5-圆柱的表面积
- 格式:ppt
- 大小:1.44 MB
- 文档页数:19
几何体的表面积和体积公式大全几何体的表面积,体积计算公式1、圆柱体:表面积:2πRr+2πRh 体积:πR²h (R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR²+πR[(h²+R²)的平方根] 体积:πR²h/3 (r为圆锥体低圆半径,h为其高, 3、正方体a-边长,S=6a²,V=a³4、长方体a-长,b-宽,c-高S=2(ab+ac+bc) V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr²,S侧=Ch ,S表=Ch+2S底,V=S底h=πr²h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R²+Rr+r²)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a²+h²)/6 =πh²(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r1²+r2²)+h²]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr²=π2Dd²/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)。
给圆柱的全部公式
圆柱的公式包括:
1.圆柱的体积公式:
圆柱的体积可以用以下公式计算:V = πr^2h,
其中V表示圆柱的体积,r表示圆柱的底面半径,h表示圆柱的高度。
2.圆柱的表面积公式:
圆柱的表面积可以用以下公式计算:A = 2πrh + 2πr^2,
其中A表示圆柱的表面积,r表示圆柱的底面半径,h表示圆柱的高度。
3.圆柱的侧面积公式:
圆柱的侧面积可以用以下公式计算:A = 2πrh,
其中A表示圆柱的侧面积,r表示圆柱的底面半径,h表示圆柱的高度。
4.圆柱的直径公式:
圆柱的直径可以用以下公式计算:d = 2r,
其中d表示圆柱的直径,r表示圆柱的底面半径。
5.圆柱的周长公式:
圆柱的底面周长可以用以下公式计算:C = 2πr,
其中C表示圆柱的底面周长,r表示圆柱的底面半径。
拓展:
1.圆柱的侧面积与底面积之和等于表面积,即A = 2πr(r+h)。
2.圆柱的高度可以通过体积公式V = πr^2h与已知的底面半径r
和体积V求解,即h = V / (πr^2)。
3.圆柱的体积也可以通过表面积公式A = 2πrh + 2πr^2与已知
的底面半径r和表面积A求解,通过移项后可以得出h = (A - 2πr^2) / (2πr)。
4.圆柱表面积公式可以通过圆的周长公式推导得出,即A =
2πr(R+h),其中R表示圆柱上底面的半径。
5.圆柱也可以按照底面形状的不同,分为圆柱体和斜圆柱。
圆柱体的底面是圆形,而斜圆柱的底面是椭圆形。
对应的公式稍有差异,但整体的计算方法类似。
第5篇教学设计一、检查复习,引入新课1、复习圆柱体的特征师:圆柱是由平面和曲面围成的立体图形。
圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)2、拿出圆柱体茶叶罐:想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)请大家猜一猜圆柱侧面是怎样做成的呢?引入:今天这节课,我们就一起来学习圆柱的表面积。
【设计意图:通过复习,再次让学生明白圆柱的特征,同时创设“制作圆柱体茶叶罐怎样下料的问题”,激发学生的求知欲,也体现出学数学的价值。
】二、引导探究,学习新知(一)教学圆柱表面积的意义。
设疑:长方体6个面的总面积,叫做它的表面积。
什么是圆柱体的表面积呢?(学生回答,教师板书:侧面积+底面积×2 =表面积)要求圆柱的表面积,首先应该计算出它的底面积和侧面积。
(二)测量直径,计算圆柱的底面积。
圆柱的底面是圆形,怎样计算它的面积吗?(S=∏r2)需要知道什么条件?现场测量茶叶桶的底面直径。
(注意方法指导:量出底面最长的线段即直径的长度。
课件动画展示测量方法)学生口答算式和结果(三)教学圆柱体侧面积的计算1、引导探究圆柱体侧面积的计算方法。
(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?(2)学生动手操作。
(剪圆柱形纸筒)(3)汇报交流研究结果。
