2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习试卷15
- 格式:doc
- 大小:96.00 KB
- 文档页数:2
一、选择题1.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A.19B.16C.13D.232.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( )A.24B.18C.16D.63.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A.14B.13C.12D.234.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是( )A.13B.12C.23D.345.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( )A.14B.34C.13D.126.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )7.以下说法合适的是( )A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23 B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12 D.小明做了3次掷均匀硬币的实验,一次正面朝上,2次正面朝下,他再掷一次,正面朝上的概率还是128.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程.根据规定,我市将垃圾分为了四类:可回收物、厨余垃圾、有害垃圾和其他垃圾(如图).现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,则投放正确的概率是( )A.16B.18C.112D.1169.下列四种说法:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②将2020减去它的12,再减去剩下的13,再减去余下的14,再减去余下的15,⋯⋯,依次减下去,一直到减去余下的12020,结果是1;③实验的次数越多,频率越靠近理论概率;④对于任何实数x,y,多项式x2+y2−4x−2y+7的值不小于2.其中正确的个数是( )A.1B.2C.3D.4 10.同时抛掷两枚均匀硬币,则两枚硬币都出现反面向上的概率是( )二、填空题11.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有3个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为.12.在一个不透明的盒子中装有x颗白色棋子和y颗黑色棋子,它们除颜色外完全相同,现从该盒,将取出的棋子放回,再往该盒子中放进6颗子中随机取出一颗棋子,取得白色棋子的概率是25同样的黑色棋子,此时从盒子中随机取出一颗棋子,取得白色棋子的概率是1,那么原来盒子中4的白色棋子有颗.13.当一次试验要涉及,并且可能出现的结果数目较多时,为不重不漏地列出所有结果,通常采用列表法.14.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些球除标注的数字外完全相同.现从中随机依次取出两个球(不放回),则取出的两个小球标注的数字之和为6的概率是.15.有三张卡片分别写着数字1,2,3,将它们背面向上任意放置(背面花色相同),小明先后从中取两张卡片,那么取得的第一张卡片所写数字大于第二张卡片所写数字的概率是.16.小强掷两枚质地均匀的骰子,每个骰子的六个面上分别刻有1到6的点数,则两枚骰子点数相同的概率为.17.一个不透明的口袋中,装有除颜色以外其余都相同的红、黄两种球共15个,摇匀后从中任意摸出一球,记下颜色放回,摇匀再摸出一个,记下颜色放回⋯.经过大量的重复试验,发现摸到红球的频率为0.4,则估计袋中有红球个.三、解答题18.现有A,B两个不透明的袋子,分别装有3个除颜色外完全相同的小球,其中A袋中装有2个白球,1个红球;B袋中装有2个红球,1个白球.小林和小华商定了一个游戏规则:从摇匀后的A,B两袋中各随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,19.如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每投掷一次骰子,棋子按骰子着地一面所示的数字前进相应的格数.例如:若棋子位于A处,游戏者所投掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B 处.请用画树形图法(或列表法)求投掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.20.甲、乙两所医院分别有一男一女共4名医护人员支援武汉抗击疫情.(1) 若从这4名医护人员中随机选1名,则选中的是男医护人员的概率是.(2) 若从支援的4名医护人员中随机选2名,求出这两名医护人员来自不同医院的概率.21.为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图所示的统计图.根据统计图所提供的倍息,解答下列问题.(1) 本次抽样调查中的学生人数是;(2) 补全条形统计图;(3) 若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4) 现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.22.甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率.(1) 已确定甲打第一场,再从其余3名同学中随机选取1名,怡好选中乙同学.(2) 随机选取2名同学,其中有乙同学.23.为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1) 这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2) 补全条形统计图;(3) 如果节目组想从A类的甲、乙、丙、丁四种特色美食中随机选择两种进行节目录制,请用列表或画树状图的方法求出恰好选中甲和乙两种美食的概率.24.某市“半程马拉松”的赛事共有两项:A“半程马拉松”,B“欢乐跑”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组.(1) 小明被分配到“半程马拉松”项目组的概率为.(2) 为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:调查总人数2050100200500①估算本次赛事参加“半程马拉参加"半程马拉松"人数153372139356参加"半程马拉松"频率0.7500.6600.7200.6950.712松”人数的概率为.(精确到0.1)②若参加“欢乐跑”的人数大约有300人,估计本次参赛选手的人数是多少?25.庆祝改革开放40周年暨我爱我家⋅美丽青羊群众文艺展演圆满落幕,某学习小组对文艺展演中的A舞蹈《不忘初心》,B独舞《梨园一生》,C舞蹈《炫动的玫瑰》,D朝鲜组歌舞《阿里郎+atep》这四个节目开展“我最喜爱的舞蹈节目”调查,随机调查了部分观众(每位观众必选且只能选这四个节目中的一个)并将得到的信息绘制了下面两幅不完整的统计图:(1) 本次一共调查了名观众;并将条形统计图补充完整;(2) 学习小组准备从4个节目中随机选取两个节目的录像带回学校给同学们观看,请用树状图或者列表的方法求恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率.答案一、选择题 1. 【答案】C【解析】将三个小区分别记为 A ,B ,C ,列表如下:A B C A (A,A )(B,A )(C,A )B (A,B )(B,B )(C,B )C(A,C )(B,C )(C,C )由表可知,共有 9 种等可能结果,其中两个组恰好抽到同一个小区的结果有 3 种,∴ 两个组恰好抽到同一个小区的概率为 39=13. 【知识点】列表法求概率2. 【答案】C【解析】∵ 摸到红色球、黑色球的频率稳定在 15% 和 45%,∴ 摸到白球的频率为 1−15%−45%=40%,故口袋中白色球的个数可能是 40×40%=16 个. 【知识点】用频率估算概率3. 【答案】C【解析】画树形图得:由树形图可知共 4 种等可能的结果,一枚硬币正面向上,一枚硬币反面向上的有 2 种结果, ∴ 一枚硬币正面向上,一枚硬币反面向上的的概率为 24=12.【知识点】树状图法求概率4. 【答案】A【解析】根据题意,画出树形图.由图可知,任意翻开两张,共有 12 种等可能情况,其中两张图案一样的共有 4 种情况, 故任意翻开两张,其中两张图案一样的概率为 412=13.【知识点】树状图法求概率5. 【答案】D【解析】方法一:如图,将第二个转盘中的蓝色部分等分成两部分,画树状图得: ∵ 共有 6 种等可能的结果,可配成紫色的有 3 种情况, ∴ 可配成紫色的概率是:36=12. 方法二:列表如下:红蓝红(红,红)(蓝,红)蓝(红,蓝)(蓝,蓝)蓝(红,蓝)(蓝,蓝)由表格知共有 6 种等可能出现的结果数,其中能配成紫色的结果数有 3 种,则 P (配成紫色)=36=12.【知识点】树状图法求概率6. 【答案】C【知识点】树状图法求概率7. 【答案】D【知识点】概率的概念及意义、用频率估算概率8. 【答案】C【解析】可回收物、厨余垃圾、有害垃圾和其他垃圾对应的垃圾桶分别用 A ,B ,C ,D 表示,垃圾分别用 a ,b ,c ,d 表示.设分类打包好的两袋不同垃圾为 a ,b ,画树状图如图:共有 12 个等可能的结果,分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的结果有 1 个,∴ 分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率为 112.【知识点】树状图法求概率9. 【答案】C【知识点】用频率估算概率、完全平方公式10. 【答案】B【知识点】树状图法求概率二、填空题 11. 【答案】 9【解析】设白球的个数约为 a , 根据题意得 3a+3=0.25, 解得:a =9,经检验:a =9 是分式方程的解, 故答案为:9.【知识点】用频率估算概率12. 【答案】 4【解析】根据题意得 {xx+y=25,x x+y+6=14, 解得 {x =4,y =6, 经检验,{x =4,y =6 是方程组的解,所以原来盒子中的白色棋子有 4 颗. 【知识点】公式求概率13. 【答案】两个因素【知识点】列表法求概率14. 【答案】 15【解析】根据题意画树状图如下:共有 20 种等可能的结果,其中取出的两小球标注的数字之和为 6 的有 4 种情况, 所以取出的两小球标注的数字之和为 6 的概率 =420=15.【知识点】树状图法求概率15. 【答案】 12【解析】列出所有等可能情况,如下表.由表可知,取两张卡片的等可能情况共有 6 种,取得的第一张卡片所写数字大于第二张卡片所写数字的情况有 3 种,所以取得的第一张卡片所写数字大于第二张卡片所写数字的概率为 36=12.12311,21,322,12,333,13,2【知识点】列表法求概率16. 【答案】 16【解析】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)由表可知一共有 36 种情况,两枚骰子点数相同的有 6 种,所以两枚骰子点数相同的概率 =636=16. 【知识点】列表法求概率17. 【答案】 6【解析】设袋中有红球 x 个,根据题意得:x15=0.4, 解得:x =6.答:袋中有红球 6 个. 【知识点】用频率估算概率三、解答题18. 【答案】列表法如下:或画树状图如下:由上表或树状图可知,一共有 9 种等可能的结果,其中颜色相同的结果有 4 种,颜色不同的结果有 5 种.∴P(颜色相同)=49,P(颜色不同)=59. ∵49<59,∴ 这个游戏规则对双方不公平. 【知识点】树状图法求概率19. 【答案】∵共有16种等可能的结果,掷骰子两次后,棋子恰好由A处前进6个方格到达C处的有(2,4),(3,3),(4,2),∴掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率为316.【知识点】树状图法求概率20. 【答案】(1) 12(2) 画树状图为:(a,b表示甲医院的男女医护人员c,d示乙医院的男女医护人员).共有12种等可能的结果数,其中这两名医护人员来自不同医院的结果数为8,∴这两名医护人员来自不同医院的概率=812=23.【解析】(1) ∵4名医护人员中有两男两女,从中随机抽取一名,共有四种结果,每种结果的概率相同,其中选中的是男医护人员的结果有两种,∴选中的是男医护人员的概率=24=12.【知识点】树状图法求概率、公式求概率21. 【答案】(1) 100(2)(3) 2000×(1−30%−10%−20100)=800(名),∴爱好打球的学生有800名.(4) 画树状图如图所示,共有12种等可能的情况产生,其中满足条件的情况共两种.∴P(一男一女)=812=23.【知识点】树状图法求概率、条形统计图、扇形统计图、用样本估算总体22. 【答案】(1) 已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是13.(2) 从甲、乙、丙、丁4名同学中随机选取2名同学,所有可能出现的结果有:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁),共有6种,共有6种,它们出现的可能性相同,所有的结果中,满足“随机选取2名同学,其中有乙同学”(记为事件A)的结果有3种,所以P(A)=36=12.【知识点】列表法求概率、公式求概率23. 【答案】(1) 20;40;72∘;(2) B类的种数为20−4−8−6=2,条形统计图为:(3) 画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙两种美食的结果数为2,∴恰好选中甲和乙两种美食的概率=212=16.【解析】(1) 4÷20%=20,所以这次抽查了四类特色美食共20种,扇形统计图中C类所占的百分比=820×100%=40%,即a=40;扇形统计图中A部分圆心角的度数为360∘×20%=72∘.【知识点】条形统计图、扇形统计图、树状图法求概率24. 【答案】(1) 12(2) ① 0.7.②参加欢乐跑的人数为300人,概率为1−0.7=0.3,本次参赛选手总人数为300÷0.3=1000人.【解析】(1) 共有两项,被分配到其中一项的概率为12.(2) ①观察表格可知:估算本次参加“半程马拉松”的人数概率为0.7.【知识点】公式求概率、用频率估算概率25. 【答案】(1) 50补全条形图如下:(2) 如图所示:一共有12种可能,恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的有2种,故恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率为212=16.【解析】(1) 次调查的总人数为15÷30%=50(人),则B节目的人数为50−(16+15+7)=12(人).【知识点】条形统计图、树状图法求概率。
