .64.210⨯C .84210⨯D .60.4210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4200000=4.2×106,故选:B .【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A.8×1012B.8×1013C.8×1014D.0.8×1013【答案】B【解析】80万亿用科学记数法表示为8×1013.故选B.点睛:本题考查了科学计数法,科学记数法的表示形式为10na⨯的形式,其中a≤< ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值110与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.5.2018年汕头市龙湖区的GDP总量约为389亿元,其中389亿用科学记数法表示为() A.3.89×1011B.0.389×1011C.3.89×1010D.38.9×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】389亿用科学记数法表示为89×1010.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.温州市2019年一季度生产总值(GDP)为129 800 000 000元.将129 800 000 000用科学记数法表示应为()A.1298×108B.1.298×108C.1.298×1011D.1.298×1012【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】129 800 000 000=1.298×1011,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.和﹣的关系是( )A.互为倒数B.互为相反数C.互为负倒数D.以上都不对【答案】C【解析】【分析】根据相反数及倒数的定义求解.【详解】解:∵×(﹣)=-1,∴和﹣互为负倒数,故选C.【点睛】判断两个式子之间的关系,一般有互为相反数、互为倒数和互为负倒数等几种.8.-3的倒数是()A.13B.3 C.0 D.13【答案】D【解析】【分析】根据倒数的定义判断.【详解】-3的倒数是:1 3 -故选:D【点睛】本题主要考查了倒数的定义,掌握乘积为1的两个有理数互为倒数是解题的关键.9.下列运算正确的是()A.a5⋅a3 = a8B.3690000=3.69×107C.(-2a)3 =-6a3D.02016=0【答案】A【解析】【分析】分别根据同底数幂的乘法,科学记数法,幂的乘方和积的乘方,零指数幂求出每个式子的值,再判断即可.【详解】A、结果是a8,故本选项符合题意;B、结果是3.69×106,故本选项不符合题意;C、结果是-8a3,故本选项不符合题意;D、结果是1,故本选项不符合题意;故选:A.【点睛】此题考查同底数幂的乘法,科学记数法,幂的乘方和积的乘方,零指数幂,能正确求出每个式子的值是解题关键.10.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n﹣2)2互为相反数,∴|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得m=﹣3,n=2,所以,m n=(﹣3)2=9.故选C.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.11.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为()A.1.361×104B.1.361×105C.1.361×106D.1.361×107【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:13610000用科学记数法表示为1.361×107,故选D.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km,把 384 000km 用科学记数法可以表示为()A.38.4 ×10 4 km B.3.84×10 5 km C.0.384× 10 6 km D.3.84 ×10 6 km【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】科学记数法表示:384 000=3.84×105km故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.2019年春节联欢晚会在某网站取得了同时在线人数超34200000的惊人成绩,创下了全球单平台网络直播记录,将数34200000用科学记数法表示为( )A.8⨯D.6⨯3.421034.210⨯C.80.34210⨯B.73.4210【答案】B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将34200000用科学记数法表示为:3.42×107.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.16.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是( )A .1.598×1110B .15.98×1010C .1.598×1010D .1.598×810【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】用科学记数法表示数1598亿是1.598×1011.故选A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108B.5.6×108C.5.6×109D.0.56×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=9.【详解】56亿=56×108=5.6×109,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.18.用科学记数方法表示0.0000907,得()A.490.710-⨯D.790.710-⨯⨯C.69.0710-⨯B.59.0710-【答案】B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10na⨯,可知a=9.07,n=-5,即可求解.故选B【点睛】本题考查科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.19.下列各式成立的是()A.34=3×4 B.﹣62=36 C.()3=D.(﹣)2=【答案】D【解析】【分析】n个相同因数的积的运算叫做乘方.【详解】解:34=3×3×3×3,故A错误;﹣62=-36,故B错误;()3=,故C错误;(﹣)2=,故D正确,故选择D.【点睛】本题考查了有理数乘方的定义.20.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.8⨯D.100.1810⨯1.8101810⨯B.81.810⨯C.9【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1800000000=1.8×109,故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。