2018-2019学年高中物理沪科版必修二教师用书:章末检测试卷(一) Word版含答案
- 格式:docx
- 大小:1.31 MB
- 文档页数:9
(时间:60分钟满分:100分)一、选择题(本题共10小题,每小题6分,共60分.在每小题给出的四个选项中第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分)1.打开自来水开关,让水慢慢如线状流下,把用丝绸摩擦过的玻璃棒靠近水流,将看到( )A.水流仍竖直向下流B.水流向靠近玻璃棒的方向偏转C.水流向远离玻璃棒的方向偏转D.若换用毛皮摩擦过的橡胶棒靠近水流,看到的现象会和玻璃棒的方向相反【解析】带电体具有吸引轻小物体的性质,不论带电体带何种电荷,都对水流具有吸引力作用,故只有B正确.【答案】B2.如图1所示,原来不带电的绝缘金属导体,在其两端下面都悬挂着金属验电箔;若使带负电的绝缘金属球A靠近导体的右端,可能看到的现象是( )图14.如图2所示,悬挂在O点的一根不可伸长的绝缘细线下端有一个带电荷量不变的小球A.在两次实验中,均缓慢移动另一带同种电荷的小球B.当B到达悬点O的正下方并与A在同一水平线上,A处于受力平衡时,悬线偏离竖直方向的角度为θ,若两次实验中B的电荷量分别为q1和q2,θ分别为30 °和45 °则为( )【导学号:29682101】图2A.2 B.3 C.2 D.3 3【解析】设细线长为l,A的带电荷量为Q.A与B处在同一水平线上,以A为研究对象,受力分析,作出受力图,如图所示.根据平衡条件可知,库仑力跟重力的合力与细线的拉力等大反向,由几何关系列式得tanθ=,其中F=k,两式整理得:q=,将题干中的两种情况代入得:==2.【答案】C5.两个大小相同的金属球,所带电荷量分别为3Q和-Q,相距r 时(r远大于金属球半径),它们之间的相互作用力大小为F.现将两球接触后分开,并使它们相距2r,则它们之间的相互作用力大小将变为( )【导学号:29682102】A. B.F8C. D.F16【解析】两球接触前的相互作用力大小F=k=.两球接触后,电荷先中和再平分,两球分开后的带电量均为=Q,所以两球间的作用力大小变为F′==.由以上可知F′=.【答案】C6.如图3,三个点电荷a、b、c位于正三角形的三个顶点上,a、c 带正电,b带负电,a所带电荷量比b所带电荷量少,关于c受到a和b的静电力的合力方向,下列判断正确的是( )图3A.从原点指向第Ⅰ象限B.从原点指向第Ⅱ象限C.从原点指向第Ⅲ象限D.从原点指向第Ⅳ象限【解析】a、c带正电,b带负电,则a对c的作用力为斥力,b 对c的作用力为引力,a所带电荷量比b所带电荷量少,则a对c的作用力小于b对c的作用力,所以c受到a和b的静电力的合力方向从原点指向第Ⅳ象限,选项D正确.【答案】D7.如图4所示,用两根长度相同的绝缘细线把一个质量为0.1 kg 的小球A悬挂到水平板的M、N两点,A上带有Q=3.0×10-6 C的正电荷.两线夹角为120°,两线上的拉力大小分别为F1和F2.A的正下方0.3 m处放有一带等量异种电荷的小球B,B与绝缘支架的总质量为0.2 kg(重力加速度g取10 m/s2;静电力常量k=9.0×109N·m2/C2,A、B球可视为点电荷),则( )【导学号:29682103】图4A.支架对地面的压力大小为2.0 NB.两线上的拉力大小F1=F2=1.9 NC.将B水平右移,使M、A、B在同一直线上,此时两线上的拉力大小F1=1.225 N,F2=1.0 ND.将B移到无穷远处,两线上的拉力大小F1=F2=0.866 N【解析】A对B有竖直向上的库仑力,大小为FAB==0.9 N;对B与支架整体分析,竖直方向上合力为零,则FN+FAB=mg,可得FN=mg-FAB=1.1 N,由牛顿第三定律知F′N=FN,选项A错误.因两细线长度相等,B在A的正下方,则两绳拉力大小相等,小球A受到竖直向下的重力、库仑力和F1、F2作用而处于平衡状态,因两线夹角为120°,根据力的合成特点可知:F1=F2=GA+FAB=1.9 N;当B移到无穷远处时,F1=F2=GA=1 N,选项B正确,选项D错误.当B水平向右移至M、A、B在同一条直线上时,如图所示,对A受力分析并沿水平和竖直方向正交分解,水平方向:F1cos 30°=F2cos 30°+F′cos 30°竖直方向:F1sin 30°+F2sin 30°=GA+F′sin 30°由库仑定律知,A、B间库仑力大小F′===0.225 N,联立以上各式可得F1=1.225 N,F2=1.0 N,选项C正确.【答案】BC8.原来甲、乙、丙三物体都不带电,今使甲、乙两物体相互摩擦后,乙物体再与丙物体接触,最后,得知甲物体带正电荷1.6×10-15 C,丙物体带电荷量的大小为8×10-16 C.则对于最后乙、丙两物体的带电情况,下列说法中正确的是( )A.乙物体一定带有负电荷8×10-16 CB.乙物体可能带有负电荷2.4×10-15 CC.丙物体一定带有正电荷8×10-16 CD.丙物体一定带有负电荷8×10-16 C【解析】由于甲、乙、丙原来都不带电,即都没有净电荷,甲、乙摩擦导致甲失去电子带1.6×10-15 C的正电荷,乙物体得到电子而带1.6×10-15 C的负电荷;乙物体与不带电的丙物体相接触,从而使一部分负电荷转移到丙物体上,故可知乙、丙两物体都带负电荷,由电荷守恒可知乙最终所带负电荷为1.6×10-15 C-8×10-16 C=8×10-16 C,故A、D正确.【答案】AD9.如图5是消除烟气中煤粉的静电除尘器示意图,它由金属圆筒和悬在管中的金属丝B组成,带煤粉的烟气从下方进气口进入,煤粉带负电,脱尘后从上端排气孔排出,要让除尘器正确工作,应该是( )图5A.AB应接直流电源,且A为正极B.AB应接交流电源,且B接火线C.其外壳A应接地,原因是以防触电D.其外壳A应接地,其原因是导走电荷以防爆炸【解析】AB应接直流电源,由于煤粉带负电,故A应为正极,A 正确,B错误.外壳A接地原因是防止触电为了安全,C正确,D错误.【答案】AC10.如图6所示,可视为点电荷的小球A、B分别带负电和正电,B固定,其正下方的A静止在绝缘斜面上,则A受力个数可能为( )图6A.A可能受到2个力作用近A,当两个带电小球在同一高度并且相距30 cm时,绳与竖直方向成45°角.(g取10 m/s2)图7(1)B球受到的库仑力多大?(2)A球所带的电荷量是多少?【解析】(1)球A受力如图,由力的平衡条件得:F=mgtanα=2×10-2N.由牛顿第三定律知B球受到的库仑力为2×10-2 N.(2)由库仑定律知:F=k QqAr2得:qA==C=5.0×10-8C.【答案】(1)2×10-2N (2)5.0×10-8C13.(14分)如图8所示,倾角为30°的直角三角形的底边BC长为2L,处在水平位置,O为底边中点,直角边AB为光滑绝缘导轨,OD 垂直AB.现在O处固定一带正电的物体,让一质量为M、带正电的小球从导轨顶端A由静止开始滑下(始终不脱离导轨),测得它滑到D处受到的库仑力大小为F,求它滑到B处的速度和加速度的大小.(重力加速度为g)【导学号:29682104】页码 / 总页数图8【解析】 带电小球沿光滑绝缘轨道从A 运动到B 的过程中,受到重力Mg 、轨道支持力N 及库仑斥力F 三个力的作用,其中支持力不做功,库仑斥力关于D 点对称,所做的功等效于零,即WF =0由动能定理可得:WG =Mg·(2Lcos 30°)·sin 30°=Mv 2B解得:vB =3gL带电小球受到的合外力沿轨道AB 斜向下,因为带电小球在D 点受到的库仑力为F =k =4k ,根据库仑定律求得在B 处受到的库仑力为F′=k =F4小球受到的合外力为 F 合=Mgcos 60°+F′cos 30°即Mg +×=Ma则a =g +.【答案】 g +3F 8M。
上海市2019学年第二学期期末测试高一物理试卷考生注意:1.答卷前,考生务必将姓名、班级、学号和考试号填写清楚。
2.本试卷满分100分,考试时间60分钟。