北师大新版数学九年级上学期《第 3 章概率的进一步认识》单元测试一.选择题(共12 小题)1.在某校运动会 4×400m 接力赛中,甲乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲乙两名同学恰巧抽中相邻赛道的概率为()A.B.C.D.2.有大小、形状、颜色完好同样的 3 个乒乓球,每个球上分别标有数字1,2,3 中的一个,将这 3 个球放入不透明的袋中搅匀,假如不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是()A.B.C.D.3.小茜课间活动中,上午大课间活动时能够先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A.B.C.D.4.在一个不透明的袋子里共有 2 个黄球和 3 个白球,每个球除颜色外都同样,小亮从袋子中随意摸出一个球,结果是白球,则下边对于小亮从袋中摸出白球的概率和频次的说明正确的选项是()A.小亮从袋中随意摸出一个球,摸出白球的概率是 1B.小亮从袋中随意摸出一个球,摸出白球的概率是0C.在此次实验中,小亮摸出白球的频次是 1D.由此次实验的频次去预计小亮从袋中随意摸出一个球,摸出白球的概率是 1 5.点 P 的坐标是( x,y),从﹣ 3、﹣ 2、0、2、3 这五个数中任取一个数作为x 的值,再从余下的四个数中任取一个数作为y 的值,则点 P(x,y)在平面直角坐标系中第四象限内的概率是()A.B.C.D.6.同时转动以下图的两个转盘,则转盘停止转动后,指针同时落在红色地区的概率为()A.B.C.D.7.从﹣ 2,﹣1,2 这三个数中任取两个不一样的数相乘,积为正数的概率是()A.B.C.D.8.从 3、1、﹣ 2 这三个数中任取两个不一样的数作为P 点的坐标,则 P 点恰巧落在第四象限的概率是()A.B.C.D.9.某中学初三年级四个班,四个数学老师分别任教不一样的班.期末考试时,学校安排一致监考,要求同年级数学老师互换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8B.9C.10D.1210.已知 | a| =2,| b| =3,则 | a﹣ b| =5 的概率为()A.0B.C.D.11.从 2 种不一样样式的衬衣和 2 种不一样样式的裙子中分别取一件衬衣和一条裙子搭配,有()种可能.A.1B.2C.3D.412.不透明的袋子里装有 2 个红球和 1 个白球,这些球除了颜色外都同样.从中随意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色同样的概率是()A.B.C.D.二.填空题(共7 小题)13.甲、乙、丙 3 名学生随机排成一排摄影,此中甲排在中间的概率是.14.在一个不透明的布袋中装有标着数字2,3,4,5 的 4 个小球,这 4 个小球的材质、大小和形状完好同样,现从中随机摸出两个小球,这两个小球上的数字之积大于 9 的概率为15.从 2019 年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,能够依据高校有关专业的选课要乞降自己兴趣、理想、优势,从思想政治、历史、地理、物理、化学、生物 6 个科目中,自主选择3 个科目参加等级考试.学生 A 已选物理,还从思想政治、历史、地理 3 个文科科目中选 1能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.16.从﹣ 2,﹣ 8,5 中任取两个不一样的数作为点的横纵坐标,该点在第三象限的概率为.17.同时掷两个质地均匀的六面体骰子,两个骰子向上一面点数同样的概率是.18.某批足球的质量查验结果以下:抽取的蓝球数 n 100 200 400 600 800 1000 1200优等品频数 m 93 192 380 561 752 941 1128优等品频次从这批足球中,随意抽取的一只足球是优等品的概率的预计值是.bx c( a≠ 0)与 x 轴有两个交点,那么以该抛物线的219.假如一条抛物线 y=ax + +极点和这两个交点为极点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c 中,系数 a、b、c 为绝对值不大于 1 的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为.三.解答题(共9 小题)20.一个不透明的口袋里装有分别标有汉字“书”、“香”、“历”、“城”的四个小球,除汉字不一样以外,小球没有任何差别,每次摸球前先搅拌均匀.( 1)若从中任取一个球,球上的汉字恰巧是“书”的概率为.(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求拿出的两个球上的汉字能构成“历城”的概率.21.“食品安全”遇到全社会的宽泛关注,济南市某中学对部分学生就食品安全知识的认识程度,采纳随机抽样检查的方式,并依据采集到的信息进行统计,绘制了下边两幅尚不完好的统计图.请你依据统计图中所供给的信息解答以下问题:( 1)接受问卷检查的学生共有人,扇形统计图中“基本认识”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生 900 人,请依据上述检查结果,预计该中学学生中对食品安全知识达到“认识”和“基本认识”程度的总人数;( 4)若从对食品安全知识达到“认识”程度的2个女生和2个男生中随机抽取 2人参加食品安全知识比赛,请用树状图或列表法求出恰巧抽到 1 个男生和 1 个女生的概率.22.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”,比赛项目为: A.唐诗; B.宋词; C.论语; D.三字经.比赛形式为两人抗衡赛,即把四种比赛项目写在 4 张完好同样的卡片上,比赛时,比赛的两人从中随机抽取1张卡片作为自己的比赛项目(不放回,且每人只好抽取一次)比赛时,小红和小明分到一组.( 1)小明先抽取,那么小明抽到唐诗的概率是多少?(2)小红善于唐诗,小红想:“小明先抽取,我后抽取”抽到唐诗的概率是不一样的,且小明抽到唐诗的概率更大,若小红后抽取,小红抽中唐诗的概率是多少?小红的想法对吗?23.小明手中有一根长为5cm 的细木棒,桌上有四个完好同样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、 4、5(单位: cm).小明从中随意抽取两个信封,而后把这 3 根细木棒首尾按序相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出剖析过程)24.如图,有一个能够自由转动的转盘被均匀分红 3 个扇形,分别标有 1、2、3 三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束获得一组数(若指针指在分界限时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的全部结果;(2)求每次游戏结束获得的一组数恰巧是方程 x2﹣3x+2=0 的解的概率.25.某工厂甲、乙两个部门各有职工200 人,为认识这两个部门职工的生产技术状况,有关部门进行了抽样检查,过程以下.从甲、乙两个部门各随机抽取20 名职工,进行了生产技术测试,测试成绩(百分制,单位:分)以下:甲: 78 86 74 81 75 76 87 70 75 9075 79 81 70 75 80 85 70 83 77乙: 92 71 83 81 72 81 91 83 75 8280 81 69 81 73 74 82 80 70 59整理、描绘数据按以下分数段整理、描绘这两组样本数据:成绩 x 50≤x≤59 60≤x≤69 70≤x≤ 79 80≤x≤89 90≤ x≤ 100 人数部门甲0 0 12 7 1乙 1 1 6(说明:成绩 80 分及以上为生产技术优异, 70﹣﹣ 79 分为生产技术优异, 60﹣﹣69 分为生产技术合格)依据上述表格绘制甲、乙两部门职工成绩的频数散布图.剖析数据两组样本数据的均匀数、中位数、众数以下表所示:部门均匀数中位数众数甲 78.35 77.5 75乙7881(1)请将上述不完好的统计表和统计图增补完好;(2)请依据以上统计过程进行以下推测;①预计乙部弟子产技术优异的职工人数是多少;②你以为甲、乙哪个部门职工的生产技术水平较高,说明原因.(起码从两个不一样的角度说明推测的合理性)26.某商场在端午节时期展开优惠活动,凡购物者能够经过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向 A 地区时,所购置物件享受 9 折优惠、指针指向其余地区无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个地区的字母同样,所购置物件享受8 折优惠,其余状况无优惠.在每个转盘中,指针指向每个区城的可能性同样(若指针指向分界限,则从头转动转盘)( 1)若顾客选择方式一,则享受9 折优惠的概率为;( 2)若顾客选择方式二,请用树状图或列表法列出全部可能,并求顾客享受8折优惠的概率.27.合肥地铁一号线的开通运转给合肥市民出行方式带来了一些变化,小朱和小张准备利用课余时间,以问卷的分式对合肥市民的出行方式进行检查,如图是合肥地铁一号线图(部分),小朱和小张分别从塘西河公园站(用 A 表示)、金斗公园站(用 B 表示)、云谷路站(用 C 表示)、万达城站(用 D 表示)这四站中,随机选用一站作为检查的站点.(1)在这四站中,小朱选用问卷检查的站点是万达城站的概率是多少?(2)求小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的概率.28.张三同学扔掷一枚骰子两次,两次所扔掷的点数分别用字母m、 n 表示(1)求使对于 x 的方程 x2﹣ mx+2n=0 有实数根的概率;(2)求使对于 x 的方程 mx2+nx+1=0 有两个相等实根的概率.参照答案一.选择题1.D.2.C.3.A.4.C.5.A.6.A.7.C.8.B.9.B.10.B.11.D.12.B.二.填空题13.14..15..16..17.18..19..三.解答题20.解:( 1)若从中任取一个球,球上的汉字恰巧是“书”的概率为,故答案为:;( 2)列表以下:书香历城书(书,香)(书,历)(书,城)香(香,书)(香,历)(香,城)历(历,书)(历,香)(历,城)城(城,书)(城,香)(城,历)共有 12 种等可能的结果数,此中拿出的两个球上的汉字能构成“历城”的结果数为 2,因此拿出的两个球上的汉字能构成“历城”的概率═=.21.解:( 1)30÷50%=60,因此接受问卷检查的学生共有60 人;扇形统计图中“基本认识”部分所对应扇形的圆心角的度数为×360°=90°;故答案为 60;90°;(2)“认识”部分的人数 =60﹣15﹣ 30﹣10=5,条形统计图为:(3) 900×=300,因此预计该中学学生中对食品安全知识达到“认识”和“基本认识”程度的总人数为 300 人;( 4)画树状图为:(分别用A、B 表示两名女生,用C、D 表示两名男生)共有 12 种等可能的结果数,此中恰巧抽到 1 个男生和 1 个女生的结果数为8,因此恰巧抽到 1 个男生和 1 个女生的概率 = =.22.解:( 1)小明先抽取,那么小明抽到唐诗的概率为;( 2)小红的想法不对.原因以下:画树状图为:共有 12 种等可能的结果数,此中红明抽到唐诗的结果数为3,因此小红抽中唐诗的概率= =,因此小明抽到唐诗的概率和小红抽到唐诗的概率同样大.23.解:画树状图以下:由树状图可知,共有12 种等可能结果,此中能围成三角形的结果共有10 种,因此能搭成三角形的概率为=.24.解:( 1)列表以下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)( 2)全部等可能的状况数为 9 种,此中是 x2﹣3x+2=0 的解的为( 1,2),( 2,1)共 2 种,则 P是方程解= .25.解:( 1)补全图表以下:成绩 x50≤ x≤59 60≤x≤69 70≤x≤ 79 80≤x≤8990≤ x≤ 100 人数部门甲0 0 12 7 1乙 1 1 6 10 2( 2)①预计乙部弟子产技术优异的职工人数是200×=120 人;②甲或乙,1°、甲部弟子产技术测试中,均匀分较高,表示甲部门职工的生产技术水平较高;2°、甲部弟子产技术测试中,没有技术不合格的职工,表示甲部门职工的生产技能水平较高;或 1°、乙部弟子产技术测试中,中位数较高,表示乙部门职工的生产技术水平较高;2°、乙部弟子产技术测试中,众数较高,表示乙部门职工的生产技术水平较高.26.解:( 1)若选择方式一,转动转盘甲一次共有四种等可能结果,此中指针指向 A 地区只有 1 种状况,∴享受 9 折优惠的概率为,故答案为:;( 2)画树状图以下:由树状图可知共有12 种等可能结果,此中指针指向每个地区的字母同样的有 2 种结果,因此指针指向每个地区的字母同样的概率,即顾客享受8折优惠的概率为=.27.解:( 1)小朱选用问卷检查的站点是万达城站的概率=;( 2)画树状图为:共有 16 种等可能的结果数,此中小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的结果数为6,因此小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的概率= =.28.解:( 1)画树状图为:共有 36 种等可能的结果数,此中知足△ =m2﹣ 8n≥0 的结果数为 10,因此使对于 x 的方程 x2﹣ mx+2n=0 有实数根的概率 = = ;( 2)知足△=n2﹣ 4m=0 的结果数为 2,因此使对于 x 的方程 mx2+nx+1=0 有两个相等实根的概率 = =.。
2017-2018学年度第一学期北师大版九年级上数学_第三章_概率的进一步认识_单元测试题1 / 52017-2018学年度第一学期北师大版九年级数学第三章 概率的进一步认识 单元测试题考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.在一个不透明的布袋中装有红色、白色玻璃球共 个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在 左右,则口袋中红色球可能有( ) A. 个 B. 个 C. 个 D. 个2.在一个袋子中装有 个黑球和若干个白球,每个球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了 次,其中有 次摸到黑球,则估计袋子中白球的个数大约是( ) A. B. C. D.3.某中学举行数学竞赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( ) A.B.C.D.4.在课外活动时间,小王、小丽、小华做“互相踢毽子”游戏,毽子从一人传到另一人就记为踢一次.若从小丽开始,经过两次踢毽后,毽子踢到小华处的概率是( ) A.B.C.D.5.做重复实验:抛掷同一枚啤酒瓶盖 次.经过统计得“凸面向上”的频率约为 ,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( ) A. B. C. D.6.同时投掷 颗均匀的股子,朝上一面点数的和是偶数的概率是( )A. B.C.D.7.某人在做掷硬币实验时,投掷 次,正面朝上有 次(即正面朝上的频率是).则下列说法中正确的是( )A. 一定等于B. 一定不等于C.多投一次, 更接近D.投掷次数逐渐增加, 稳定在附近8.在一个不透明的袋子中装有 个红球, 个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是( ) A.B.C.D.9.小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序.设每人每次出手心、手背的可能性相同.若有一人与另外两人不同,则此人最后出场.三人同时出手一次,小明最后出场比赛的概率为( )A.B.C.D.10.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有 到 的点数,则两个骰子向上的一面的点数和为 的概率为( ) A.B.C.D.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.某同学练习定点投篮时记录的结果如表:则这位同学投篮一次,投中的概率约是________(结果保留小数点后一位).12.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是________.13.在一次统计中,调查英文文献中字母 的使用率,在几段文献,统计字母 的使用数据得到下列表中部分数据:请你将下表补充完整.通过计算表中数据可以发现,字母的使用频率在________左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计字母在文献中使用概率是________.14.如图,一方形花坛分成编号为①、②、③、④四块,现有红、黄、蓝、紫四种颜色的花供选种.要求每块只种一种颜色的花,且相邻的两块种不同颜色的花,如果编号为①的已经种上红色花,那么其余三块不同的种法有________ 种.15.国庆节期间,小红的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共个,小红将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在,由此可以估计纸箱内红球的个数约是________个.16.一不透明的布袋中放有红、黄球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回袋中摇匀,再摸出一个球,小明两次都摸出红球的概率是________.17.一个口袋里有个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验次,其中有次摸到黄球,由此估计袋中的黄球有________个.18.已知在平面直角坐标系中有,两点,现从、、、四点中,任选两点作为、,则以、、、四个点为顶点所组成的四边形中是平行四边形的概率是________.19.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:20.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两上转盘中指针落在每一个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.所有可能得到的不同的积分别为________;数字之积为奇数的概率为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.在一个不透明的箱子里,装有个红和个黄球,它除了颜色外均相同.随机地从箱子里取出个球,则取出红球的概率是多少?小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规则如下:随机地从该箱子里同时取出个球,若两球颜色相同,小明去;若两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进行分析.22.