(随着学生回答课件展示)百度图片:小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
2、计算圆柱体茶叶罐的侧面包装纸的面积师:(课件呈现圆柱茶叶罐侧面包装图片)求圆柱体茶叶罐的侧面包装纸的面积实际是求圆柱的什么?(侧面积)再次测量茶叶桶的高,并把结果记录下来,独立计算。
(四)教学求圆柱的表面积。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?2、学生根据数据进行计算。
圆柱的平方计算公式圆柱是一种几何形体,它有着特殊的形状和特征。
如果你想计算圆柱的面积或者体积,那么你需要知道一些基本的公式和特性。
在本文中,我们将为您介绍圆柱的平方计算公式和一些相关的知识。
一、圆柱的定义圆柱是一个由两个平行的圆面和一个连接两个圆面的曲面组成的几何形体。
其中,连接两个圆面的曲面称为圆柱面,而圆柱面的侧面就是圆柱的侧面。
圆柱的轴线是连接两个圆心的直线,并且它垂直于圆柱面。
圆柱的底面是圆面,而且圆面的半径相等。
二、圆柱的计算公式如果您想计算圆柱的面积和体积,那么您需要掌握一些基本的公式。
下面是基本的圆柱计算公式。
1、圆柱的表面积圆柱的表面积是指圆柱的所有面积之和,它包括底面和侧面的面积。
圆柱的表面积可以用下面的公式来计算:S = 2πrh + 2πr²其中,S表示圆柱的表面积,h表示圆柱的高度,r表示圆柱的底面半径。
2、圆柱的体积圆柱的体积是指圆柱所占据的空间大小,它可以用下面的公式来计算:V = πr²h其中,V表示圆柱的体积,h表示圆柱的高度,r表示圆柱的底面半径。
三、圆柱的特点除了基本的计算公式,圆柱还有一些特点和特征。
下面是圆柱的一些特点。
1、圆柱的轴线和平行面相交的直线是圆柱的高度,圆柱的高度等于轴线和平行面的距离。
2、圆柱的侧面积是一个矩形,其面积为高度乘以侧面的周长。
3、圆柱的底面积和侧面积之和就等于圆柱的表面积。
四、应用实例圆柱的计算公式和特性在实际应用中有着广泛的用途。
下面是一些应用实例。
1、装油桶体积计算如果你想计算一个油桶的体积,那么你可以使用圆柱的体积公式。
假设油桶的底面半径为0.3米,高度为1米,那么油桶的体积就是:V = πr²h = 3.14×0.3²×1 = 0.2826(m³)2、计算圆柱的表面积如果你想知道一个管子的外表面积,那么你可以使用圆柱的表面积公式。
假设管子的底面半径为0.1米,高度为3米,那么管子的表面积就是:S = 2πrh + 2πr² = 2×3.14×0.1×3 + 2×3.14×0.1² = 1.884(m²)3、计算圆柱的侧面积如果你只想知道一个圆柱的侧面积,那么你可以使用圆柱的高度和底面周长来计算。
圆柱和圆锥的面积公式圆柱和圆锥是初中和高中数学中常见的基本几何体。
在计算它们的表面积时,我们需要了解它们的结构特点和公式,本文将详细介绍圆柱和圆锥的面积公式,并提供相关例题解析。
一、圆柱的面积公式圆柱可以看作是由两个平行的相等圆面和一个连接它们的矩形面组成的几何体。
因此,圆柱的表面积由圆面积和矩形面积两部分组成。
1. 圆面积公式圆面积公式为S = πr²,其中 S 表示圆面积,π 是圆周率(取近似值为3.14),r 是圆的半径。
在圆柱的表面积计算中,需要计算两个相等的圆面积,因此圆柱的圆面积公式为:S₁ = πr² + πr² = 2πr²。
2. 矩形面积公式在圆柱的表面积计算中,需要计算连接两个圆的矩形面积。
该矩形的长为圆的周长(C = 2πr),宽为圆柱的高(h),因此矩形面积公式为:S₂ = Ch = 2πrh。
综上所述,圆柱的表面积公式为:S = 2πr² + 2πrh = 2πr(r + h)二、圆锥的面积公式圆锥可以看作是由一个圆锥底面和一条连接圆锥顶点和底面圆心的直线(即母线)组成的几何体。
因此,圆锥的表面积由锥底圆面积、锥侧面积和锥母线所构成的扇形圆台的表面积三部分组成。
1. 锥底圆面积公式锥底圆面积公式与圆面积公式相同,即 S₁ = πr²,其中 S₁表示锥底圆面积,π 是圆周率,r 是锥底圆的半径。
2. 锥侧面积公式锥侧面积由锥母线和锥侧面所构成的扇形面积组成,因此锥侧面积公式为:S₂ = πrs,其中 r 表示锥底圆的半径,s 表示锥母线的长度。
在计算锥母线时,我们可以使用勾股定理,即锥母线的长度等于底面半径和斜高的平方和的平方根。
因此,我们可以得到下列公式:s = √(r² + h²)其中 h 表示圆锥的高。
3. 锥母线所构成的扇形面积公式在圆锥的表面积计算中,我们还需要考虑由锥母线所构成的扇形圆台的表面积。
圆柱的体积公式和面积公式圆柱是一种常见的几何图形,它是由一个圆锥和另一个圆锥相结合而成的。