考生应用黑色的钢笔或圆珠笔将答案写在答题卷上。
3. 本卷g 取10m/s 2。
一、单项选择题(共80分,第1至第25题每题2分,第26至第35题每题3分。
每小题只有一个正确选项。
) 1.β射线是( ) (A )光子流 (B )中子流 (C )质子流 (D )电子流2.一个铀原子核U 23592的质子数为( )(A )92 (B )143 (C )235 (D )3273.如图1所示,用网球拍打击飞过来的网球,网球拍打击网球的力( ) (A )比球撞击球拍的力更早产生 (B )与球撞击球拍的力同时产生 (C )大于球撞击球拍的力 (D )小于球撞击球拍的力4.恒星的寿命取决于它的( ) (A )亮度 (B )体积 (C )温度 (D )质量5.标志分子平均动能大小的物理量是( ) (A )温度 (B )体积 (C )压强 (D )密度6.北斗卫星定位系统中,卫星与地面设备间用于传递信息的电磁波属于( ) (A )X 射线 (B )紫外线 (C )无线电波 (D )红外线7.卢瑟福基于α粒子散射实验提出了( ) (A )原子核的结构模型 (B )原子内存在电子的假设 (C )原子的核式结构模型 (D )原子内存在质子的假设8.匀速圆周运动中不断变化的物理量是( )(A )线速度大小 (B )向心力 (C )周期 (D )转速9.做机械振动的弹簧振子通过平衡位置时,下列物理量中,具有最大值的是( ) (A )位移 (B )速度 (C )回复力 (D )加速度图110.直流电动机工作时,将( ) (A )电能转化为化学能 (B )化学能转化为电能 (C )电能转化为机械能 (D )机械能转化为电能11.一列向右传播的机械波在某时刻的波形如图2所示,质点P 此时的运动方向为( )(A )向上 (B )向下 (C )向左 (D )向右12.如图3,在电荷量为Q 的点电荷产生的电场中,电荷量为q 的负检验电荷在A 点受到的电场力为F ,方向水平向左。
1.曲线运动1.曲线运动物体运动轨迹是曲线的运动.2.速度方向质点在做曲线运动时,在某一位置的速度方向就是曲线在这一点的切线方向.3.运动性质做曲线运动的质点的速度方向时刻发生变化,即速度时刻发生变化,因此曲线运动一定是变速运动.1.曲线运动中物体的速度一定变化.(√)2.曲线运动中物体的速率不一定变化.(√)3.曲线运动也可能是匀速运动.(×)在砂轮上磨刀具时,刀具与砂轮接触处的火星沿什么方向飞出?转动雨伞时,雨伞上的水滴沿什么方向飞出?由以上两种现象你能得出什么结论?【提示】火星将沿砂轮与刀具接触处的切线方向飞出,雨滴将沿伞边上各点所在圆周的切线方向飞出.由这两种现象可以看出,物体做曲线运动时,在某点时的速度方向应沿该点所在曲线的切线方向.如图111,游乐场中的摩天轮在竖直方向上转动.图111探讨1:当乘客到达最高点时,乘客这一时刻的速度沿什么方向?【提示】沿水平方向.探讨2:当摩天轮匀速转动时,乘客的速度是否发生变化?【提示】乘客做曲线运动,速度方向不断变化,速度一定发生变化.1.曲线运动的速度(1)曲线运动中质点在某一时刻(或某一位置)的速度方向,就是质点从该时刻(或该点)脱离曲线后自由运动的方向,也就是曲线上这一点的切线方向.(2)速度是矢量,既有大小,又有方向,假如在运动过程中只有速度大小的变化,而物体的速度方向不变,则物体只能做直线运动.因此,若物体做曲线运动,表明物体的速度方向发生了变化.2.曲线运动的性质(1)由于做曲线运动的物体的速度方向时刻在变化,不管速度大小是否改变,物体的速度在时刻变化,即曲线运动一定是变速运动.(2)曲线运动是否是匀变速运动取决于物体的合外力.合外力为恒力,物体做匀变速曲线运动;合外力为变力,物体做非匀变速曲线运动.1.(多选)下列说法正确的是( )【导学号:22852000】A.做曲线运动的物体速度方向一定发生变化B.速度方向发生变化的运动一定是曲线运动C.速度变化的运动一定是曲线运动D.做曲线运动的物体一定有加速度【解析】任何曲线运动的速度方向时刻变化,一定有加速度,故A、D正确.速度方向变化、速度变化的运动不一定是曲线运动,如竖直上抛运动,速度发生变化,在最高点速度方向发生变化,而轨迹为直线,故B、C错.【答案】AD2.如图112所示的曲线为运动员抛出铅球的运动轨迹(铅球视为质点),A、B、C为曲线上的三点,铅球先后经过A、B、C三点,关于铅球在B点的速度方向,说法正确的是( )图112A.为AB的方向B.为BC的方向C.为BD的方向D.为BE的方向【解析】做曲线运动的物体速度沿轨迹切线方向,故铅球在B点的速度方向沿BD的方向,C正确.【答案】 C3.假如在弯道上高速行驶的赛车,后轮突然脱离赛车,关于脱离赛车后的车轮的运动情况,以下说法正确的是( )图113A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能【解析】赛车沿弯道行驶,任一时刻赛车上各部件的速度方向都是赛车运动的曲线轨迹上对应点的切线方向.被甩出的后轮由于惯性沿甩出点所在轨迹的切线方向做直线运动.所以C选项正确.【答案】 C曲线运动性质的两点提醒1.物体做曲线运动,速度方向一定时刻在变化,速度大小不一定改变.2.曲线运动可能受恒力,也可能受变力.加速度方向可能变化,也可能不变.1.当物体所受合外力的方向跟它的速度方向不在同一直线上时,物体做曲线运动.2.当物体加速度的方向与速度方向不在同一直线上时,物体做曲线运动.1.物体做曲线运动时,合力一定是变力.(×)2.物体做曲线运动时,合力一定不为零.(√)3.物体做曲线运动时,加速度一定不为零.(√)物体做曲线运动时,合力一定不为零吗?为什么?【提示】若物体所受合力为零,物体将做匀速直线运动,所以做曲线运动的物体,所受合力一定不为零.如图114所示,桌面上运动的小铁球在磁铁的引力作用下做曲线运动;人造卫星绕地球运行,在地球引力作用下做曲线运动.图114(1)小铁球、人造卫星所受合外力的方向有什么特点?小铁球、人造卫星的加速度的方向有什么特点?(2)小铁球靠近磁铁时,速率如何变化?远离磁铁时呢?合外力的方向如何影响速率的变化呢?【提示】(1)小铁球、人造卫星所受合外力的方向与速度方向不在同一条直线上;小铁球、人造卫星加速度的方向与速度方向也不在同一条直线上.(2)小铁球靠近磁铁时,速率变大,远离磁铁时,速率变小.合外力的方向与速度方向的夹角为锐角时、速率增大,为钝角时、速率减小.1.从运动学的角度看:质点加速度方向与速度方向不在同一条直线上时(其夹角是锐角、直角、钝角),质点做曲线运动.2.从动力学的角度看:质点所受合外力的方向与速度方向不在同一条直线上,质点就做曲线运动.3.合外力与速度变化的关系:方向与速度方向平行的力改变速度大小;方向与速度方向垂直的力改变速度方向;与速度方向不平行也不垂直的力,同时改变速度的大小和方向.4.曲线上任意一点的切线总在曲线的外侧,运动物体的轨迹必定向合外力方向弯曲,即合外力方向总指向曲线的内侧.4.一个物体在相互垂直的两个恒力F1和F2的作用下,由静止开始运动,经过一段时间后,突然撤去F2,则物体的运动情况是( )【导学号:22852001】A.物体做匀变速曲线运动B.物体做变加速曲线运动C.物体做匀速直线运动D.物体沿F1的方向做匀加速直线运动【解析】物体在相互垂直的两个恒力F1和F2的作用下,由静止开始做匀加速直线运动,其速度方向与F合的方向一致,经过一段时间后,撤去F2,F1与v不在同一直线上,故物体必做曲线运动.由于F1恒定,由a=F1 m可知,a也恒定,故应为匀变速曲线运动,选项A正确.【答案】 A5.如图115所示,质点沿曲线从A向B做减速运动,则质点在运动路线上C点时合外力的方向可能正确的是( )图115A.F1B.F2C.F3D.F4【解析】质点沿曲线做减速运动,受力方向一定指向曲线凹侧,且合外力沿切线方向的分力与速度方向相反,由此可确定合外力的方向只可能是F1.【答案】 A6.质点在某一平面内沿曲线由P运动到Q,如果用v、a、F分别表示质点运动过程中的速度、加速度和受到的合外力.则下列选项中可能正确的是( )【导学号:22852002】【解析】质点做曲线运动时,速度方向是曲线上这一点的切线方向,选项A错误;质点所受合外力和加速度的方向指向运动轨迹的凹侧,选项B、C错误,只有选项D正确.【答案】 D曲线运动中合力、速度与轨迹三者关系的判断方法1.物体的运动轨迹与初速度和合外力两个因素有关,轨迹在合外力与速度所夹区域之间且与速度相切.2.若具有一定初速度的物体在恒力作用下做曲线运动时,物体的末速度越来越接近力的方向,但不会与力的方向相同.。