本校有、两个餐厅,甲、乙两名学生各自随机选择其中一个餐厅用餐,请用列表或画树状图的方法解答:甲、乙两名学生在同一餐厅用餐的概率;甲、乙两名学生至少有一人在餐厅的概率.2017-2018学年度第一学期北师大版九年级上数学_第三章_概率的进一步认识_单元测试题3 / 523.小颖有 张大小相同的卡片,上面写有 这 个数字,她把卡片放在一个盒子中搅匀,完成上表;频率随着实验次数的增加,稳定于什么值左右?从试验数据看,从盒中摸出一张卡片是 的倍数的概率估计是多少?根据推理计算可知,从盒中摸出一张卡片是 的倍数的概率应该是多少?24.如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字 、 、 、 、若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为 、 (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内). 请你用列表法或树状图求 与 的乘积等于 的概率.25.一个不透明袋子中有 个红球, 个绿球和 个白球,这些球除颜色外无其他差别. 当 时,从袋中随机摸出 个球,摸到红球和摸到白球的可能性________.(填“相同”或“不相同”);从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于 ,则 的值是________;在 的条件下,从袋中随机摸出两个球,请用树状图或列表方法表示所有等可能的结果,并求出摸出的两个球颜色不同的概率.26.一个不透明袋子中有 个红球, 个绿球和 个白球,这些球除颜色外无其他差别.从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于 ,求 的值;在一个摸球游戏中,若有 个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.答案1.C2.A3.D4.A5.D6.C7.D8.D9.C10.B11.12.13.14.15.16.17.18.19.20.,,,,,,,,,,,,,,21.解: ∵在一个不透明的箱子里,装有个红和个黄球,它除了颜色外均相同,∴随机地从箱子里取出个球,取出红球的概率是:;不公平,如图所示:一共有中情况,两球颜色相同的有种情况,故(小明胜),(小亮胜).22.解:画树形图得:∵甲、乙两名学生在餐厅用餐的情况有、、、,∴ (甲、乙两名学生在同一餐厅用餐);由的树形图可知(甲、乙两名学生至少有一人在餐厅).23.解:,,,,,,,,,;观察可知频率稳定在左右;大量反复试验下频率稳定值即概率,故从盒中摸出一张卡片是的倍数的概率估计是;从盒中摸出一张卡片是的倍数的概率应该是为.∴ 与的乘积等于的概率是.25.相同;利用频率估计概率得到摸到绿球的概率为,则,解得,故答案为;画树状图为:共有种等可能的结果数,其中两次摸出的球颜色不同的结果共有种,2017-2018学年度第一学期北师大版九年级上数学_第三章_概率的进一步认识_单元测试题所以两次摸出的球颜色不同的概率.26.;画树状图为:共有种等可能的结果数,其中两次摸出的球的颜色不同的结果共有种,所以两次摸出的球颜色不同的概率.5 / 5。
第2课时 概率与游戏的综合运用学习目标:1.经历利用树状图和列表法求出概率并解决问题的过程。
2.提高应用知识解决问题的能力。
1.小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)分别利用树状图或列表的方法表示游戏者所有可能出现的结果. (2)游戏者获胜的概率是多少?2.利用图所示的转盘进行“配紫色”游戏. 小颖制作了下面的树状图, 并据此求出游戏者获胜的概率是小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.你认为谁做得对?说说你的理由.归纳总结:你认为用画树状图和列表的方法求概率时应该注意些什么?(红,蓝)(蓝,红) (蓝,蓝)(红,红)_______________________________________________________________________________例:一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同。
从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球的颜色能配成紫色的概率。
1.利用如图所示的转盘进行“配紫色”游戏。
游戏规则:连续转动两次转盘A,若两次转盘转出的出的颜色能配成紫色,小明得1分,若两次转出颜色都是红色,则小亮得1分.你认为游戏对双方公平吗?写出解答过程说明理由。
2.游戏者同时转动右边的两个转盘进行““配紫色游戏,若要使游戏者获胜的概率为110,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由。
B ABA。
生日相同的概率一、教学内容及分析本节课学习的主要内容是能用试验的方法估计一些复杂的随机事件发生的概率;指的是通过解决生活中一些常见的概率问题来使学生学会设计概率实验模型,其核心是设计概率实验来代替调查统计,理解他关键熟练掌握古典概型类实验如摸球实验;学生在上节《投针试验》的基础上,对通过试验估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”本节课内容就是上节课内容的延伸;教学重点是利用实验的方法估计复杂事件发生的概率,解决重点的关键是通过具体例子让学生知道怎么样去设计一个估计实验。
(1)本节是用实验频率来估计一些复杂事件的概率.而实验频率稳定于理论概率是本节的教学重点和难点,是用实验的方法估计随机事件发生的概率基础,但对于义务教育阶段的学生而言,又难以给出一个理论的解释.因而只能借助于大量的重复试验去感悟.因此,在教学过程中,务必引导学生积极参与实验.学生通过实验还会发现,实验频率并不一定等于理论概率。
虽然多次试验的频率逐渐稳定于理论概率,但也可能无论做多少次实验,实验频率仍是理论概率的一个近似值,而不能等同于理论概率,两者存在着一定的偏差,应该说偏差的存在是正常的,经常的。
(2)其次,随着现代社会的迅猛发展,更多的事务要求人们合作交流.在本节中,用实验频率稳定于理论概率来认识“生日相同的概率”,必须收集、整理大量的数据,必须综合多个学生甚至全班学生的试验数据.因此在教学过程中,务必注重学生的合作和交流活动.同时鼓励学生使用计算器等现代信息技术手段进行概率学习活动.二、教学目标及分析教学目标:(1)能利用计算器或计算机等模拟试验,估计一些复杂的随机事件发生的概率。
(2)能用实验的方法估计一些复杂的随机事件的概率.目标分析:(1)能利用计算器或计算机等模拟试验,估计一些复杂的随机事件发生的概率是指在用各种方法设计估计实验时,利用计算器去设计是最简单有效地方法,所以要求学生学会利用计算器模拟实验;(2)用实验的方法估计一些复杂的随机事件的概率是指在上节课的基础上,能用摸球试验或者计算器的方法去估计一些复杂的随机事件发生的概率。
北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷[检测内容:第三章 满分:120分 时间:120分钟]一、选择题(每小题3分,共30分)1. 在一个不透明的布袋中,红色、黑色、白色的球共有120个,这些球除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和45%,则布袋中白色球的个数很可能是( )A. 48个B. 60个C. 18个D. 54个2. 在0,1,2三个数字中任取两个,组成两位数,则组成的两位数是奇数的概率为( )A. B. C. D. 141612343. 在用摸球试验来模拟6人中有2人生肖相同的概率的过程中,有如下不同的观点,其中正确的是( )A. 摸出的球不能放回B. 摸出的球一定放回C. 可放回,可不放回D. 不能用摸球试验来模拟此事件4. 如图所示,有以下3个条件:①AC =AB ,②AB ∥CD ,③∠1=∠2.从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A. 0B.C.D. 11323第4题第5题5. 让如图所示的两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于( )A.B.C.D. 316385813166. 在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.B.C.D. 121314167. 小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面,小明赢1分,抛出其他结果,小刚赢1分,谁先到10分,谁就获胜.这是一个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( )A. 把“抛出两个正面”改为“抛出两个同面”B. 把“抛出其他结果”改为“抛出两个反面”C. 把“小明赢1分”改为“小明赢3分”D. 把“小刚赢1分”改为“小刚赢3分”8. 如图,一个质地均匀的正四面体上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M (a ,b )落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是( )A. B.C.D. 38716129169.在平面直角坐标系中,作△OAB ,其中三个顶点分别是O (0,0),B (1,1),A (x ,y )(-2≤x ≤2,-2≤y ≤2,x ,y 均为整数),则所作△OAB 为直角三角形的概率是( )A.B.C.D. 2535151210. 如图所示,有一电路AB 由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A.B.C.D. 25353412二、填空题(每小题3分,共24分)11. 在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 .12. 向一个装有很多黄豆的袋子里放入100粒绿豆,每次倒出10粒记下所倒出的绿豆的数目,再把它们放回去,做相同的试验100次,共倒出绿豆240粒,则袋中原有黄豆约粒.13. 在分别写有数字-1,0,1,2的四张卡片中,随机抽取一张后放回,再随机抽取一张,以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是 .14. 有四条线段,长度分别为3,5,7,9,从中任取三条,能构成三角形的概率为 .15. 有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意一把锁,一次打开锁的概率是 .16. 某人设摊“摸彩”,只见他手持一袋,内装大小、质地完全相同的3个红球、2个白球,每次让顾客“免费”从袋中摸出两球,若两球的颜色相同,则顾客获得10元钱,否则顾客付给这个人10元钱.请你判断一下,该活动对顾客(填“合算”或“不合算”).17. 对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是 .18. 如图,小华和小明做转盘游戏,当两个转盘所转到的数字之积为奇数时,小华得2分,当两个转盘所转到的数字之积为偶数时,小明得1分,这个游戏.(填“公平”或“不公平”)三、解答题(共66分)19. (8分)某校九年级(1)、(2)班联合举行毕业晚会,组织者为了使气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目,(1)班和(2)班的文娱委员利用分别标着数字1,2,3和4,5,6,7的两个转盘(如图)设计一种游戏方案,两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,(1)班代表胜,否则(2)班代表胜,你认为该方案对双方是否公平?为什么?20. (8分)在一个不透明的口袋里装有只有颜色不同的黑白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m68109136345568701摸到白球的频率0.680.730.680.690.710.70(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少个.21. (9分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22. (9分)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字-1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q的值,两次结果记为(p,q).(1)请你帮他们用画树状图或列表的方法表示(p,q)所有可能出现的结果;(2)求满足关于x的方程x2+px+q=0没有实数解的概率.23. (10分)试验探究:有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有整数1和2.B布袋中有三个完全相同的小球,分别标有整数-1,-2和-3.平平从A布袋中随机取出一个小球,记录其标有的整数为x,再从B布袋中随机取出一个小球,记录其标有的整数为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x-3上的概率.24. (10分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红心、方块、黑桃、梅花,其中红心、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.A B C D(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.25. (12分)珊珊与静静设计了A,B两种游戏:游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则珊珊获胜;若两数字之和为奇数,则静静获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,珊珊先随机抽出一张牌,抽出的牌不放回,静静从剩下的牌中再随机抽出一张牌.若珊珊抽出的牌面上的数字比静静抽出的牌面上的数字大,则珊珊获胜;否则静静获胜.请你帮静静选择其中一种游戏,使她获胜的可能性较大,并说明理由.参考答案1. A2. A3. B4. D5. C6. A7. D8. B9. A 10. B11. Error!12. 31713. Error!14. Error!15. Error!16. 不合算17. Error!18. 公平19. 解:公平.理由:利用树状图法得出所有可能结果如下:所有可能结果有12种,其中数字之和为偶数的有6种,数学之和为奇数的也有6种.所以(1)班代表胜的概率为Error!,(2)班代表胜的概率也为Error!,所以该游戏方案对双方是公平的.20. 解:(1)0.70(2)0.700.30(3)白球有20×0.70=14(个),黑球有20-14=6(个).21. 解:(1)方法1:画树状图,如图所示.共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!.方法2:列表格如下:甲乙丙丁甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!. (2)P(恰好选中乙同学)=Error!.22. 解:(1)画树状图如下:由图可知共有9种等可能的结果.(2)若方程x2+px+q=0没有实数解,则Δ=p2-4q<0.由(1)可得满足Δ=p2-4q<0的有(-1,1),(0,1),(1,1),∴满足关于x的方程x2+px+q=0没有实数解的概率为Error!=Error!.23. 解:(1)列表为:y-1-2-3x1(1,-1)(1,-2)(1,-3)2(2,-1)(2,-2)(2,-3)∴点Q的坐标有(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3)六种可能情况. (2)“点Q落在直线y=x-3上”记为事件A,则有(1,-2)和(2,-1)两点满足条件,∴P(A)=Error!=Error!,即点Q落在直线y=x-3上的概率为Error!.24. 解:(1)画树状图如图所示:列表法:第二次A B C D第一次A AB AC ADB BA BC BDC CA CB CDD DA DB DC(2)P(摸出的两张牌同为红色)=Error!=Error!.25. 解:对游戏A:画树状图如图所示:或用列表法:第二次234第一次2(2,2)(2,3)(2,4)3(3,2)(3,3)(3,4)4(4,2)(4,3)(4,4)所有可能出现的结果共有9种,其中两数字之和为偶数的有5种,所以游戏A珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏A对珊珊有利,获胜的可能性大于静静.对游戏B:画树状图如图所示:或用列表法:静静5688珊珊5-(5,6)(5,8)(5,8)6(6,5)-(6,8)(6,8)8(8,5)(8,6)-(8,8)8(8,5)(8,6)(8,8)-所有可能出现的结果共有12种,其中珊珊抽出的牌面上的数字比静静大的有5种:根据游戏B的规则,当静静抽出的牌面上的数字与珊珊抽到的数字相同或比珊珊抽到的数字大时,则静静获胜.所以游戏B珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏B对静静有利,获胜的可能性大于珊珊.综上所述,静静应选择游戏B.。