圆柱的体积是指它的容积,而其面积则是指它的表面积。
那么,圆柱的体积公式和面积公式分别是什么呢?圆柱的体积公式是:V =r2h,其中,V表示圆柱的体积,r表示圆柱的半径,h表示圆柱的高度。
因此,只要知道圆柱的半径和高度,就可以根据上面的公式计算出圆柱的体积,这是一个非常简单的过程。
圆柱的面积公式是:S = 2πrh + 2πr2,其中,S表示圆柱的面积,r表示圆柱的半径,h表示圆柱的高度。
通过这个公式,我们可以算出圆柱的表面积,即它的外表面的面积。
这两个公式是测量圆柱的体积和面积的有效方法。
它们可以让我们快速准确地测量出圆柱的容积和表面积,使用起来也非常方便,是科学家和工程师经常使用的一种手段。
让我们来看一个具体的例子。
假设有一个圆柱,它的半径为2米,高度为4米,我们就可以使用前面提到的公式来求出这个圆柱的容积V和表面积S。
首先,使用圆柱体积公式V =r2h来计算出它的容积:V =×22×4= 50.27,即50.27立方米。
接下来使用圆柱面积公式S = 2πrh+2πr2来计算出它的表面积:S = 2π×2×4+2π×22 = 50.27,即50.27平方米。
可以看出,圆柱的体积公式和面积公式都非常的容易使用,只要输入圆柱的半径和高度就可以轻松计算出它的容积和表面积。
圆柱的体积公式和面积公式可以为我们提供很多帮助,它们可以帮助我们测量出几何体的容积和表面积,有助于我们更准确地分析物体的形状和尺寸。
它们也可以被应用到工程领域中,例如在建筑设计过程中测量建筑物的面积和体积,以便精确安排建筑物的布局和结构。
总之,圆柱的体积公式和面积公式是一种非常有用的计算工具,它们可以帮助我们更加精准地测量出几何体的容积和表面积,对我们在日常生活中测量物体的形状和尺寸有着重大的意义。
圆柱的侧面积公式和表面积公式
侧面积公式是S侧=Ch=2πrh(C表示底面的周长,h表示圆柱的高)。
圆柱是由两个
大小相等、相互平行的圆形(底面)以及连接两个底面的一个曲面(侧面)围成的几何体。
圆柱的侧面积公式
如果已知底面直径的话,就是:底面直径*兀*高=兀dh 如果已知底面半径的话,就是底面半径*2*兀*高=2兀rh 就是底面周长*高=sh 为什么用底面周长*高=sh呢?因为把圆
柱的侧面展开,就会得到一个长方形或者是正方形,而长方形或者是正方形的面积公式就
是长*宽或边长*边长,而圆柱的底面周长和高就等于长方形或者是正方形的两个边,所以
要求圆柱侧面积就是用底面周长*高了
圆柱表面积计算公式
圆柱的表面积=侧面积+两个底面积=2πrh+2πr^2
单位:平方厘米、平方米、平方分米……
圆柱是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的
几何体。
它有2个大小相同、相互平行的圆形底面和1个曲面侧面。
其侧面展开是矩形。
感谢您的阅读,祝您生活愉快。
圆柱的直径和面积计算公式圆柱是几何学中的一个重要概念,它是由一个圆沿着其直径方向无限延伸而成的几何体。
在日常生活和工程领域中,我们经常会遇到圆柱体,因此了解圆柱的直径和面积计算公式是非常重要的。
首先,让我们来了解一下圆柱的基本概念。
圆柱有两个底面,这两个底面是平行的圆,它们之间的距离称为圆柱的高。
而圆柱的直径则是底面圆的直径,它也是圆柱的直径。
圆柱的侧面是由底面圆的周长沿着高方向无限延伸而成的。
现在,让我们来看一下圆柱的面积计算公式。
圆柱的表面积包括底面圆的面积和侧面的面积。
底面圆的面积可以用圆的面积公式来计算,即πr^2,其中r为底面圆的半径。
而圆柱的侧面积则是底面圆的周长乘以圆柱的高,即2πrh,其中h 为圆柱的高。
因此,圆柱的表面积公式为2πr^2 + 2πrh。
接下来,让我们来看一下圆柱的直径和面积之间的关系。
圆柱的直径是底面圆的直径,假设为d。
底面圆的半径r等于直径d的一半,即r=d/2。
因此,底面圆的面积公式可以写成π(d/2)^2,即π(d^2/4)。
而圆柱的侧面积公式可以写成2π(d/2)h,即πdh。
因此,圆柱的表面积公式可以简化为π(d^2/4) + πdh,即π(d^2/4 + dh)。
通过上面的推导,我们可以得出圆柱的直径和面积之间的关系。
圆柱的表面积与直径的平方和高的乘积有关,即π(d^2/4 + dh)。
这个公式可以帮助我们在实际问题中快速计算圆柱的表面积,从而更好地应用几何学知识解决实际问题。
除了表面积外,圆柱的体积也是一个重要的计算问题。
圆柱的体积是指圆柱内部的空间大小,它可以用底面圆的面积乘以圆柱的高来计算,即πr^2h。
因此,圆柱的体积公式为πr^2h。