高中物理学习材料桑水制作章末综合测评(三)(时间:60分钟满分:100分)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分) 1.一小球以初速度v0水平抛出,不计空气阻力,小球在空中运动的过程中重力做功的功率P随时间t变化的图像是( )【解析】设经过时间t速度大小为v,其方向与竖直方向(或重力方向)成θ角,由功率公式P=Fv cos θ知,此时重力的功率P=mgv cos θ=mgv=mg·gty=mg2t,所以A正确.【答案】 A2.如图1所示,人站在电动扶梯的水平台阶上,假定人与扶梯一起沿斜面减速上升,在这个过程中,人脚所受的静摩擦力( )图1A.等于零,对人不做功B.水平向左,对人做负功C.水平向右,对人做正功D.斜向上,对人做正功【解析】人随扶梯沿斜面减速上升,人的受力有重力、支持力和水平向左的静摩擦力,且静摩擦力方向与运动方向的夹角大于90°,故静摩擦力对人做负功.【答案】 B3.如图2所示,质量为m的物体A静止于倾角为θ的斜面体B上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左做加速度为a的匀加速运动,移动s,则此过程中斜面体B对物体A所做的功为( )图2A.Fs B.mgs sin θC.mas D.(M+m)as【解析】物体A随斜面体一起做匀加速运动,它所受合外力等于ma,这个力水平向左由斜面B所给,由W=mas故选项C正确.【答案】 C4.如图3所示,细线的一端固定于O点,另一端系一小球.在水平拉力作用下,小球以恒定速率在竖直平面内由A点运动到B点.在此过程中拉力的瞬时功率变化情况是( ) 【导学号:02690042】图3A.逐渐增大B.逐渐减小C.先增大,后减小D.先减小,后增大【解析】小球速率恒定,由动能定理知:拉力做的功与克服重力做的功始终相等,将小球的速度分解,可发现小球在竖直方向分速度逐渐增大,重力的瞬时功率也逐渐增大,则拉力的瞬时功率也逐渐增大,A项正确.【答案】 A5.把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆叫做动车.而动车组就是几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组,就是动车组,如图4所示.假设动车组运行过程中受到的阻力与其所受重力成正比.每节动车与拖车的质量都相等,每节动车的额定功率都相等.若1节动车加3节拖车编成的动车组的最大速度为120 km/h;则6节动车加3节拖车编成的动车组的最大速度为( )图4A.120 km/h B.240 km/hC.320 km/h D.480 km/h【解析】设一节动车功率为P,动车和拖车质量均为m,阻力系数为k,则有P=k·4mg·v1,6P=k·9mg·v2,v=120 km/h,1由以上三式得v 2=320 km/h ,故C 正确. 【答案】 C6.物体沿直线运动的v t 图象如图5所示,已知在第1秒内合力对物体做功为W ,则( )图5A .从第1秒末到第3秒末合力做功为4WB .从第3秒末到第5秒末合力做功为-2WC .从第5秒末到第7秒末合力做功为WD .从第3秒末到第4秒末合力做功为-0.75W【解析】 由题中图象可知物体速度变化情况,根据动能定理得第1 s 内:W =12mv 2,第1 s 末到第3 s 末:W 1=12mv 2-12mv 2=0,A 错;第3 s 末到第5 s 末:W 2=0-12mv 2=-W ,B 错;第5 s 末到第7 s 末:W 3=12m (-v )2-0=W ,C 正确;第3 s 末到第4 s 末:W 4=12m (v 2)2-12mv 2=-0.75W ,D 正确.【答案】 CD7.关于物体所受外力的合力做功与物体动能的变化的关系以下说法正确的是( )A.合力做正功,物体动能增加B.合力做正功,物体动能减少C.合力做负功,物体动能增加D.合力做负功,物体动能减少【解析】根据动能定理,合力做功等于物体动能变化,合力做正功,动能增加;合力做负功,动能减少.所以A和D正确.【答案】AD8.如图6是某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板,光电板中产生的电流经电动机带动小车前进.若小车在平直的水泥路上从静止开始加速行驶,经过时间t前进距离s,速度达到最大值v m,设这一过程中电动机的功率恒为P,小车所受阻力恒为F,那么( )图6A.这段时间内小车先加速运动,然后匀速运动B.这段时间内阻力所做的功为PtC.这段时间内合力做的功为12 mv2mD.这段时间内电动机所做的功为Fs+12 mv2m【解析】从题意得到,可将太阳能驱动小车运动视为“汽车以功率不变启动”,所以这段时间内小车做加速运动,A项错误;电动机做功用Pt计算,阻力做功为W=Fs,B项错误;根据动能定理判断,这段时间内合力做功为12mv2m,C项正确;这段时间内电动机所做的功为Pt=Fs+12mv2m,D项正确.【答案】CD二、非选择题(共4小题,共52分)9.(8分)(2013·福建高考)在“探究恒力做功与动能改变的关系”实验中(装置如图7):图7(1)下列说法哪一项是正确的( )A.平衡摩擦力时必须将钩码通过细线挂在小车上B.为减小系统误差,应使钩码质量远大于小车质量C.实验时,应使小车靠近打点计时器由静止释放(2)图8是实验中获得的一条纸带的一部分,选取O,A,B,C为计数点,已知打点计时器使用的交流电频率为 50 Hz,则打B点时小车的瞬时速度大小为____m/s(保留三位有效数字).图8【解析】平衡摩擦力的原理就是在没有拉力的情况下调整斜面倾角,使μ=tan θ,A错;为减小系统误差应使钩码质量远小于小车质量,B错;实验时使小车靠近打点计时器能充分利用纸带,由静止释放则通过后面的点测出的动能即等于该过程的动能变化量,便于利用实验数据进行探究.据v B=sAC2T=0.653 m/s可得打B点时小车的瞬时速度.【答案】(1)C (2)0.65310.(12分)在“探究功与速度变化的关系”的实验中,得到的纸带如图9所示,小车的运动情况可描述为:A,B之间为________________ 运动;C,D 之间为________运动.小车离开橡皮筋后的速度为________m/s.图9【解析】由图可知小车在A、B之间做加速运动,由于相邻计数点间位移之差不等,由Δs=aT2知,小车的加速度是变化的,故做变加速运动.在C,D 之间计数点均匀分布,说明小车做匀速运动.小车离开橡皮筋后做匀速运动,由CD段纸带,求出速度为:v=st=7.2×10-30.02m/s=0.36 m/s.【答案】变加速匀速0.3611.(16分)质量m=1 kg的物体,在水平拉力F的作用下,沿粗糙水平面运动,经过位移4 m时,拉力F停止作用,运动到位移是8 m时物体停止,运动过程中E ks的图线如图10所示,g=10 m/s2,求:图10(1)物体和平面间的动摩擦因数;(2)拉力F的大小.【解析】(1)在运动的第二阶段,物体在位移s2=4 m内,动能由E k=10 J 变为零,由动能定理得-μmgs2=-E k故动摩擦因数μ=Ekmgs2=101×10×4=0.25.(2)在运动的第一阶级,物体位移s1=4 m,初动能E k0=2 J,根据动能定理Fs1-μmgs1=E k-E k0所以F=4.5 N.【答案】(1)0.25 (2)4.5 N12.(16分)如图11所示,抗震救灾运输机在某场地卸放物资时,通过倾角θ=30°的固定的光滑斜轨道面进行.有一件质量为m=2.0 kg的小包装盒,由静止开始从斜轨道的顶端A滑至底端B,然后又在水平地面上滑行一段距离停下,若A点距离水平地面的高度h=5.0 m,重力加速度g取10 m/s2,求:图11(1)包装盒由A滑到B经历的时间;(2)若地面的动摩擦因数为0.5,包装盒在水平地面上还能滑行多远?(不计斜面与地面接触处的能量损耗)【解析】(1)包装盒沿斜面下滑受到重力和斜面支持力,由牛顿第二定律,得mg sin θ=maa=g sin θ=5.0 m/s2包装盒沿斜面由A到B的位移为S AB =hsin 30°=10 m包装盒由A到B做匀加速运动的时间为tS AB =12at2得—————————— 新学期 新成绩 新目标 新方向 ——————————桑水 t =2S ABa =2.0 s.(2)由动能定理得:-fs =0-12mv 2B其中滑动摩擦力f =μmg在B 点速度v B =at代入已知,得s =10 m.【答案】 (1)2.0 s (2)10 m。