一、选择题1.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )A.13B.23C.49D.592.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是( )A.16B.38C.58D.233.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率4.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球,两次都摸到红球的概率为( )A.925B.310C.920D.355.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A.12B.13C.23D.166.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )A.20B.30C.40D.507.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A.310B.925C.425D.1108.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.16B.20C.24D.289.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有( )A.12个B.14个C.18个D.28个10.“明天下雨的概率是80%”,下列说法正确的是( )A.明天一定下雨B.明天一定不下雨C.明天80%的地方下雨D.明天下雨的可能性比较大二、填空题11.在一个不透明的袋子中,装有红球和白球共20个,这些球除颜色外都相同,搅匀后从中任意摸出一个球记下颜色,再把它放回袋子中,不断重复试验,统计结果显示,随着试验次数越来越大,摸到红球的频率逐渐稳定在0.3左右,则据此估计袋子中有白球个.12.我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.13.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.14.现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是.15.三人同行,其中三人性别相同的概率是.16.有三张除颜色外,大小、形状完全相同的卡片,第一张卡片两面都是红色,第二张卡片两面都是白色,第三张卡片一面是红色,一面是白色,用三只杯子分别把它们遮盖住,若任意移开其中的一只杯子,则看到的这张卡片两面都是红色的概率是.17.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有张.三、解答题18.一个不透明的袋子里装有三个分别标有数字−2,1,2的小球,除所标有的字不同外,其它方面均相同,现随机从中摸出一个小球,记录所摸出的小球上的数字后放回并搅匀,再随机摸出一个小球,记录小球上的数字.请用画树状图(或列表)的方法,求两次记录数字之和是正数的概率.19.两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1) 求得样本容量为,并补全直方图;(2) 如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3) 已知A 组发表提议的代表中恰有1位女士,E 组发表提议的代表中只有2位男士,现从A组与 E 组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.20.2017无锡国际马拉松赛的赛事共有三项:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明、小刚和小芳参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1) 小明被分配到“迷你马拉松”项目组的概率为;(2) 已知小明被分配到A(全程马拉松),请利用树状图或列表法求三人被分配到不同项目组的概率.21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只.某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复上述过程,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率mn 0.640.58 0.6050.601(1) 请将表中的数据补充完整;(2) 请估计:当n很大时,摸到白球的概率约是.(精确到0.01)22.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1) 求参与该游戏可免费得到景点吉祥物的频率;(2) 请你估计纸箱中白球的数量接近多少?23.端午节是我国传统佳节,互赠粽子是端午节的一种习俗.小唐买了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,他从中随机拿出两个送给同学小何.(1) 请用树状图或列表的方法列出小何得到的两个粽子的所有可能结果;(2) 计算小何得到的两个粽子都是肉馅粽子的概率.24.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1) 李欣选择线路C.“园艺小清新之旅”的概率是多少?(2) 用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.25.某中学现要从两位男生和两位女生中,选派两位同学分别作为1号选手和2号选手代表学校参加汉字听写大赛.(1) 请用树形图或列表法列举出所有可能选派的结果.(2) 求恰好选派一男一女两位同学参赛的概率.答案一、选择题1. 【答案】C【解析】列表如下:黄红红红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为49.【知识点】列表法求概率2. 【答案】B【知识点】公式求概率3. 【答案】D【解析】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以D选项说法正确,故选D.【知识点】用频率估算概率4. 【答案】B【解析】列表如表:得到所有可能的情况数为20种;其中两次都为红球的情况有6种,则P(两次红)=620=310.【知识点】列表法求概率5. 【答案】B【知识点】树状图法求概率6. 【答案】A【解析】根据题意得n30+n=0.4,解得:n=20.【知识点】用频率估算概率7. 【答案】A【解析】画树状图为:(用A,B,C表示三本小说,a,b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【知识点】树状图法求概率8. 【答案】B=20%,【解析】根据题意知4a解得a=20,经检验:a=20是原分式方程的解,故选:B.【知识点】用频率估算概率9. 【答案】B【解析】设袋子中黄球有x个,=0.35,根据题意,得:x40解得:x=14,即布袋中黄球可能有14个.【知识点】用频率估算概率10. 【答案】D【解析】该事件是随机事件,故A错误,B也错误,根据概率的定义,可知,概率为80%不代表80%的地方会下雨,只是表示下雨的可能性比较大,故C错误,D正确.故选:D.【知识点】用频率估算概率、概率的概念及意义二、填空题11. 【答案】14【解析】设袋子中有红球x个,=0.3,根据题意得x20解得x=6,∴估计袋子中有白球20−6=14个.【知识点】用频率估算概率12. 【答案】34【解析】该三角形的顺序旋转和与逆序旋转和的差为(4x+2z+3y)−(3x+2y+4z)=x+y−2z,画树状图为:共有12种等可能的结果,其中此三角形的顺序旋转和与逆序旋转和的差都小于4的结果数为9,所以三角形的顺序旋转和与逆序旋转和的差都小于4的概率=912=34.【知识点】树状图法求概率13. 【答案】③【解析】①正六面骰子,向上一面的点数是2的概率是16;②掷一枚硬币,正面朝上的概率是12;③任取一球是红球的概率是13.【知识点】用频率估算概率14. 【答案】34【知识点】列表法求概率15. 【答案】14【解析】画树状图如下:所有等可能的情况有8种,其中性别相同的情况有2种,则P(三人性别相同)=28=14.【知识点】树状图法求概率16. 【答案】13【解析】画树状图如下:根据树状图可得出,所有可能为3种,两面都是红色的有1种,∴卡片两面都是红色的概率是:13,故答案为:13.【知识点】树状图法求概率17. 【答案】9【解析】∵共有36张扑克牌,红心的频率为25%,∴扑克牌花色是红心的张数=36×25%=9张.【知识点】用频率估算概率三、解答题18. 【答案】列表如下−212−2−4−101−1232034所有等可能的情况有9种,其中两次记录数字之和是正数的有4种结果,所以两次记录数字之和是正数的概率为49.【知识点】列表法求概率19. 【答案】(1) 50;补全的直方图如下图所示.(2) 1700×(8%+10%)=306(人),即会议期间组织1700名代表参会,在这一天里发言次数不少于12次的人数是306人.(3) 由统计图可知,发言次数为A 的人数有:50×6%=3(人),发言次数为E 的人数有:50×8%=4(人),由题意可得,故所抽的两位代表恰好都是男士的概率是412=13,即所抽的两位代表恰好都是男士的概率是13.【知识点】频数分布表及直方图、树状图法求概率、用样本估算总体、扇形统计图20. 【答案】(1) 13(2) 设三种赛事分别为1,2,3,列表得:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)所有等可能的情况有9种,分别为(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);(3,3),小芳和小刚被分配到半程马拉松和迷你马拉松项目组的情况有2种,所有其概率=29.【解析】(1) ∵共有A,B,C三项赛事,∴小明被分配到“迷你马拉松”项目组的概率是13;【知识点】列表法求概率、公式求概率21. 【答案】(1) 填表如下:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率mn0.580.640.580.590.6050.601(2) 0.60【知识点】用频率估算概率22. 【答案】(1) 参与该游戏可免费得到景点吉祥物的频率为1500060000=0.25.(2) 设袋子中白球的数量为x,则1212+x=0.25,解得x=36,经检验x=36是分式方程的解且符合实际,所以估计纸箱中白球的数量接近36.【知识点】频数与频率、用频率估算概率23. 【答案】(1) 肉粽记为A,红枣粽子记为B,豆沙粽子记为C,由题意可得,(2) 由(1)可得,小何得到的两个粽子都是肉馅的概率是:212=16.【知识点】树状图法求概率24. 【答案】(1) 因为在这四条线路中任选一条,每条被选中的可能性相同,所以在四条线路中,李欣选择线路C.“园艺小清新之旅“的概率是14.(2) 画树状图如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,所以李欣和张帆恰好选择同一线路游览的概率为416=14.【知识点】树状图法求概率、公式求概率25. 【答案】(1) 记男生为甲、乙,女生为丙、丁,画树状图得:(2) ∵共有12种等可能的结果,一男一女的有8种情况,∴一男一女的概率是:812=23.【知识点】树状图法求概率。
2019-2019学年度第一学期北师大版九年级数学第三章概率的进一步认识单元过关检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 9 小题,每小题 3 分,共 27 分)1.甲、乙两盒中各放入分别写有数字,,的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是的概率是()A. B. C. D.2.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有个,黄、白色小球的数目相同、为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀…多次试验发现摸到红球的频率是,则估计黄色小球的数目是()A.个B.个C.个D.个3.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A. B. C. D.4.某人在做抛掷硬币试验中,抛掷次,正向朝上有次(正面朝上的频率是),则下列说法正确的是()A.(正面朝上)一定等于B.(正面朝上)一定不等于C.多投一次,(正面朝上)更接近D.投掷次数逐渐增加,(正面朝上)稳定在附近5.连续两次抛掷一枚硬币,第一次正面朝上,第二次反面朝上的概率是()A. B. C. D.6.假定鸡蛋孵化后,鸡雏为雌或雄的羝概率相同,如果两个鸡蛋全部成功孵化,则两只鸡雏均为雄鸡的槪率是()A. B. C. D.7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球次,其中次摸到黑球,估计盒中大约有白球()A.个B.个C.个D.个8.如图,两个转盘分别被分成等份和等份,分别标有数字、、和、、、,转动两个转盘各一次(假定每次都能确定指针所指的数字),两次指针所指的数字之和为或的概率是()A. B. C. D.9.小王家新锁的密码是位数,他记得前两位数是,后两位数是,中间两位数忘了,那么他一次按对的概率是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)10.在一个不透明的口袋中有个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在左右,则口袋中的白球大约有________个.11.一个不透明的文具袋装有型号完全相同的支红笔和支黑笔,小明、小红两人先后从袋中随机取出一支笔(不放回),两人所取笔的颜色相同的概率是________.12.两个装有乒乓球的盒子,其中一个装有个白球个黄球,另一个装有个白球个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为________;至少有一个是白球的概率为________.13.一水塘里有鲤鱼、鲢鱼共尾,一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为,则水塘有鲢鱼________尾.14.在一个不透明的盒子中装有个小球,他们只有颜色上的区别,其中有个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于,那么可以推算出大约是________.15.一个布袋里装有只有颜色不同的个球,其中个红球,个白球.从中任意摸出个球,记下颜色后放回,搅匀,再任意摸出个球,摸出的个球都是红球的概率是________.16.分别从、、、四个数中随机取两个数,第一个作为十位数字,第二个作为个位数字,组成一个两位数,则这个两位数是的倍数的概率是________.17.一个口袋里有个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验次,其中有次摸到黄球,由此估计袋中的黄球有________个.18.从下面的张牌中,任意抽取两张.其点数和是奇数的概率是________.第 1 页19.小红、小明、小芳在一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪刀、布、锤子”的方式确定,则在一回合中三个人都出“剪刀”的概率是________. 三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )20.把 张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出 张.请用列表或画树状图的方法表示出上述实验所有可能结果. 求这 张图片恰好组成一张完整风景图概率. 21.对一批西装质量的抽检情况如下:从这批西装中任选一套是正品的概率是多少? 若要销售这批西装 件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装? 22.小华有 张卡片,小明有 张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请用画树状图(或列表)的方法,求抽取的两张卡片上的数字和为 的概率. 23.在一个袋子中装有大小相同的 个小球,其中 个蓝色, 个红色. 从袋中随机摸出 个,求摸到的是蓝色小球的概率; 从袋中随机摸出 个,用列表法或树状图法求摸到的都是红色小球的概率; 在这个袋中加入 个红色小球,进行如下试验:随机摸出 个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在 ,则可以推算出 的值大约是多少? 24.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共 只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:“摸到白球”的概率的估计值是________(精确到 );试估算口袋中黑、白两种颜色的球各有多少只?25.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验. 他们在一次实验中共掷骰子 次,试验的结果如下: ②小红说:“根据实验,出现 点朝上的概率最大.”她的说法正确吗?为什么?小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.26.甲乙两人玩数字游戏,先由甲写一个数,再由乙猜甲写的数:要求:他们写和猜的数字只在 , 、 、 , 这五个数字中:请用列表法或树状图表示出他们写和猜的所有情况;如果他们写和猜的数字相同,则称他们“心灵相通”:求他们“心灵相通”的概率; 如果甲写的数字记为 ,把乙猜的数字记为 ,当他们写和猜的数字满足 ,则称他们“心有灵犀”,求他们“心有灵犀”的概率. 答案 1.B 2.B 3.C 4.D 5.D 6.C 7.A 8.C 9.D 10. 11.12.13. 14.15.16.17.18.19.20.解:用、表示一张风景图片被剪成的两半,用、表示另一张风景图片被剪成的两半,画树状图为:共有种等可能的结果数,其中张图片恰好组成一张完整风景图的结果数为,所以张图片恰好组成一张完整风景图的概率.21.解:答案为:;;;;;;从这批西装中任选一套是正品的概率是;为了方便购买次品西装的顾客前来调换,所进西装的件数(件).22.解:或∴ (抽取的两张卡片上的数字和为).23.解: ∵ 个小球中,有个蓝色小球,∴ (蓝色小球);画树状图如下:共有种情况,摸到的都是红色小球的情况有种,(摸到的都是红色小球); ∵大量重复试验后发现,摸到红色小球的频率稳定在,∴摸到红色小球的概率等于,∴,解得:.24.由摸到白球的概率为,所以可估计口袋中白种颜色的球的个数(个),黑球(个).答:黑球个,白球个.25.解: ① ;②说法是错误的.在这次试验中,“ 点朝上”的频率最大并不能说明“ 点朝上”这一事件发生的概率最大.因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率..26.解:如图所示:则他们“心灵相通”的概率为:.根据甲写的数字记为,把乙猜的数字记为,当他们写和猜的数字满足,则称他们“心有灵犀”,满足条件的事件是,可以列举出所有的满足条件的事件,第 3 页①若,则,;②若,则,,;③若,则,,;④若,则,,;⑤若,则,;总上可知共有种结果,∴他们“心有灵犀”的概率为:.。