在实际应用中,我们经常会遇到需要计算圆柱的表面积和体积的问题。
例如,在工程领域中,我们需要计算圆柱的表面积来确定涂料的用量,或者计算圆柱的体积来确定容器的容积。
而在日常生活中,我们也可以通过圆柱的表面积和体积来解决一些实际问题,比如购买圆柱形容器的包装材料或者确定柱形物体的容积。
如何计算圆柱体与圆锥体的表面积圆柱体与圆锥体是常见的几何体,计算它们的表面积有一定的规律和公式。
本文将介绍如何计算圆柱体与圆锥体的表面积,并提供了详细的计算步骤。
1. 圆柱体表面积的计算方法圆柱体由一个底面和一个高度组成。
它的表面积由三部分构成:底面积、侧面积和顶面积。
1.1 底面积的计算圆柱体的底面为一个圆形,其半径为r。
底面积的计算公式为:底面积= π * (r^2),其中π取近似值3.14159。
1.2 侧面积的计算圆柱体的侧面是一个圆的展开面,其形状为一个矩形。
矩形的长为圆柱体的高度h,宽为圆的周长,也就是2πr。
侧面积的计算公式为:侧面积= 2πrh。
1.3 顶面积的计算圆柱体的顶面与底面形状相同,所以顶面积也等于底面积。
因此,圆柱体的表面积等于底面积加上侧面积再加上顶面积:表面积= 2πr(r + h)。
2. 圆锥体表面积的计算方法圆锥体由一个底面和一个侧面组成。
它的表面积同样由三部分构成:底面积、侧面积和斜面积。
2.1 底面积的计算圆锥体的底面为一个圆形,其半径为r。
底面积的计算公式与圆柱体相同:底面积= π * (r^2)。
2.2 侧面积的计算圆锥体的侧面是由底面到顶点所形成的三角形。
这个三角形的周长为底面圆的周长,也就是2πr。
根据勾股定理可知,锥体的高为h,斜边为l。
根据勾股定理,l^2 = r^2 + h^2,所以斜边的长度l可以用sqrt(r^2 + h^2)表示。
侧面积的计算公式为:侧面积= πrl。
2.3 斜面积的计算圆锥体的斜面实际上就是侧面。
所以它的斜面积也等于侧面积。
综上所述,圆锥体的表面积等于底面积加上侧面积再加上斜面积:表面积= πr(r + l)。
3. 示例计算假设有一个圆柱体,其底面半径为3,高度为5。
首先计算底面积:底面积= π * (3^2) = 9π。
然后计算侧面积:侧面积= 2π * 3 * 5 = 30π。
最后计算表面积:表面积= 2 * 9π + 30π = 48π。
圆柱的公式大全圆柱是一种常见的几何体,具有圆形底面和平行于底面的侧面。
圆柱的体积和表面积是圆柱几何性质的重要指标。
1. 圆柱的体积公式:圆柱的体积是指圆柱内部所有空间的容积。
圆柱的体积公式为:V = πr^2h其中,V表示圆柱的体积,r表示圆柱底面的半径,h表示圆柱的高度。
2. 圆柱的侧面积公式:圆柱的侧面积是圆柱侧面的表面积。
圆柱的侧面积公式为:A = 2πrh其中,A表示圆柱的侧面积,r表示圆柱底面的半径,h表示圆柱的高度。
3. 圆柱的底面积公式:圆柱的底面积是圆柱底面的表面积。
圆柱的底面积公式为:A = πr^2其中,A表示圆柱的底面积,r表示圆柱底面的半径。
4. 圆柱的全面积公式:圆柱的全面积是指圆柱的所有表面积之和。
圆柱的全面积公式为:A = 2πr(r+h)其中,A表示圆柱的全面积,r表示圆柱底面的半径,h表示圆柱的高度。
5. 圆柱的侧面积与底面积的关系:圆柱的侧面积与底面积之和等于圆柱的全面积。
即:A = 2πrh + πr^2其中,A表示圆柱的全面积,r表示圆柱底面的半径,h表示圆柱的高度。
6. 圆柱的母线长度公式:圆柱的母线长度是从圆柱的顶点到底面上的任意一点的距离。
圆柱的母线长度公式为:L = √(r^2 + h^2)其中,L表示圆柱的母线长度,r表示圆柱底面的半径,h表示圆柱的高度。
7. 圆柱的切面积公式:圆柱的切面积是圆柱被一个平面截下的表面积。
圆柱的切面积公式为:A = r^2√3其中,A表示圆柱的切面积,r表示圆柱底面的半径。
8. 圆柱的重心位置:圆柱的重心位置位于圆柱的对称轴上,距离底面的高度为h/2,其中,h为圆柱的高度。
以上是关于圆柱的几个重要公式和性质,这些公式在解决圆柱相关问题时非常有用。
掌握了这些公式,可以帮助我们计算圆柱的体积、表面积和其他相关参数,进而解决实际问题。
圆柱的表面积一、教案背景1、面向学生:小学2、课时:13、学科:数学4、学生准备:预习本节课内容、自制圆柱模型、剪刀、尺子、长方形的纸二、教学课题——《圆柱的表面积》教学目标:1、通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。
2、结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