模块综合试卷(时间:90分钟 满分:100分)一、选择题(本题共12小题,每小题4分,共48分)1.一个物体在光滑水平面上以初速度v 0做曲线运动,已知在此过程中物体只受一个恒力F 作用,运动轨迹如图1所示.则由M 到N 的过程中,物体的速度大小将()图1A .逐渐增大B .逐渐减小C .先增大后减小D .先减小后增大 答案D解析 判断做曲线运动的物体速度大小的变化情况时,应从下列关系入手:当物体所受合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率增大;当物体所受合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率减小;当物体所受合外力方向与速度方向的夹角始终为直角时,物体做曲线运动的速率不变.在本题中,合力F 的方向与速度方向的夹角先为钝角,后为锐角,故D 选项正确.2.火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆.已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比() A .火卫一距火星表面较近 B .火卫二的角速度较大 C .火卫一的运动速度较小 D .火卫二的向心加速度较大 答案A解析 由GMm r2=ma =mv2r =m 4π2T2r 得:a =GM r2,v =GMr ,r =3GMT24π2,则T 大时,r 大,a 小,v 小,且由ω=2πT 知,T 大,ω小,故正确选项为A.3.如图2所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D 点(D 点是曲线的拐点)时速度方向与加速度方向恰好互相垂直,则质点从A 点运动到E 点的过程中,下列说法中正确的是()图2A .质点经过C 点的速率比D 点的大B .质点经过A 点时的加速度方向与速度方向的夹角小于90°C .质点经过D 点时的加速度比B 点的大D .质点从B 到E 的过程中加速度方向与速度方向的夹角先增大后减小 答案A解析 因为质点做匀变速运动,所以加速度恒定,C 项错误.在D 点时加速度与速度垂直,故知加速度方向向上,合力方向也向上,所以质点从C 到D 的过程中,方向与速度方向夹角大于90°,合力做负功,动能减小,v C >v D ,A 项正确,B 项错误.从B 至E 的过程中,加速度方向与速度方向夹角一直减小,D 项错误.4.把甲物体从2h 高处以速度v 0水平抛出,落地点与抛出点的水平距离为L ,把乙物体从h 高处以速度2v 0水平抛出,落地点与抛出点的水平距离为s ,不计空气阻力,则L 与s 的关系为() A .L =s2B .L =2sC .L =22s D .L =2s 答案C解析 根据2h =12gt 12,得t 1=2h g, 则L =v 0t 1=2v 0h g. 由h =12gt 22,得t 2=2hg,则s =2v 0t 2=2v 02h g, 所以L =22s ,故选项C 正确.5.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图3所示),记录了我们祖先的劳动智慧.若A 、B 、C 三齿轮半径的大小关系为r A >r B >r C ,则()图3A .齿轮A 的角速度比C 的大B .齿轮A 、B 的角速度大小相等C .齿轮B 与C 边缘的线速度大小相等D .齿轮A 边缘的线速度比齿轮C 边缘的线速度大 答案D解析 齿轮A 边缘的线速度v A 与齿轮B 边缘的线速度v B 相等,齿轮B 、C 的角速度ωB =ωC .由v A =ωA r A ,v B =ωB r B ,v C =ωC r C ,v A =v B ,r A >r B >r C ,ωB =ωC 可得:ωA <ωB ,ωA <ωC ,v B >v C ,v A >v C ,故选项D 正确.6.2015年9月23日,在江苏省苏州市进行的全国田径锦标赛上高兴龙获得男子跳远冠军,在一次试跳中,他(可看成质点)水平距离达8 m ,最高处高达1 m .设他离开地面时的速度方向与水平面的夹角为α,若不计空气阻力,则tan α等于() A.18 B.14C.12D .1 答案C解析 从起点A 到最高点B 可看成平抛运动的逆过程,如图所示,运动员做平抛运动,初速度方向与水平方向夹角的正切值为tan α=2tan β=2×h x 2=2×14=12,选项C 正确.7.引力波现在终于被人们用实验证实,爱因斯坦的预言成为科学真理.早在70年代就有科学家发现,高速转动的双星可能由于辐射引力波而使星体质量缓慢变小,观测到周期在缓慢减小,则该双星间的距离将()A .变大B .变小C .不变D .可能变大也可能变小 答案B8.(多选)如图4所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O 点处.将小球拉至A 处,弹簧恰好无形变,由静止释放小球,它运动到O 点正下方B 点速度为v ,AB 间的竖直高度差为h ,则()图4A .由A 到B 重力做的功等于mgh B .由A 到B 重力势能减少12mv 2C .由A 到B 小球克服弹力做功为mghD .小球到达位置B 时弹簧的弹性势能为mgh -mv22答案AD解析 重力做功只和高度差有关,故由A 到B 重力做的功等于mgh ,选项A 正确;由A 到B 重力势能减少mgh ,选项B 错误;由A 到B 小球克服弹力做功为W =mgh -12mv 2,选项C 错误,D 正确.9.(多选)如图5所示,斜面顶端A 与另一点B 在同一水平线上,甲、乙两小球质量相等.小球甲沿光滑固定斜面以初速度v 0从顶端A 滑到底端,小球乙以同样的初速度从B 点抛出,不计空气阻力,则()图5A .两小球落地速率相同B .两小球落地时,重力的瞬时功率相同C .从开始运动至落地过程中,重力对它们做功相同D .从开始运动至落地过程中,重力的平均功率相同 答案AC解析 由于斜面光滑,且不计空气阻力,故两小球运动过程中只有重力做功,由机械能守恒定律可知两小球落地时速率相同,故选项A 正确;由于A 小球沿斜面做匀加速运动,B 小球做斜抛运动,它们落地时的速度方向不同,故两小球落地时,重力的瞬时功率不相同,选项B 错误;由于重力做功与路径无关,只与初、末位置的高度差有关,故从开始运动至落地过程中,重力对它们做功相同,选项C 正确;由于两小球的运动方式不同,所以从开始运动至落地过程中所用时间不同,由P =Wt 可知重力的平均功率不同,选项D错误.10.(多选)在圆轨道上运动的质量为m 的人造地球卫星,它到地面的距离等于地球半径R ,地面上的重力加速度为g ,则() A .卫星的动能为mgR4B .卫星运动的周期为4π2RgC .卫星运动的加速度为g2D .