第三章概率的进一步认识第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.三张外观相同的卡片上分别标有数字1,2,3,从中随机一次性抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A.13B.23C.16D.192.某学校在八年级开设了数学史、诗词赏析、陶艺三门课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一门课程的概率是( )A.12B.13C.16D.193.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A.16B.29C.13D.234.有3个整式x,x+1,2,先随机取一个整式作为分子,再从余下的整式中随机取一个作为分母,恰能组成分式的概率是( )A.13B.12C.23D.565.在物理课上,某实验的电路图如图1所示,其中S1,S2,S3表示电路的开关,L表示小灯泡,R为保护电阻.若闭合开关S1,S2,S3中的任意两个,则小灯泡L发光的概率为( )图1A.16B.13C.12D.236.如图2,两个转盘分别自由转动一次,当它们都停止转动时,两个转盘的指针都指向2的概率为( )图2A.12B.14C.18D.1167.在一个不透明的口袋里装了只有颜色不同的黄球、白球若干只.某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复这一过程.下表是活动中的一组数据,则摸到黄球的概率约是( )A.0.4 B.0.5 C.0.6 D.0.78.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下表格,则符合这一结果的试验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率9.为了估计不透明的袋子里装有多少个球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有球( )A.10个 B.20个 C.100个 D.121个10.有A,B两粒质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷骰子A,朝上的数字记作x;小张掷骰子B,朝上的数字记作y.在平面直角坐标系中有一矩形,四个点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王、小张各掷一次所确定的点P (x ,y )落在矩形内(不含矩形的边)的概率是( )A.23B.512C.12D.712请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.一个不透明的袋子中装有2个红球,1个绿球,这些球除颜色不同外其余都相同,从袋子中随机摸出一个小球记下颜色后放回,再随机摸出一个小球,则一次摸到红球一次摸到绿球的概率为________.12.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为________.13.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).14.点P 的坐标是(a ,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a ,b)在平面直角坐标系中第二象限内的概率是________.15.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取到白色棋子的概率是25.若再往盒中放进3颗黑色棋子,则取到白色棋子的概率变为14,原来围棋盒中有白色棋子______颗.16.如果任意选择一对有序整数(m ,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是________.三、解答题(共72分)17.(6分)不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支.(1)从文具袋中随机抽取1支笔芯,求恰好抽到的是红色笔芯的概率;(2)从文具袋中随机抽取2支笔芯,求恰好抽到的都是黑色笔芯的概率.(请用画树状图法或列表法求解)18.(6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球和黄球.怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次摸出1个球,放回盒中再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:由上述摸球试验可推算:(1)盒中红球、黄球占总球数的百分比分别是多少?(2)盒中有红球多少个?19.(8分)甲、乙、丙三名同学站成一排进行毕业合影留念,请用列表或画树状图的方法列出所有可能的情形,并求出甲、乙两人相邻的概率是多少.20.(8分)九年级某班组织全班活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买圆珠笔和铅笔两种奖品,已知圆珠笔的价格为2元/支,铅笔的价格为1元/支,且每种笔至少买一支.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的圆珠笔与铅笔数量相等的概率.21.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________;(2)如果小明将“求助”留在第二题使用,请用画树状图或者列表的方法来分析小明顺利通关的概率;(3)从概率的角度分析,你建议小明在第几题使用“求助”?22.(10分)小明、小芳做一个“配色”的游戏.如图3是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其他情况下不分胜负.(1)利用列表或画树状图的方法表示此游戏所有可能出现的结果;(2)此游戏规则对小明、小芳公平吗?试说明理由.图323.(12分)一个暗箱中有大小相同的1个黑球和n个白球(记为白1、白2、…、白n),每次从中取出一个球,取到白球得1分,取到黑球得2分,甲从暗箱中有放回地依次取出2个球,而乙从暗箱中一次性取出2个球.(1)若n=2,分别求甲取得3分的概率和乙取得3分的概率;(请用“画树状图”或“列表”等方式给出分析过程)(2)若乙取得3分的概率小于120,则白球至少有多少个?(请直接写出结果)24.(12分)五一假期,某公司组织部分员工分别到A,B,C,D四地旅游,公司按定额购买了前往各地的车票.图4是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,求去D地车票的数量,并补全条形统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),则员工小胡抽到去A地的车票的概率是多少?(3)若有一张车票,小王、小李都想要,最后决定采取抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用列表或画树状图的方法分析这个规则对双方是否公平.图4详解详析1.A [解析] 列表如下:3的情况有2种,∴P(两张卡片上的数字都小于3)=26=13.解题突破从m(m >2)张卡片中一次性抽出两张卡片,可以理解为先抽出一张,再从剩下的里面抽出一张,即属于“抽出不放回”试验问题,可见为两步试验问题,可用列表法求解.2.B [解析] 列表如下:共有9所以其概率为39=13.故选B . 3.C [解析] 画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C .4.C [解析] 画树状图如下:共有6种等可能的结果,其中恰能组成分式的结果数为4种, 所以恰能组成分式的概率为46=23.5.B [解析] 列表如下:共有613L 发光的概率是26=13.故选B . 6.D [解析] 列表如下:∵共有指针都指向2的概率为116.故选D .7.B [解析] 观察表格得:通过多次摸球试验后发现摸到黄球的频率稳定在0.5左右,则P(摸到黄球)=0.5.8.B [解析] A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C .抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D .抛一枚硬币,出现反面的概率为12,不符合题意.故选B .9.C10.B [解析] 画树状图如下:∵共有36种等可能的结果,小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的有15种情况,∴小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的概率是1536=512.故选B .11.49[解析] 画树状图如下:∵共有9种等可能的结果,一次摸到红球一次摸到绿球的有4种情况,∴一次摸到红球一次摸到绿球的概率是49.12.16[解析] 画树状图如下:∵共有12种等可能的结果,点落在第一象限的可能是(1,2),(2,1)两种情形, ∴该点在第一象限的概率为212=16. 13.公平 [解析] 两人写的数共有奇偶、偶奇、偶偶、奇奇四种情况,因此同为奇数或同为偶数的概率为24=12,一奇一偶的概率也为24=12,所以这个游戏对双方公平.14.15[解析] 画树状图如下:共有20种等可能的结果,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15.15.216.17 [解析] 依题意知m =0,±1,n =0,±1,±2,±3,∴有序整数(m ,n)共有3×7=21(种).∵方程x 2+nx +m =0有两个相等的实数根,∴Δ=n 2-4m =0,有(0,0),(1,2),(1,-2)三种可能,∴关于x 的方程x 2+nx +m =0有两个相等实数根的概率是321=17.17.[解析] (1)由不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到的都是黑色笔芯的情况,再利用概率公式即可求得答案.解:(1)∵不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,∴恰好抽到的是红色笔芯的概率为33+2=35.(2)画树状图如下:∵共有20种等可能的结果,恰好抽到的都是黑色笔芯的只有2种情况, ∴恰好抽到的都是黑色笔芯的概率为220=110.18.解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次, 所以红球所占百分比为20÷50×100%=40%,黄球所占百分比为30÷50×100%=60%.答:盒中红球占总球数的40%,黄球占总球数的60%.(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,所以总球数为8÷450=100,所以红球有40%×100=40(个).答:盒中有红球40个. 19.解:用树状图分析如下:∵一共有6种等可能的情况,甲、乙两人相邻的有4种情况, ∴甲、乙两人相邻的概率是46=23.20.解:(1)设买圆珠笔x 支,铅笔y 支, 则2x +y =15,所以y =15-2x. 当x =1时,y =13; 当x =2时,y =11; 当x =3时,y =9; 当x =4时,y =7; 当x =5时,y =5; 当x =6时,y =3; 当x =7时,y =1. 所以共有7种购买方案.(2)在这7种方案中,买到的圆珠笔与铅笔数量相等的只有1种,所以P(买到的圆珠笔与铅笔数量相等)=17.21.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是13.故答案为:13.(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示第二道单选题剩下的3个选项.画树状图如下:∵共有9种等可能的结果,小明顺利通关的只有1种情况, ∴小明顺利通关的概率为19.(3)∵如果在第一题使用“求助”,小明顺利通关的概率为18,如果在第二题使用“求助”,小明顺利通关的概率为19,∴建议小明在第一题使用“求助”. 解题突破(1)直接利用概率公式求解;(2)此问属于两次试验概率问题,注意第二次试验时只有三种可能;(3)比较第一题使用“求助”小明顺利通关的概率与第二题使用“求助”小明顺利通关的概率的大小,把“求助”用在通关概率大的那一次上.22.解:(1)用列表法将所有可能出现的结果表示如下:(2)不公平.理由:上面等可能出现的12种结果中,有3种情况能配成紫色,故配成紫色的概率是312,即小芳获胜的概率是14;但只有2种情况能配成绿色,故配成绿色的概率是212,即小明获胜的概率是16.而14>16,故小芳获胜的可能性大,这个“配色”游戏规则对双方是不公平的.23.解:(1)得3分,即为取到黑球、白球各1个. 甲从暗箱中有放回地依次取出2个球,画树状图如下:∴甲取得3分的概率为49;乙从暗箱中一次性取出2个球,画树状图如下:∴乙取得3分的概率=46=23.(2)若乙取得3分的概率小于120,则2n +1<120,∴n >39,∴白球至少有40个. 24.解:(1)设去D 地的车票有x 张,则x =(x +20+40+30)×10%,解得x =10. 答:去D 地的车票有10张. 补全条形统计图如图所示.(2)小胡抽到去A 地的车票的概率为2020+40+30+10=15.答:员工小胡抽到去A 地的车票的概率是15.(3)列表如下:小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),∴小王掷得着地一面的数字比小李掷得的着地一面数字小的概率为616=38.则小王掷得着地一面的数字不小于小李掷得的着地一面数字的概率为1-38=58.∵58≠38,∴这个规则对双方不公平.。