3、能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,使学生感受到数学与生活的密切联系教学重点:学生通过操作、演示,推导出圆柱侧面积、表面积的计算公式教学难点:使学生认识圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系教学用具:多媒体课件、纸质圆柱模型(底面颜色和侧面颜色不相同)、剪子、长方形的纸三、教材分析《圆柱的表面积》是北师大版小学数学第十二册第一单元的内容。
在这个阶段,学生已经初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算:直观认识了长方体、正方体、圆柱和球,掌握了长方体(正方体)表面积与体积的含义及其计算方法,这是圆柱表面积的学习基础,而且通过上一课时的学习,学生已经了解了圆柱的基本特征,知道圆柱的表面是由两个相同的底面和一个侧面构成的,因此要计算圆柱的表面积就是要计算圆柱的两个底面的面积和一个侧面的面积。
计算圆柱底面的面积就是计算圆的面积,对学生来说不是新知识,所以教材把探索圆柱侧面积的计算方法作为重点。
在本课学习中,教材强调了圆柱侧面展开图的探索过程,以及侧面展开图的长和宽与圆柱有关量之间的关系。
四、教学方法1、情境教学法:教师一开课便创设愉悦、开放式的教学情境,激发学生学习的兴趣。
2、合作探究:合作探究的学习方法就是在教师的指导下,围绕教学目标,通过合作探究的方式,发现、分析问题并解决问题,有助于培养学生在合作学习中的责任意识和目标意识。
《圆柱的表面积》教学设计(最新5篇)作为一名为他人授业解惑的教育工作者,通常需要准备好一份教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
那么问题来了,教学设计应该怎么写?下面是的为您带来的5篇《《圆柱的表面积》教学设计》,可以帮助到您,就是最大的乐趣哦。
《圆柱的表面积》教学设计篇一一、学习目标(一)学习内容《义务教育教科书数学》(人教版)六年级下册第21~22页。
例3、4教学圆柱表面积的概念,探求表面积的计算方法。
学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。
利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。
(二)核心能力运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。
(三)学习目标1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。
2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。
3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。
(四)学习重点圆柱表面积的计算(五)学习难点圆柱体侧面积计算方法的推导(六)配套资源实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具二、学习设计(一)课前设计自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。
【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。
】(二)课堂设计1.创设情境,引入新课师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。
圆柱的表面积:1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。
3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=∏dh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2∏rh4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=∏dh+∏d2/2=或S表=2∏rh+2∏r25.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
巩固练习:一、填空1、圆柱的()面积加上()的面积,就是圆柱的表面积。
2、计算做一个圆柱形的茶叶筒要用多少铁皮,要计算圆柱的()。