卫星运动的速度为2Rg 答案AB解析 人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设地球质量为M 、卫星的轨道半径为r ,则错误!=错误!,忽略地球自转的影响有错误!=mg ,联立得v =错误!,卫星的动能E k =错误!mv 2=错误!mgR ,选项A 正确,D 错误;卫星运动的周期T =2πrv =4π2Rg,选项B 正确;设卫星运动的加速度为a ,则有错误!=ma ,联立得a =错误!,选项C 错误.11.(多选)如图6所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环,从大环的最高处由静止滑下,滑到大环的最低点的过程中(重力加速度为g )()图6A .小环滑到大圆环的最低点时处于失重状态B .小环滑到大圆环的最低点时处于超重状态C .此过程中小环的机械能守恒D .小环滑到大环最低点时,大圆环对杆的拉力大于(m +M )g 答案BCD解析 小环滑到大圆环的最低点时,有竖直向上的加速度,由牛顿运动定律可知小环处于超重状态,同时知杆对大圆环的拉力大于(M +m )g ,由牛顿第三定律知,大圆环对杆的拉力大于(M +m )g ,故选项A 错误,选项B 、D 正确.由于大环固定不动,对小环的支持力不做功,只有重力对小环做功,所以小环的机械能守恒,故选项C 正确.12.(多选)图7甲为0.1 kg 的小球从最低点A 冲入竖直放置在水平地面上、半径为0.4 m 的半圆轨道后,小球速度的平方与其高度的关系图像,如图乙所示.已知小球恰能到达最高点C ,轨道粗糙程度处处相同,空气阻力不计.g 取10 m/s 2,B 为AC 轨道中点.下列说法正确的是()图7A .图乙中x =4B .小球从B 到C 损失了0.125 J 的机械能 C .小球从A 到C 合外力对其做的功为-1.05 JD .小球从C 抛出后,落地点到A 的距离为0.8 m 答案ACD解析 当h =0.8 m 时小球在C 点,由于小球恰能到达最高点C ,故mg =m vC2r,所以v C 2=gr =10×0.4 m 2·s-2=4 m 2·s -2,故选项A 正确;由已知条件无法计算出小球从B 到C 损失了0.125 J 的机械能,故选项B 错误;小球从A 到C ,由动能定理可知W 合=12mv C 2-12mv A 2=12×0.1×4 J-12×0.1×25 J =-1.05 J ,故选项C 正确;小球离开C 点后做平抛运动,故2r =12gt 2,落地点到A 的距离x 1=v C t ,解得x 1=0.8 m ,故选项D 正确.二、实验题(本题共2小题,共16分)13.(8分)如图8甲所示是某同学探究做圆周运动的物体质量、向心力、轨道半径及线速度关系的实验装置,圆柱体放置在水平光滑圆盘上做匀速圆周运动.力传感器测量向心力F ,速度传感器测量圆柱体的线速度v ,该同学通过保持圆柱体质量和运动半径不变,来探究向心力F 与线速度v 的关系:图8(1)该同学采用的实验方法为________.A .等效替代法B .控制变量法C .理想化模型法(2)改变线速度v ,多次测量,该同学测出了五组F 、v 数据,如下表所示:该同学对数据分析后,在图乙坐标纸上描出了五个点. ①作出F -v 2图线;②若圆柱体运动半径r =0.2 m ,由作出的F -v 2的图线可得圆柱体的质量m =____ kg.(结果保留两位有效数字) 答案(1)B(2)①②0.1814.(8分)某课外活动小组利用竖直上抛运动验证机械能守恒定律.(1)某同学用20分度游标卡尺测量出小球的直径为1.020 cm.图9所示弹射装置将小球竖直向上抛出,先后通过光电门A 、B ,计时装置测出小球通过A 、B 的时间分别为2.55 ms 、5.15 ms ,由此可知小球通过光电门A 、B 时的速度分别为v A 、v B ,其中v A =________m/s.图9(2)用刻度尺测出光电门A 、B 间的距离h ,已知当地的重力加速度为g ,只需比较____(用题目中涉及的物理量符号表示)是否相等,就可以验证机械能是否守恒.(3)通过多次实验发现,小球通过光电门A 的时间越短,(2)中要验证的两数值差越大,试分析实验中产生误差的主要原因是_________________________________________________.答案(1)4(4.0或4.00也对)(2)gh 和vA22-vB22(3)小球上升过程中受到空气阻力的作用,速度越大,所受阻力越大解析 (1)小球通过光电门可近似认为做匀速直线运动,所以v A =d tA =1.020 cm2.55 ms =4 m/s ;(2)在验证机械能守恒定律时,要看动能的减少量是否等于势能的增加量,即gh =vA22-vB22;(3)小球通过A 的时间越短,意味着小球的速度越大,而速度越大受到的空气阻力就越大,损失的能量越多,动能的减少量和势能的增加量差值就越大.三、计算题(本题共3小题,共36分,解答时应写出必要的文字说明和解题步骤,有数值计算的要注明单位)15.(10分)如图10所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)图10(1)该星球表面上的重力加速度g 的大小; (2)该星球的第一宇宙速度的大小. 答案(1)7.5 m/s 2(2)3×103m/s解析(1)对物块受力分析,由牛顿第二定律可得 -mg sin θ-μmg cos θ=ma ,①a =0-v0t,② 由①②代入数据求得g =7.5 m/s 2. (2)设第一宇宙速度为v ,由mg =m v2R得:v =gR =3×103m/s.16.(12分)如图11所示,质量为m =1 kg 的小滑块(视为质点)在半径为R =0.4 m 的14圆弧A 端由静止开始释放,它运动到B 点时速度为v =2 m/s.当滑块经过B 后立即将圆弧轨道撤去.滑块在光滑水平面上运动一段距离后,通过换向轨道由C 点过渡到倾角为θ=37°、长s =1 m 的斜面CD 上,CD 之间铺了一层匀质特殊材料,其与滑块间的动摩擦因数可在0≤μ≤1.5之间调节.斜面底部D 点与光滑地面平滑相连,地面上一根轻弹簧一端固定在O 点,自然状态下另一端恰好在D 点.认为滑块通过C 和D 前后速度大小不变,最大静摩擦力等于滑动摩擦力.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力.图11(1)求滑块对B 点的压力大小以及在AB 上克服阻力所做的功; (2)若设置μ=0,求质点从C 运动到D 的时间; (3)若最终滑块停在D 点,求μ的取值范围. 答案 见解析解析(1)在B 点,N -mg =m v2R解得N =20 N由牛顿第三定律,N ′=20 N 从A 到B ,由动能定理,mgR -W =12mv 2解得W =2 J(2)μ=0,滑块在CD 间运动,有mg sin θ=ma 加速度a =g sin θ=6 m/s 2由匀变速运动规律得s =vt +12at 2解得t =13s ,或t =-1 s(舍去)(3)最终滑块停在D 点有两种可能:a.滑块恰好能从C 下滑到D .则有mg sin θ·s -μ1mg cos θ·s =0-12mv 2,得到μ1=1b .滑块在斜面CD 和水平地面间多次反复运动,最终静止于D 点.当滑块恰好能返回C : -μ2mg cos θ·2s =0-12mv 2得到μ2=0.125当滑块恰好能静止在斜面上,则有mg sin θ=μ3mg cos θ,得到μ3=0.75所以,当0.125≤μ<0.75时,滑块能在CD 和水平地面间多次反复运动,最终静止于D 点. 综上所述,μ的取值范围是0.125≤μ<0.75或μ=1. 【考点】动能定理的综合应用问题 【题点】动能定理的综合应用问题17.(14分)为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图12所示.现将一个小球从距A 点高为h =0.9 m的水平台面上以一定的初速度v 0水平弹出,到A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10 m/s 2.