概率的进一步认识单元检测题(典型题汇总)一、选择题1. A、B、C、D四名选手参加50米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若A首先抽签,则A抽到1号跑道的概率是()A.1 B. C. D.2. 在一次质量抽测中,随机抽取某摊位20袋食盐,测得各袋的质量如下(单位:g):492 496 494 495 498 497 501502 504 496 497 503 506 508507 492 496 500 501 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5~501.5g之间的概率为()A. B. C. D.3. 下列词语所描述的事件是随机事件的是( )A.守株待兔 B.拔苗助长 C.刻舟求剑 D.竹篮打水4. 在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A. B. C.D.5. 在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个 B.6个 C.34个 D.36个6. 将100个数据分成8个组,如下表:则第六组的频数为()A.12 B.13 C.14 D.157. 下列说法正确的是( )A.随机事件概率值不可能为1 B.随机事件概率值可能为1C.随机事件概率一定是0 D.以上说法都不对8. 下列说法中正确的个数是()①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1 B.2 C.3 D.4二、填空题9. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子粒数85 398 652 793 1 604 4 005发芽频率0.850 0.745 0.851 0.793 0.802 0.80110. 在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.11. 在一个不透明的布袋子中有只有颜色不同的10个球,连续10次从中任意摸出1个球,放回搅匀再摸.在连续10次试验中,摸到红球的频率是30%,在连续500次试验中摸到红球的频率是40%,那么袋中很可能有红球________个.12. 某个地区从某年起几年内的新生婴儿数及其中男婴数如下表:时间范围1年内2年内3年内4年内新生婴儿数5544 9013 13520 17191男婴数2716 4899 6812 8590男婴出生频率这一地区男婴出生的概率约是_______.13. 某射手在同一条件下进行射击,结果如下表所示:射击次数n 击中靶心数m 击中靶心频率10 9 0.920 19 0.9550 44 0.88100 91 0.91200 178 0.89500 451 0.90214. 投掷一枚正六面体的骰子,每个面上依次有数字1,2,3,4,5,6.(2)掷得的数不是“ 1” 的概率是__________,意思是__________.三、解答题15. 在硬币还没有抛出前,你能否预测每次抛出的结果?假如你已经抛掷了1 000次,你能否预测第1 001次抛掷的结果?16. 某种彩票的中奖概率是1%,买1张就不会中奖吗?买100张就一定会中奖吗?谈谈你的看法.17. 小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:朝上的点数 1 2 3 4 5 6出现的次数7 9 6 8 20 10(1)计算“3点朝上”(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树形图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.18. 某彩票的中奖机会是,买1张彩票一定不会中奖吗?买1000张彩票一定会中奖吗?参考答案一、选择题DBACB DBC二、填空题9、0.810、11、412、(1)0.49,0.54,0.50,0.50;(2)0.5013、0.914、(1)投掷次数较多时,平均每6次就有1次“ 1” 出现(2)投掷次数较多时,平均每6次就有5次不出现“1”三、解答题15、解:因为每次抛出前,出现的结果是不确定事件,故不能预测每次抛出后的结果.假如已经抛掷了1 000次,也不能预测第1 001次抛掷的结果.16、解:买1张可能中奖,买100张也有可能不中奖,因为中奖是一个随机事件,每次试验都可能发生,也可能不发生.17、解:(1)“3点朝上”出现的频率是=;“5点朝上”出现的频率是=.(2)小颖的说法是错误的.这是因为,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次.(3)列表如下:P(点数之和为3的倍数)= = .18、买1张彩票有可能中奖,买1000张彩票不一定会中奖.概率的进一步认识单元检测题(典型题汇总)(120分,90分钟) 题 号一 二 三 总 分 得 分 一、选择题(每题3分,共30分)1.小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )A.110B.25C.15D.3102.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是( )A .盖面朝下的频数是55B .盖面朝下的频率是0.55C .盖面朝下的概率不一定是0.55D .同样的试验做200次,落地后盖面朝下的有110次3.两道单选题都含A ,B ,C ,D 四个选项,瞎猜这两道题,恰好全部猜对的概率是( )A.12B.14C.18D.1164.事件A :打开电视,它正在播广告;事件B :抛掷一枚均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P (A ),P (B ),P (C ),则P (A ),P (B ),P (C )的大小关系正确的是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )(第5题)5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开.小明从入口1进入并从出口A 离开的概率是( )A.12B.13C.14D.166.王阿姨在网上看中了一款防雾霾口罩,付款时需要输入11位的支付密码,她只记得密码的前8位,后3位由1,7,9这3个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A.12B.14C.16D.187.同时抛掷A ,B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两个小立方体朝上的数字分别为x ,y ,并以此确定点P (x ,y ),那么点P 落在函数y =-2x +9的图象上的概率为( )A.118B.112C.19D.168.在一个不透明的盒子里装有只颜色不同的黑、白两种球共40个.小亮做摸球试验,他将盒子内的球搅匀后从中随机摸出一个球,记下颜色后放回,不断重复上述过程,对试验结果进行统计后,小亮得到下表中的数据:则下列结论中正确的是( )A .n 越大,摸到白球的概率越接近0.6B .当n =2 000时,摸到白球的次数m =1 200C .当n 很大时,摸到白球的频率将会稳定在0.6附近D .这个盒子中约有28个白球9.让图中的两个转盘分别自由转动一次(两个转盘均被分成4等份),当转盘停止转动时,两个指针分别落在某两个数所表示的区域内,则这两个数的和是5的倍数或3的倍数的概率等于( )A.316B.38C.916D.1316(第9题) (第10题) (第14题) (第18题)10.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A.14B.25C.23D.59二、填空题(每题3分,共24分)11.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n =________.13.从8,12,18,32中随机抽取一个根式,化简后与2的被开方数相同的二次根式的概率是________.14.如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可以使小灯泡发光,任意闭合其中两个开关,使小灯泡发光的概率为________.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他第一次就能走出迷宫的概率是________.16.某市举办“体彩杯”中学生篮球赛,初中男子组有市区学校的A ,B ,C 三个队和县区学校的D,E,F,G,H五个队.如果从A,B,D,E四个队与C,F,G,H四个队中各抽取一个队进行首场比赛,那么参加首场比赛的两个队都来自县区学校的概率是________.17.在一个暗盒中放有若干个白色球和2个黑色球(这些球除颜色外无其他区别),若从中随机取出1个球是白色球的概率是35,则在暗盒中随机取出2个球都是白色球的概率是________.18.如图,一个质地均匀的正四面体的四个面上依次标有数-2,0,1,2,连续抛掷两次,朝下一面的数分别是a,b,将其作为点M的横、纵坐标,则点M(a,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是________.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.如图,小明做了A,B,C,D四张同样规格的硬纸片,它们的背面完全相同,正面分别画有等腰三角形、圆、平行四边形、正方形.小明将它们背面朝上洗匀后,随机抽取两张.请你用列表或画树状图的方法,求小明抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的概率.(第19题)20.一个瓶中装有一些幸运星,小王为了估计这个瓶中幸运星的颗数,他是这样做的:先从瓶中取出20颗幸运星做上记号,然后把这些幸运星放回瓶中,充分摇匀,再从瓶中取出30颗幸运星,发现有6颗幸运星带有记号,请你帮小王估算出原来瓶中幸运星的颗数.21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.求:(1)取出纸币的总额是30元的概率;(2)取出纸币的总额可购买一件51元的商品的概率.22.学校实施新课程改革以来,学生的学习能力有了很大的提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图①②).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(第22题)23.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.(1)写出所有选购方案(利用树状图或表格求选购方案).(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?(3)现某中学准备购买两个品种的粽子共32盒(价格如下表)发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1 200元,请问:购买了多少盒甲厂家的高档粽子?参考答案一、1.C 2.D 3.D 4.B 5.C6.C 点拨:因为后3位由1,7,9这3个数字组成,所以后3位可能的结果有:179,197,719,791,917,971.所以她第一次就输入正确密码的概率是16.故选C.7.B 点拨:列表如下:∴有36种等可能情况,点P(x,y)落在y=-2x+9的图象上的有(2,5)(3,3)(4,1)共3种情况,故其概率为336=1 12.8.C9.C点拨:列表如下:所有等可能的情况有16种,其中两个数的和是5的倍数或3的倍数的情况有9种,则P=916,故选C.(第10题)10.B点拨:如图,正六边形中连接任意两点可得15条线段,其中AC,AE,BD,BF,CE,DF这6条线段的长度为3,∴所求概率为615=2 5.二、11.34 点拨:随机掷一枚质地均匀的硬币两次,可能出现的结果有(正,正)、(正,反)、(反,正)、(反,反)4种,且每种结果出现的可能性相同,至少有一次正面朝上的结果有3种,故所求概率是34.12.10 13.34 14.12 15.1816.38点拨:列表如下:由表格可知共有16种等可能情况,参加首场比赛的两个队都来自县区学校的有6种情况,所以概率为616=38.17.31018.716 点拨:列表如下:(第18题)由表格知共有16种等可能的结果,而落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的点有(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2),共7种,如图,所以点M 落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是716.三、19.解:列表如下:由表格可看出,所有可能出现的结果共有12种,每种结果出现的可能性都相同,其中抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的结果共有2种,故所求概率P =212=16.20.解:设原来瓶中幸运星大约有x 颗,则有20x =630.解得x =100.经检验,符合题意.∴原来瓶中幸运星大约有100颗.21.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即10元与20元,10元与50元,20元与50元,并且它们出现的可能性相等.(1)取出纸币的总额是30元(记为事件A )的结果有1种,即10元与20元,所以P (A )=13.(2)取出纸币的总额可购买一件51元的商品(记为事件B )的结果有2种,即10元与50元,20元与50元,所以P (B )=23.22.解:(1)20 (2)补图如图所示.(第22题)(3)列表如下,A 类学生中的两名男生分别记为男A 1和男A 2,共有6种等可能的结果,其中,一男一女的有3种,所以恰好选中一名男生和一名女生的概率为36=12.23.解:(1)所求概率P =36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果, ∴P (小亮胜)=936=14,P (小丽胜)=936=14.∴该游戏是公平的.24.解:(1)画树状图如图所示:(第24题)或列表如下: 共有6种选购方案:(高档,精装)、(高档,简装)、(中档,精装)、(中档,简装)、(低档,精装)、(低档,简装).(2)因为选中甲厂家的高档粽子的方案有2种,即(高档,精装)、(高档,简装),所以甲厂家的高档粽子被选中的概率为26=13. (3)由(2)可知,当选用方案(高档,精装)时,设分别购买高档粽子、精装粽子x 1盒、y 1盒,根据题意,得⎩⎪⎨⎪⎧x 1+y 1=32,60x 1+50y 1=1 200. 解得⎩⎪⎨⎪⎧x 1=-40,y 1=72.经检验,不符合题意,舍去. 当选用方案(高档,简装)时,设分别购买高档粽子、简装粽子x 2盒、y 2盒,根据题意,得⎩⎪⎨⎪⎧x 2+y 2=32,60x 2+20y 2=1 200. 解得⎩⎪⎨⎪⎧x 2=14,y 2=18.经检验,符合题意. 故该中学购买了14盒甲厂家的高档粽子.19、。
一、选择题1.下列说法正确的是( )A.连续挪一枚质地均匀的骰子100次,其中擦出5点的次数最少,则第101次一定出5点B.某种彩票中奖的概率是1%,因此买100张这种彩票,一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半的时间在下雨D.任意抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2.下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③ 若再次使用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是( )A.①B.②C.①②D.①③3.在一个不适明的发子中装有四个小球,它们除分别标有的号码5,6,7,8不同外,其他完全相同若任意从袋子中摸出一球后不放同,再任意从袋子中摸出一球,则第二次摸出球的号码与第一次换出球的号码的和等于15的概率是( )A.12B.34C.14D.164.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟,刚把两人洗完,就听到两个小家伙在床上笑,“你们笑什么?”妈妈问“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为( )A.14B.13C.12D.15.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6.做抛掷同一枚啤酒瓶盖的重复实验,经过统计得“凸面朝上”的频率为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为( )A.22%B.44%C.50%D.56%7.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指( )A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次硬币,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越趋近于0.58.袋中有同样大小的6个小球,其中3个黑色,3个白色,从袋中任意地同时摸出两个球,则两个球均为黑球的概率是( )A.15B.13C.23D.149.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷个质地均匀的正六面体股子,向上的面点数是偶数C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃10.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( )A.红球比白球多B.白球比红球多C.红球、白球一样多D.无法估计二、填空题11.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字1,2,每人每次从每组中抽出一张,两张牌的数字之积为2的概率为.12.某学习小组的同学做摸球实验时,在一个暗箱里放了多个只有颜色不同的小球,将小球搅匀后任意摸出一个,记下颜色并放回暗箱,再次将球搅匀后任意摸出一个,不断重复.