3、计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的()。
4、计算做一个没有盖的圆柱形水桶要用多少铁皮,要计算圆柱的()。
5、一个圆柱,它的高是8厘米,侧面积是200.96平方厘米,它的底面积是()。
6.把圆柱体的侧面展开,得到一个(),它的()等于圆柱底面周长,它的()等于圆柱的高。
7.一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是()平方厘米.8.一个圆柱体,底面半径是2厘米,高是6厘米,它的侧面积是()平方厘米.9.一个圆柱体的侧面积是12.56平方分米,底面半径是2分米,它的高是()分米.10.把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米.11、圆柱的侧面积等于()乘以高。
A、底面积B、底面周长C、底面半径三、判断1.圆柱的侧面展开后一定是长方形.()2.6立方厘米比5平方厘米显然要大.()3.一个物体上、下两个面是相等的圆面,那么,它一定是圆柱形物体.()4.把两张相同的长方形纸,分别卷成两个形状不同的圆柱筒,并装上两个底面,那么制的圆柱的高、侧面积、表面积一定相等.()5、圆柱体的表面积=底面积×2+底面积×高.()6.圆柱体的表面积一定比它的侧面积大.()7.圆柱体的高越长,它的侧面积就越大.()四、下面各圆柱的表面积。
《圆柱的表面积》教案(通用15篇)《圆柱的表面积》教案篇1教学内容教材33页、34页例1、例2、例3及做一做,练习七第2-5题。
素养教育目标(一)学问教学点1.理解圆柱的侧面积和表面积的含义。
2.把握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)力量训练点能敏捷运用求表面积、侧面积的有关学问解决一些实际问题。
教学重点理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点能敏捷运用表面积、侧面积的有关学问解决实际问题。
教具学具预备1.老师、同学每人用硬纸做一个圆柱体模型。
2.投影片。
教学步骤一、铺垫孕伏1.口答下列各题(只列式不计算)。
(1)圆的半径是5厘米,周长是多少?面积是多少?(2)圆的直径是3分米,周长是多少?面积是多少?2.长方形的面积计算公式是什么?3.老师出示圆柱体模型,指同学说出它有什么特征?二、探究新知1.利用圆柱体模型的侧面绽开图,引导同学概括出圆柱侧面积的计算方法。
(1)让同学观看谈论:圆柱的侧面绽开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。
(2)引导同学概括出:由于长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。
2.教学例1(1)出示例1,指同学读题,找出已知条件和所求问题。
同学独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。
板书:3.14×0.5×1.8=1.75×1.8≈2.83(平方米)答:它的侧面积约是2.83平方米。
(2)反馈练习:完成做一做41页第1题。
同学独立解答,然后订正。
3.教学圆柱的表面积(1)老师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。
(2)让同学利用圆柱体模型绽开图进行比较、区分,从而使同学清晰:圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
圆柱的比表面积
圆柱的比表面积是指单位体积的圆柱的表面积与体积的比值。
可以用以下公式计算圆柱的比表面积:
比表面积 = 表面积 / 体积
对于一个圆柱来说,它的表面积由圆柱的底面积和侧面积组成。
圆柱的底面积等于圆的面积,可以用公式A = πr^2 来计算,其中 r 是圆的半径。
圆柱的侧面积等于圆的周长乘以圆柱的高度,可以用公式 S = 2πrh 来计算,其中 h 是圆柱的高度。
因此,圆柱的表面积可以用公式SA = 2πr^2 + 2πrh 来计算。
圆柱的体积可以用公式V = πr^2h 来计算。
将表面积和体积代入比表面积的公式,得到圆柱的比表面积公式:
比表面积= (2πr^2 + 2πrh) / (πr^2h)
这个比表面积公式可以简化为:
比表面积 = (2/r) + (2h/r)
需要注意的是,这个比表面积只适用于常规的圆柱形状。
对于其他非规则形状的圆柱,比表面积的计算将会有所不同。