图12(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 答案(1) 6 m/s(2)3 6 m/s(3)0<R ≤1.08 解析(1)小球开始时做平抛运动:v y 2=2gh ,代入数据解得v y =2gh =2×10×0.9 m/s =3 2 m/s ,A 点:tan 60°=vyvx,得v x =v 0=vy tan 60°=323 m/s = 6 m/s.(2)从水平抛出到C 点的过程中,由动能定理得mg (h +L 1sin θ)-μmgL 1cos θ-μmgL 2=12mv C 2-12mv 02,代入数据解得v C =3 6 m/s.(3)小球刚好能过最高点时,重力提供向心力, 则mg =mv2R1,12mv C 2=2mgR 1+12mv 2,代入数据解得R 1=1.08 m ,当小球刚能到达与圆心等高时,有12mv C 2=mgR 2,代入数据解得R 2=2.7 m ,当圆轨道与AB 相切时R 3=BC ·tan 60°=1.5 m , 即圆轨道的半径不能超过1.5 m ,综上所述,要使小球不离开轨道,R 应该满足的条件是0<R ≤1.08 m.中小学教育教学资料最新中小学教案试题试卷习题资料11。
第一章检测试题(时间:60分钟满分:100分)一、选择题(共9小题,第1~7题为单项选择题,第8~9题为多项选择题,每小题6分,共54分)1.在操场上,一遥控小汽车在小明的控制下做曲线运动.对于做曲线运动的遥控小汽车而言,下列说法正确的是( C )A.遥控小汽车运动的初速度一定不为零B.遥控小汽车的加速度一定是变化的C.遥控小汽车的加速度方向与速度方向不在同一条直线上D.遥控小汽车的加速度方向与其所受合力的方向不在同一条直线上解析:当物体所受合力的方向与它的速度方向不在同一条直线上时,物体做曲线运动.结合牛顿第二定律可知,物体的加速度方向与其所受合力的方向一致,故C正确.2.长江三峡位于我国的腹地,它西起重庆奉节的白帝城,东到湖北宜昌的南津关,是我国的一个重要旅游地区,三峡索道的建成,为三峡旅游区又增添了一道亮丽的风景线.一位游客在坐缆车过江时(缆车沿自左向右的方向水平匀速运动),将一石子从手中轻轻释放,不计空气阻力,坐在缆车中的该游客看到石子下落的轨迹是下图中的( A )解析:石子在下落过程中受重力的作用,所以在竖直方向做自由落体运动,缆车沿水平方向匀速运动,从缆车上释放的石子由于惯性在水平方向保持原来的运动状态不变,继续向前飞行,所以游客和石子在相同时间内水平方向的位移相同;故坐在缆车中的该游客看到石子下落的轨迹应该是竖直向下的直线,故选项A正确.3.某人游珠江如图所示,他以一定速度头部始终垂直河岸向对岸游去.江中各处水流速度相等,他游过的路程、过河所用的时间与水流速度的关系是( C )A.水流速度大时,路程长,时间长B.水流速度大时,路程长,时间短C.水流速度大时,路程长,时间不变D.路程、时间与水流速度无关解析:此人渡河时始终与河岸垂直,渡河时间t=,与v水无关,渡河路程l=,所以v水越大,路程越长,故选项C正确.4.如图所示,篮球沿优美的弧线穿过篮筐,图中能正确表示篮球在相应点速度方向的是( C )A.v1B.v2C.v3D.v4解析:依据曲线运动特征可知,物体做曲线运动时,任意时刻的速度方向是曲线上该点的切线方向,所以图中能正确表示篮球在相应点速度方向的只有v3,故选项C正确.5.如图所示,将a,b两小球以大小均为v 0=20m/s的初速度分别从A,B两点,相差1 s先后水平相向抛出.a小球从A点抛出后,经过时间t,两小球恰好在空中相遇,且速度方向相互垂直,不计空气阻力,取g=10 m/s2,则抛出点A,B间的水平距离是( A )A.180 mB.200 mC.80 mD.100 m解析:由于A点较高应先抛出a小球.相遇时,a小球的速度方向与水平方向夹角的正切值为tan αa=,b小球的速度方向与水平方向夹角的正切值为tan αb=.由题意及几何关系有αa+αb=,d=x a+x b=v0t+ v 0(t-1),解得d=180 m,故A正确.6.如图所示,“嫦娥一号”探月卫星在由月球飞向地球时,沿曲线从M 点向N点飞行的过程中,速度逐渐增大.在此过程中探月卫星所受合力方向可能的是( A )解析:“嫦娥一号”探月卫星从M点运动到N,做的是曲线运动,必有力提供向心力,向心力指向凹侧;“嫦娥一号”探月卫星同时在加速,所以沿切向方向有与速度方向相同的力;故向心力和切线方向的力与速度的方向的夹角要小于90°,故选项B,C,D错误,A正确.7.一架在500米高空以200 m/s的速度水平匀速飞行的运输机,要将两批物资分别投放到山腰的D点(D是AC中点)和山脚的C点.已知山AB高为360米,水平距离BC长是1 200米.(若不计空气阻力,g取10 m/s2)则两次空投的时间间隔应为( D )A.4 sB.3 sC.2 sD.1 s解析:第一批救援物资运动时间t1== s=8 s;第二批救援物资运动时间t2== s=10 s;设两次空投的时间间隔为Δt,则x DC+vt1=v(t2+Δt),由题可知x DC=600 m,解得Δt=1 s,故选项D正确.8.如图所示,斜面上有a,b,c,d,e五个点,ab=bc=cd=de.从a点以初速度v0水平抛出一个小球,它落在斜面上的b点,其速度方向与斜面间的夹角为θ,在空中运动的时间为t0.若小球从a点以速度2v0水平抛出,不计空气阻力,则( BCD )A.小球将落在c点与d点之间B.小球将落在e点C.小球在空中运动的时间为2t0D.小球落在斜面时的速度方向与斜面的夹角等于θ解析:设斜面倾角为β,ab长为l,初速度为v0,则lsin β=gt2,lcos β=v 0t,解得l=∝,t=∝v0,由此可得,若小球从a点以速度2v0水平抛出,小球将落在e点,运动时间为2t0,选项B,C均正确;设小球落在斜面时的速度方向与水平方向的夹角为α,由于tan α=2tan β,又β为定值,α=θ+β,则小球落在斜面时的速度方向与斜面的夹角θ也为定值,选项D正确.9.物体A和B的质量均为m,且分别用轻绳连接跨过定滑轮(不计绳与滑轮、滑轮与轴之间的摩擦).当用水平变力F拉物体B沿水平方向向右做匀速直线运动的过程中( BCD )A.物体A也做匀速直线运动B.绳子的拉力始终大于物体A所受的重力C.物体A的速率小于物体B的速率D.地面对物体B的支持力逐渐增大解析:如图所示,B的速度v B分解为沿绳和垂直绳两个方向的分速度v1和v2,则v A=v1=v B cos θ,故v A<v B,C对.运动中θ减小,v A变大,A错;A 物体处于超重状态,绳子的拉力T大于它的重力,B对;N=mg-Tsin θ,N增大,D对.二、非选择题(共46分)10.(6分)如图1,某同学设计了一个研究平抛运动的实验装置,在水平桌面上放置一个斜面,让钢球从斜面上由静止滚下,钢球滚过桌边后便做平抛运动,在钢球抛出后经过的地方放置一块水平木板,木板由支架固定成水平,木板所在高度可通过竖直标尺读出,木板可以上下自由调节,在木板上固定一张白纸,该同学在完成装置安装后进行了如下步骤的实验.A.实验前在白纸上画一条直线,并在线上标出a,b,c三点,且ab=bc,如图2,量出ab长度L=20.00 cmB.让钢球从斜面上的某一位置由静止滚下,调节木板高度,使得钢球正好击中a点,记下此时木板离地面的高度,h1=90.00 cmC.让钢球从斜面上的同一位置由静止滚下,调节木板高度,使得钢球正好击中b点,记下此时木板离地面的高度,h2=80.00 cmD.让钢球从斜面上的同一位置由静止滚下,调节木板高度,使得钢球正好击中c点,记下此时木板离地面的高度,h3=60.00 cm则该同学由上述测量结果即可粗测出钢球的平抛初速度大小v0=m/s,钢球击中b点时其速度大小为v b= m/s(空气阻力不计).