下表是实验过程中记录的数据:摸球的次数n2003004005008001000摸到白球的次数m117186242296483599摸到白球的频率nm0.5850.6200.6050.5920.6040.599请估计从暗箱中任意摸出一个球是白球的概率是.13.某射击运动员在相同条件下进行射击训练,结果如下:射击次数102040501002005001000击中靶心的频数919374589181449901击中靶心的频率0.9000.9500.9250.9000.8900.9050.8980.901该射击运动员击中靶心的概率的估计值是.(精确到0.01)14.甲、乙两组分别对A,B,C三个小区中的一个进行“垃圾分类”和“违规停车”情况检查.根据两组随机抽取的所有可能情况的树形图,可知两组恰好抽到同一个小区的概率是.15.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.16.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n10001500250040008000150002000030000成活的棵树m8651356222035007056131701758026430成活的频率mn0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为.17.在一个不透明的口袋中装有红球和白球共40个,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则口袋中红球有.三、解答题18.有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1) 从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为.(2) 若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.19.有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1) 先后两次抽得的数字分别记为x和y,画出树形图或列表求∣x−y∣⋯1的概率.(2) 甲、乙两人做游戏,现有两种方案.A方案:若两次抽得相同花色则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?20.两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1) 求得样本容量为,并补全直方图;(2) 如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3) 已知A 组发表提议的代表中恰有1位女士,E 组发表提议的代表中只有2位男士,现从A组与 E 组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.21.一个不透明的口袋里装有分别标有汉字“美”、“丽”、“南”、“山”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1) 若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2) 若甲从中任取一球,不放回,再从中任取一球,请用树状图法或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“南山”的概率.22.为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面不完整的统计图.(1) 求n并补全条形统计图.(2) 求这n户家庭的月平均用水量.并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数.(3) 从月用水量为5m3和和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率.23.一个不透明的袋子中装有3个标号分别为1,2,3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1) 采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2) 求摸出的两个小球号码之和等于4的概率.24.某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球B.乒乓球C.羽毛球D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1) 这次被调查的学生共有人,在扇形统计图中“D”对应的圆心角的度数为;(2) 请你将条形统计图补充完整;(3) 在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).25.甲、乙两人面前分别摆有3张完全相同的背面向上的卡片,甲面前的卡片正面分别标有数字0,1,2;乙面前的卡片正面分别标有数字−1,−2,0;现甲从面前随机抽取一张卡片,卡片正面上的数字记为x,乙从面前随机抽取一张卡片,卡片正面上的数字记为y,设点M的坐标为(x,y).用树形图或列表法求点M在函数y=−2图象上的概率.x答案一、选择题1. 【答案】D【解析】A.是随机事件,故A错误;B.中奖的概率是1%,买100张该种彩票不一定会中奖,故B错误;C.明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,故C错误;D.正确.【知识点】事件的分类、公式求概率、用频率估算概率2. 【答案】B【知识点】用频率估算概率3. 【答案】D【解析】根据题意画图如下:共有12种等可能的结果数,其中第二次摸出球的号码与第一次换出球的号码的和等于15的有2种,则第二次摸出球的号码与第一次换出球的号码的和等于15的概率是212=16;故选:D.【知识点】树状图法求概率4. 【答案】A【解析】此事件发生的概率14.故选:A.【知识点】树状图法求概率5. 【答案】D【解析】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以D选项说法正确,故选D.【知识点】用频率估算概率6. 【答案】B【解析】∵凸面向上”的频率约为0.44,∴估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为0.44=44%.【知识点】用频率估算概率7. 【答案】D【知识点】用频率估算概率8. 【答案】A【知识点】树状图法求概率9. 【答案】B【知识点】用频率估算概率10. 【答案】A【知识点】用频率估算概率二、填空题11. 【答案】12【解析】画树形图得:由树状图可知共有2×2=4种可能,两张牌的和为3的有2种,∴概率24=12.【知识点】树状图法求概率12. 【答案】0.599【知识点】用频率估算概率13. 【答案】0.90【解析】随着试验次数的增加,击中靶心的频率稳定在0.90附近,故概率的估计值是0.90.【知识点】用频率估算概率14. 【答案】13【解析】由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,∴两个组恰好抽到同一个小区的概率为39=13.【知识点】树状图法求概率15. 【答案】 0.3【解析】根据概率公式摸出黑球的概率是 1−0.2−0.5=0.3. 【知识点】用频率估算概率16. 【答案】0.881【知识点】用频率估算概率17. 【答案】 10 个【解析】 40×0.25=10(个). 【知识点】用频率估算概率三、解答题 18. 【答案】(1) 25(2) 画树状图如下:由树状图知,共有 20 种等可能的结果.卡片B ,C ,E 上的图案是轴对称图形,所以两次所抽取的卡片恰好都是轴对称图形的有 6 种结果,所以两次所抽取的卡片恰好都是轴对称图形的概率为 620=310. 【解析】(1) 卡片A 和D 上的图案是中心对称图形,所以从中随机抽取 1 张卡片,卡片上的图案是中心对称图形的概率为 25,故答案为 25.【知识点】树状图法求概率、公式求概率19. 【答案】(1) 列表如下:红桃3红桃4黑桃5红桃3(红桃3,红桃3)(红桃4,红桃3)(黑桃5,红桃3)红桃4(红桃3,红桃4)(红桃4,红桃4)(黑桃5,红桃4)黑桃5(红桃3,黑桃5)(红桃4,黑桃5)(黑桃5,黑桃5)所有等可能的情况有9 种,其中 ∣x −y ∣⋯1 的情况有 6 种, 则 P =69=23;(2) A 方案:两次抽得相同花色的情况有 5 种,不同花色的情况有 4 种, 则 P(甲获胜)=59,P(乙获胜)=49;B方案:两次抽得数字和为奇数的情况有4种,偶数的情况有5种,则P(甲获胜)=49,P(乙获胜)=59,则甲选择A方案胜率更高.【知识点】列表法求概率20. 【答案】(1) 50;补全的直方图如下图所示.(2) 1700×(8%+10%)=306(人),即会议期间组织1700名代表参会,在这一天里发言次数不少于12次的人数是306人.(3) 由统计图可知,发言次数为A 的人数有:50×6%=3(人),发言次数为E 的人数有:50×8%=4(人),由题意可得,故所抽的两位代表恰好都是男士的概率是412=13,即所抽的两位代表恰好都是男士的概率是13.【知识点】频数分布表及直方图、树状图法求概率、用样本估算总体、扇形统计图21. 【答案】(1) ∵口袋里装有分别标有汉字“美”、“丽”、“南”、“山”的四个小球且从中任取一球,∴P(摸出球上的汉字刚好是“美”)=14.(2) 列表如下:所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“美丽”或“南山”的情况有4种,则P=412=13.【知识点】公式求概率、列表法求概率22. 【答案】(1) n=(3+2)÷25%=20.月用水量为8m3的户数为20×55%−7=4户,月用水量为5m3的户数为20−(2+7+4+3+2)=2户,补全图形如下:(2) 这20户家庭的月平均用水量为4×2+5×2+6×7+8×4+9×3+10×220=6.95(m3),因为月用水量低于6.95m3的有11户,所以估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为420×1120=231户.(3) 月用水量为5m3的两户家庭记为a,b,月用水量为9m3的3户家庭记为c,d,e,列表如下:a b c d ea(b,a)(c,a)(d,a)(e,a)b(a,b)(c,b)(d,b)(e,b)c(a,c)(b,c)(d,c)(e,c)d(a,d)(b,d)(c,d)(e,d)e(a,e)(b,e)(c,e)(d,e)由表可知,共有20种等可能结果,其中满足条件的共有12种情况,所以选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为1220=35.【知识点】条形统计图、列表法求概率23. 【答案】(1) 根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2) 由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为26=13.【知识点】树状图法求概率24. 【答案】(1) 200;72∘(2) C类人数为200−80−20−40=60(人),完整条形统计图为:(3) 画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种.∴P(恰好选中甲、乙两位同学)=212=16.【解析】(1) 20÷36∘360∘=200(人),∴这次被调查的学生共有200人,在扇形统计图中“D”对应的圆心角的度数=40200×360∘=72∘.【知识点】扇形统计图、条形统计图、树状图法求概率25. 【答案】画树状图得:由树形图可知,一共有9种等可能的情况;其中,点M在函数y=−2x图象上的有2种:(1,−2),(2,−1),∴点M在函数y=−2x 图象上的概率为29.【知识点】树状图法求概率。
北师版数学九年级上册第三章概率的进一步认识 单元测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A.19 B.16 C.13 D.232. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( ) A.112 B.110 C.16 D.253. 如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5254. 小明有2件上衣,分别为红色和蓝色;有3条裤子,其中2条为蓝色,1条为棕色.小明任意拿出1件上衣和1条裤子穿上,则小明穿的上衣和裤子恰好都是蓝色的概率是( ) A.13 B.12 C.23 D.345. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是( ) A.19 B.127 C.59 D.136. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( ) A.12 B.13 C.59 D.497. 如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( ) A.34 B.13 C.23 D.128.一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p ,再随机摸出另一个小球,其数记为q ,则满足关于x 的方程x 2-px +q =0有实数根的概率是( )A.12B.13C.23D.569.小兰和小潭分别用掷A ,B 两枚正六面体骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小潭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y =-2x +6上的概率为( )A.16B.118C.112D.1910. 如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( ) A.12 B.13 C.14 D.15第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是________.12. 有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为________.13. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为_________.14. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_______.15.2018年10月14日,韵动中国·2018广安国际红色马拉松赛激情开跑.上万名跑友在小平故里展开激烈的角逐.某校从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是_______.16.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,②两数在相对位置上的概率是_______.17.如图所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是_________18.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是________三.解答题(共8小题,66分)19.(6分) 一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.20.(6分) 某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图或列表的方法给出分析过程)21.(8分)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2,3,4,5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙同学的方案公平吗?(只回答,不用说明理由).22.(8分)有2部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择1部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x +b4=0有实数根的概率.24.(8分) 在四张背面完全相同的纸牌A ,B ,C ,D 中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.25.(10分) 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.26.(12分) 小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:1-5CACAA 6-10DDABB11. 2312.41513. 4914. 100 15. 3516. 1317.12518. 2919. 解:列表如下:所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P =39=1320. 解:列表如下:由表可知共有4种等可能的结果,其中恰好抽到由男生甲、女生丙和这位班主任一起上场比赛的情况只有1种,∴其概率为1421. 解:(1)甲同学的方案不公平.理由:列表如下:所有出现的等可能结果共有12种,其中抽出的牌面上的数字之和为奇数的有8种,故小明获胜的概率为812=23,则小刚获胜的概率为13,故此游戏两人获胜的概率不相同,即甲同学的方案不公平(2)不公平22. 解:(1)甲选择A 部电影的概率=12(2)画树状图为:共有8种等可能的结果,其中甲、乙、丙3人选择同1部电影的结果有2种,所以甲、乙、丙3人选择同1部电影的概率为28=1423. 解:(1)画树状图略,总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:320(2)∵方程ax 2+3x +b4=0有实数根的条件为:9-ab≥0,∴满足ab≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),∴关于x 的方程ax 2+3x +b4=0有实数根的概率为:1420=71024. 解:(1)画树状图如图所示:则共有12种等可能的结果(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴既是轴对称图形又是中心对称图形的有2种情况,∴既是轴对称图形又是中心对称图形的概率为212=1625. 解:(1)12(2)画树状图得:则共有12种等可能的结果.列表得:∴乙获胜的概率为51226. 解:(1)1个(2)画树状图如图,所以两次摸到不同颜色球的概率为:P =1012=56(3)设小明摸到红球x 次,摸到黄球y 次,则摸到红球有(6-x -y)次,由题意得5x +3y +(6-x -y)=20,即2x +y =7,y =7-2x.因为x 、y 、(6-x -y)均为自然数,所以当x =1时,y =5,6-x -y =0;当x =2时,y =3,6-x -y =1;当x =3时,y =1,6-x -y =2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次。