解析:由Δh=gT2,将Δh=0.1 m代入得T=0.1 s由v 0=得v0= m/s=2 m/s击中b点时其竖直分速度v y==1.5 m/s所以v b==2.5 m/s.答案:2 2.511.(10分)如图(甲)所示,在一端封闭、长约1 m的玻璃管内注满清水,水中放一个蜡烛做的蜡块,将玻璃管的开口端用橡胶塞塞紧,然后将这个玻璃管倒置,在蜡块沿玻璃管上升的同时,将玻璃管水平向右移动.从某时刻开始计时,蜡块在玻璃管内每1 s上升的距离都是10 cm,玻璃管向右匀加速平移,每1 s通过的水平位移依次是2.5 cm,7.5 cm,12.5 cm,17.5 cm.图(乙)中,y表示蜡块竖直方向的位移,x表示蜡块随玻璃管通过的水平位移,t=0时蜡块位于坐标原点.(1)请在图(乙)中画出蜡块4 s内的轨迹;(2)玻璃管向右平移的加速度a= m/s2;(3)t=2 s时蜡块的速度v2= m/s.解析:(1)根据所给数据描点,用平滑的曲线连接.(2)因为Δx=aT2,所以a==5×10-2 m/s2.(3)v y== m/s=0.1 m/s,v x=at=5×10-2×2 m/s=0.1 m/s,v 2== m/s= m/s.答案:(1)如图所示(2)5×10-2(3)12.(14分)某同学在某砖墙前的高处水平抛出一个石子,石子在空中运动的部分轨迹照片如图所示,从照片可看出石子恰好垂直打在一倾角为37°的斜坡上的A点.已知每块砖的平均厚度为10 cm,抛出点到A点竖直方向刚好相距200块砖,(取g=10 m/s2,sin 37°=0.6, cos 37°=0.8)求:(1)石子在空中运动的时间t;(2)石子水平抛出的速度v0.解析:(1)由题意可知石子落到A点的竖直位移y=200×10×10-2 m=20 m由y=gt2得t=2 s.(2)由A点的速度分解可得v0=v y tan 37°又因v y=gt解得v y=20 m/s故v0=15 m/s.答案:(1)2 s(2)15 m/s13. (16分)如图所示,斜面体ABC固定在地面上,小球p从A点静止下滑.当小球p开始下滑的同时,另一小球q从A点正上方的D点水平抛出,两球同时到达斜面底端的B处.已知斜面AB光滑,长度l=0.75 m,斜面倾角θ=37°,不计空气阻力(g取10 m/s2,sin 37°=0.6, cos 37°=0.8).求:(1)小球p从A点滑到B点所需要的时间;(2)小球q抛出时初速度的大小.解析:(1)小球p从斜面上下滑的加速度为a, 由牛顿第二定律有mgsin θ=ma,设下滑所需时间为t1,根据运动学公式有l=a,联立解得t1=0.5 s.(2)小球q做平抛运动,设抛出速度为v0,则x=v0t2,由几何关系知x=lcos 37°,依题意有t2=t1,解得v0=1.2 m/s.答案:(1)0.5 s (2)1.2 m/s。
1.3 研究斜抛运动[学习目标] 1.知道斜抛运动,知道斜抛运动又可分解为水平方向的匀速直线运动和竖直方向的上抛(或下抛)运动.2.通过实验探究斜抛运动的射程和射高跟速度和抛射角的关系,并能将所学知识应用到生产和生活中.一、斜抛运动1.定义:将物体以一定的初速度斜向射出去,在空气阻力可以忽略的情况下,物体所做的运动.2.研究方案——运动的分解(1)沿初速度方向的匀速直线运动与沿竖直方向的自由落体运动. (2)沿水平方向的匀速直线运动与沿竖直方向的匀减速直线运动. 二、射程、射高和弹道曲线1.射程(X )、射高(Y )和飞行时间(T ):(1)射程(X ):在斜抛运动中,被抛物体抛出点到落点之间的水平距离.表达式:X =v 02sin 2θg .(2)射高(Y ):被抛物体所能达到的最大高度.表达式:Y =v 02sin 2θ2g.(3)飞行时间(T ):被抛物体从被抛出点到落点所用的时间.表达式:T =2v 0sin θg .2.弹道曲线:(1)实际的抛体运动:物体在运动过程中总要受到空气阻力的影响.(2)弹道曲线与抛物线:在没有空气的理想空间中炮弹飞行的轨迹为抛物线,而炮弹在空气中飞行的轨迹叫做弹道曲线,由于空气阻力的影响,使弹道曲线的升弧长而平伸,降弧短而弯曲. [即学即用]1.判断下列说法的正误.(1)初速度越大,斜抛运动的射程越大.(×) (2)抛射角越大,斜抛运动的射程越大.(×)(3)仅在重力作用下,斜抛运动的轨迹曲线是抛物线.(√)(4)斜抛运动可分解为水平方向的匀速直线运动和竖直方向的竖直上抛(或下抛)运动.(√) 2.如图1是果蔬自动喷灌技术,从水管中射出的水流轨迹呈现一道道美丽的弧线,如果水喷出管口的速度是20 m/s ,管口与水平方向的夹角为45°,空气阻力不计,那么水的射程是________m ,射高是________m .(g 取10 m/s 2)图1答案 40 10 解析 水的竖直分速度 v y =v 0sin 45°=10 2 m/s水的射高Y =v y 22g =(102)220 m =10 m.水在空中的飞行时间为t =2v yg =2 2 s.水的水平分速度v x =v 0cos 45°=10 2 m/s.水的射程X =v x t =102×2 2 m =40 m.一、斜抛运动的特点[导学探究] 如图2所示,运动员斜向上投出标枪,标枪在空中划出一条优美的曲线后插在地上,若忽略空气对标枪的阻力作用,请思考:图2(1)标枪到达最高点时的速度是零吗? (2)标枪在竖直方向上的运动情况是怎样的? 答案 (1)不是零 (2)竖直上抛运动 [知识深化]1.受力特点:斜抛运动是忽略了空气阻力的理想化运动,因此物体仅受重力,其加速度为重力加速度g .2.运动特点:物体具有与水平方向存在夹角的初速度,仅受重力,因此斜抛运动是匀变速曲线运动,其轨迹为抛物线.3.速度变化特点:由于斜抛运动的加速度为定值,因此,在相等的时间内速度的变化大小相等,方向均竖直向下,故相等的时间内速度的变化相同,即Δv =g Δt .4.对称性特点:(1)速度对称:相对于轨道最高点两侧对称的两点速度大小相等或水平方向速度相等,竖直方向速度等大反向.(如图3所示)图3(2)时间对称:相对于轨道最高点两侧对称的曲线上升时间等于下降时间,这是由竖直上抛运动的对称性决定的.(3)轨迹对称:其运动轨迹关于过最高点的竖直线对称.例1关于斜抛运动,下列说法中正确的是()A.物体抛出后,速度增大,加速度减小B.物体抛出后,速度先减小,再增大C.物体抛出后,沿着轨迹的切线方向,先做减速运动,再做加速运动,加速度始终沿着切线方向D.斜抛物体的运动是匀变速曲线运动答案 D解析斜抛物体的运动水平方向是匀速直线运动,竖直方向是竖直上抛或竖直下抛运动,抛出后只受重力,故加速度恒定.若是斜上抛运动则竖直分速度先减小后增大,若是斜下抛运动则竖直分速度一直增大,故A、B、C选项错误.由于斜抛运动的物体只受重力的作用且与初速度方向不共线,故做匀变速曲线运动,D项正确.针对训练(多选)做斜上抛运动的物体,下列说法正确的是()A.水平分速度不变B.加速度不变C.在相同的高度处速度大小相同D.经过最高点时,瞬时速度为零答案ABC解析斜上抛运动可以分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动,所以A 正确;做斜上抛运动的物体只受重力作用,加速度恒定,B正确;根据运动的对称性,物体在相同的高度处的速度大小相等,C正确;经过最高点时,竖直分速度为零,水平分速度不为零,D错误.二、斜抛运动的规律及其应用[导学探究]1.对于斜抛运动,其轨迹如图4所示,设在坐标原点以初速度v0沿与x轴(水平方向)成θ角的方向将物体抛出(不计空气阻力),请分别在水平和竖直方向上分析,并写出t时刻物体的速度公式和位置坐标.图4答案 物体在水平方向上做匀速直线运动,在竖直方向上做竖直上抛运动,所以t 时刻物体的分速度为:v x =v 0x =v 0cos θ,v y =v 0sin θ-gt ,t 时刻物体的位置坐标为(v 0cos θ·t ,v 0sin θ·t -12gt 2). 2.一炮弹以初速度v 0斜向上方飞出炮筒,初速度与水平方向的夹角为θ,不计空气阻力,求炮弹在空中飞行时间、射高和射程.