2018-2019学年度第一学期北师大版九年级数学上册第三章概率的进一步认识单元评估检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.2 5B.310C.320D.152.一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6B.10C.18D.203.5月19日为中国旅游日,宁波推出“读万卷书,行万里路,游宁波景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从奉化溪口、象山影视城、宁海浙东大峡谷中随机选择一个地点;下午从宁波动物园、伍山石窟、东钱湖风景区中随机选择一个地点游玩,则王先生恰好上午选中宁海浙东大峡谷,下午选中东钱湖风景区这两个地的概率是()A.19B.13C.23D.294.一个不透明的袋子中装有4张卡片,卡片上分别标有数字−3,1,√2,2,它们除所标数字外完全相同,摇匀后从中随机摸出两张卡片,则两张卡片上所标数字之积是正数的概率是()A.1 2B.13C.14D.345.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A.1 6B.14C.13D.126.茗茗做抛掷硬币的游戏,抛一枚硬币三次,出现两正一反的概率是()A.18B.38C.14D.127.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24B.18C.16D.68.在同一平面内,从①AB // CD,②BC // AD,③AB=CD,④BC=AD.这四个条件中任选两个能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种9.某口袋里现有8个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验50次,其中有20个红球,估计绿球个数为()A.6B.12C.13D.2510.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,A.8B.9C.12D.13二、填空题(共 10 小题,每小题 3 分,共 30 分)11.随机掷两枚硬币,落地后全部正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,把它放回袋中,搅匀后,再摸出一球,…通过多次试验后,发现摸到黑球的频率稳定于0.5,则n的值大约是________.13.有红黄蓝三种颜色的小球各一个,它们除颜色外完全相同,将这三个小球随机放入编号为①②③的盒子中,若每个盒子放入一个小球,且只放入一个小球,则黄球恰好被放入③号盒子的概率为________.14.一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有________个.15.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x,朝下一面的数为y,得到平面直角坐标系中的一个点(x, y).已知小华前二次掷得的两个点所确定的直线经过点P(0, −1),则他第三次掷得的点也在这条直线上的概率为________.16.同学们,你们都知道猜“石头、剪子、布”的游戏吧!如果你和某同学两人做这个游戏,随机出手一次,你获胜的概率是________.17.小红、小明、小芳在一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪刀、布、锤子”的方式确定,则在一回合中三个人都出“剪刀”的概率是________.18.一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同.(1)搅匀后,从中任意摸出一个球,恰好是红球的概率是________;(2)搅匀后,从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.①求两次都摸到红球的概率;②经过了n次“摸球-记录-放回”的过程,全部摸到红球的概率是________.19.学校安排三辆车,组织九年级学生团员去敬老院慰问老人,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.在一个不透明的盒子里,装有四个分别写有数字−2、−1、1、2的乒乓球(形状、大小一样),先从盒子里随机取出一个乒乓球,记下数字后放回盒子,然后搅匀,再从盒子里随机取出一个乒乓球,记下数字.(1)请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率;(2)求两次取出乒乓球上的数字之和等于0的概率.22.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.(1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”.甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件________;乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球________;(2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为12,你认同吗?请画树状图或列表计算说明.23.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?24.在一个不透明的盒子里装有三个分别写有数字6,−2,7的小球,它们的形状、大小、质地完全相同,先从盒子里随机抽取一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字,请你用画树状图或列表的方法求两次取出小球上的数字和大于10的概率.25.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.26.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得10元的购物券.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?答案1.B2.D3.A4.A5.A6.B7.C8.B9.B10.C11.1412.1013.1314.1515.2316.1317.12718.23.(2)①画树状图得:∵共有9种,它们出现的可能性相同.所有的结果中,满足“两次都是红球”(记为事件B )的结果只有4种,∴P(B)=49;②∵经过了n 次“摸球-记录-放回”的过程,共有3n 种等可能的结果,全部摸到红球的有2n 种情况,∴全部摸到红球的概率是:(23)n . 故答案为:(23)n .19.13 20.0.9521.解:(1)画树形图得:所以两次取出乒乓球上的数字相同的概率=416=14(2)由(1)可知:两次取出乒乓球上的数字之和等于0的概率P =14. 22.√×(2)不认同. 画树状图得:∵共有6种等可能的结果,摸出的球中有白球的有2种情况,∴P (摸出的球中有白球)=23≠12. 故不认同.23.解:(1)如图所示:(2)所有的情况有6种,A 型器材被选中情况有2中,概率是26=13. 24.解:P (两数和大于10)=925.解:游戏不公平,理由如下:游戏结果分析如下:“√”表示配成紫色,“×”表示不能够配成紫色.P(配紫色)=6=3,P(没有配紫色)=6,∵1 3≠23,∴这个游戏对双方不公平.26.解:(1)整个圆周被分成了20份,转动一次转盘获得购物券的有9种情况,所以转动一次转盘获得购物券的概率=920;(2)根据题意得:转转盘所获得的购物券为:50×120+30×320+20×520=12(元),∵12元>10元,∴选择转盘对顾客更合算.。
单元测试(三) 概率的进一步认识(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( )A.12B.13C.23D.142.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5163.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A.13B.16C.23D.194.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1125.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.216.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.127.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.238.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.199.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.1210.有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1211.小明和小亮做游戏,先是各自背着对方在纸上写一个不大于100的正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A.对小明有利 B.对小亮有利C.是公平的D.无法确定对谁有利12.如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是( )A.34B.23C.13D.1213.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )A.16B.13C.12D.2314.如图,直线a∥b,直线c与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )A.35B.25C.15D.2315.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分)16.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.18.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.19.“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.20.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表方法,求出两次摸出的球上的数字之和为偶数的概率.22.(8分)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,则小鸟落在草坪上的概率是________;(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少?(用树形图或列表法求解)23.(10分)在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少?24.(12分)“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?25.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:摸球总10 20 30 60 90 120 180 240 330 450(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.26.(14分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)27.(16分)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?参考答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.D 9.C10.A 11.C 12.B 13.C 14.A 15.B 16.13 17.2 100个 18.12 19.35 20.5821.1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出的球上的数字之和为偶数的概率为59. 22.(1)23(2)P(编号为A 、B 的2个小方格空地种植草坪)=26=13.23.画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD 是平行四边形的概率是812=23. 24.(1)略.(2)P(不谋而合)=13.,3,4,5,7 3,,7,8,10 4,7,,9,11 5,8,9,,12 7,10,11,12, 25.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4). 26.(1)P =36=12.(2)游戏公平.理由如下:小亮 小丽1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5)(5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 27.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表 A B B A (A ,A) (A ,B) (A ,B) B (B ,A) (B ,B) (B ,B) B(B ,A)(B ,B)(B ,B)共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3) ∵23>59, ∴此游戏对甲更有利.。
辽宁省凌海市石山初级中学2013-2014学年九年级上学期数学寒假
作业 统计与概率(七) 北师大版
1.课改实验区学生的综合素质状况受到全社会的广泛关注.市有关部门对全市9200名学生数学学业考试状况
进行了一次抽样调查,从中随机抽查了5所初中 九年级全体学生的数学调考成绩,右图是2005年 5月抽样情况统计图.这5所初中的九年级学生的 得分情况如下表(数学学业考试满分120分)
①这5所初中九年级学生的总人数有多少人?
②统计时,老师漏填了表中空白处的数据,请你帮老师填上; ③随机抽取一人,恰好是获得120分的概率是多少? ④从上表中,你还能获得其它的信息吗?(写出一条即可).
2.今年4月19日我市成功的举办了2005年菏泽国际牡丹花会,吸引了众多的国内外贸易洽谈及旅游观光人士,起到了“以花为媒,促进菏泽经济发展”的作用.花会期间,对六家大宾馆、饭店中游客的年龄(年龄取整数)进行了抽样统计,经整理后分成六组,并绘制
分数段
5所学校 20%
成频率分布直方图,如图所示.已知从左到右六个小组的频率分别是0.08,0.20,0.32,0.24,0.12,0.04.第一小组频数为8,请结合图形回答下列问题:
(1)这次抽样的样本容量是多少?
(2)样本中年龄的中位数落在第几小组内?(只要求写出答案)
(3)花会这天参观牡丹的旅客约有8000人,请你估计在20.5~50.5年龄段的游客约有多少人?
y
x
年龄。