答案 先建立直角坐标系,将初速度v 0分解为:v 0x =v 0cos θ,v 0y =v 0sin θ飞行时间:T =2v 0y g =2v 0sin θg射高:Y =v 0y 22g =v 02sin 2 θ2g射程:X =v 0cos θ·T =2v 02sin θcos θg =v 02sin 2θg例2 某同学进行篮球训练,如图5所示,将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直墙面上,不计空气阻力,则下列说法正确的是( )图5A .篮球撞墙的速度,第一次较大B .篮球从空中运动的加速度第一次较大C .从抛出到撞墙,第一次篮球在空中运动的时间较长D .抛出时的速度,第一次一定比第二次大 答案 C解析 由于两次篮球垂直撞在竖直墙面上,则篮球被抛出后的运动可以看成是平抛运动的逆运动,加速度都为g ,在竖直方向上:h =12gt 2,因为h 1>h 2,则t 1>t 2,因为水平位移相等,根据x =v 0t 知,撞墙的速度v 01<v 02,即第二次撞墙的速度大,故A 、B 错误,C 正确;根据平行四边形定则知,抛出时的速度v =v 02+2gh ,第一次的水平初速度小,而上升的高度大,则无法比较抛出时的速度大小,故D 错误.例3 一座炮台置于距地面60 m 高的山崖边,以与水平方向成45°角的方向发射一颗炮弹,炮弹离开炮口时的速度为120 m/s.求:(忽略空气阻力,g 取10 m/s 2) (1)炮弹所达到的最大高度;(2)炮弹落到地面时的时间和速度大小; (3)炮弹的水平射程.答案 (1)420 m (2)17.65 s 125 m/s (3)1 498 m 解析 (1)竖直分速度v 0y =v 0sin 45°=22v 0=60 2 m/s 所以h =v 0y 22g =(602)220m =360 m故炮弹所达到的最大高度h max =h +h 0=420 m ; (2)上升阶段所用时间t 1=v 0y g =60210 s =6 2 s下降阶段所用时间t 2=2h maxg=2×42010s =221 s 所以运动的总时间t =t 1+t 2=(62+221) s ≈17.65 s 落地时的水平速度v x =v 0x =v 0cos 45°=60 2 m/s 落地时的竖直速度v y =2gh max合速度v =v x 2+v y 2=(602)2+2×10×420 m/s ≈125 m/s (3)水平射程X =v x t =602×17.65 m ≈1 498 m.1.(对斜抛运动的理解)一物体做斜抛运动,在由抛出到落地的过程中,下列表述中正确的是( )A .物体的加速度是不断变化的B .物体的速度不断减小C .物体到达最高点时的速度等于零D .物体到达最高点时的速度沿水平方向 答案 D2.(弹道曲线的理解)如图6所示,是一枚射出的炮弹飞行的理论曲线和弹道曲线,理论曲线和弹道曲线相差较大的原因是( )图6A .理论计算误差造成的B .炮弹的形状造成的C .空气阻力的影响造成的D .这是一种随机现象答案 C解析 炮弹一般飞行的速度很大,故空气阻力的影响是很大的,正是空气阻力的影响,才使得理论曲线和弹道曲线相差较大.3.(斜抛运动的规律)如图7所示,一物体以初速度v 0做斜抛运动,v 0与水平方向成θ角.AB 连线水平,则从A 到B 的过程中下列说法不正确的是( )图7A .上升时间t =v 0sin θgB .最大高度h =(v 0sin θ)22gC .在最高点速度为0D .AB 间位移s AB =v 02sin 2θg答案 C解析 将物体的初速度沿着水平和竖直方向分解,有:v 0x =v 0cos θ,v 0y =v 0sin θ;上升时间:t =v 0y g =v 0sin θg ,故A 正确;根据位移公式,最大高度h =v 0y 22g =(v 0sin θ)22g ,故B 正确;在最高点速度的竖直分量为零,但水平分量不为零,故最高点速度不为零,故C 错误;结合竖直上抛运动的对称性可知,运动总时间为:t ′=2t =2v 0sin θg ,故AB 间位移s AB =v 0x t ′=v 02sin 2θg ,故D 正确.4.(斜抛运动规律的应用)如图8所示,做斜上抛运动的物体到达最高点时,速度v =24 m/s ,落地时速度v t =30 m/s ,g 取10 m/s 2.求:图8(1)物体抛出时速度的大小和方向;(2)物体在空中的飞行时间t ; (3)射高Y 和水平射程X .答案 (1)30 m/s 与水平方向夹角为37° (2)3.6 s (3)16.2 m 86.4 m解析 (1)根据斜抛运动的对称性,物体抛出时的速度与落地时的速度大小相等,故v 0=v t =30 m/s ,设物体抛出时的速度与水平方向夹角为θ,则cos θ=v v 0=45故θ=37°.(2)由(1)知,竖直方向的初速度为 v y =v 02-v 2=302-242 m/s =18 m/s 故飞行时间t =2v y g =2×1810 s =3.6 s(3)射高Y =v y 22g =1822×10 m =16.2 m水平射程X =v t =24×3.6 m =86.4 m一、选择题考点一 对斜抛运动的理解1.关于斜抛运动,下列说法正确的是( ) A .斜抛运动是一种不受任何外力作用的运动B .斜抛运动是曲线运动,它的速度方向不断改变,不可能是匀变速运动C .任意两段相等时间内的速度变化不相等D .任意两段相等时间内的速度变化相等 答案 D解析 斜抛运动是指将物体以一定的初速度沿斜向抛出,物体只在重力作用下的运动,所以A 错.斜抛运动是曲线运动,是因为初速度方向与重力方向不共线,但物体只受重力,产生的加速度是恒定不变的,所以斜抛运动是匀变速曲线运动,故B 错.根据加速度的定义式可得Δv =g Δt ,所以在相等的时间内速度的变化相等,故C 错,D 对. 2.关于斜抛运动和平抛运动的共同特点,下列说法不正确的是( ) A .加速度都是gB.运动轨迹都是抛物线C.运动时间都与抛出时的初速度大小无关D.速度变化率不随时间变化答案 C解析斜抛运动和平抛运动都是仅受重力作用的抛体运动,因此其加速度或速度变化率都是相同的,都为重力加速度,因此选项A、D正确.它们的轨迹均为抛物线,选项B正确.斜抛运动的时间由竖直方向的分运动决定,平抛运动的时间仅与高度有关,与初速度无关,故选项C错误.3.关于斜抛运动中的射高,下列说法中正确的是()A.初速度越大,射高越大B.抛射角越大,射高越大C.初速度一定时,抛射角越大,射高越小D.抛射角一定时,初速度越大,射高越大答案 D4.下列关于斜抛运动的说法中正确的是()A.上升阶段与下降阶段的加速度相同B.物体到达最高点时,速度为零C.物体到达最高点时,速度为v0cos θ(θ是v0与水平方向间的夹角),但不是最小D.上升和下降至空中同一高度时,速度相同答案 A解析斜抛物体的加速度为重力加速度g,A正确;除最高点速度为v0cos θ外,其他点的速度均是v0cos θ与竖直速度的合成,B、C错误;上升与下降阶段速度的方向一定不同,D错误. 考点二斜抛运动的规律及应用5.一位田径运动员在跳远比赛中以10 m/s的速度沿与水平面成30°的角度起跳,在落到沙坑之前,他在空中滞留的时间为(不计空气阻力,g取10 m/s2)()A.0.42 s B.0.83 sC.1 s D.1.5 s答案 C解析起跳时竖直向上的分速度v0y=v0sin 30°=10×12m/s=5 m/s所以在空中滞留的时间为t=2v0yg=2×510s=1 s.6.在不考虑空气阻力的情况下,以相同大小的初速度,抛出甲、乙、丙三个手球,抛射角分别为30°、45°、60°.射程较远的手球是()A.甲B.乙C.丙D.不能确定解析 不考虑空气阻力的情况下,三个小球的运动可看做斜抛运动,然后根据斜抛运动的射程公式X =v 02sin 2θg分析.7.由消防水龙带的喷嘴喷出水的流量是0.28 m 3/min ,水离开喷口时的速度大小为16 3 m/s ,方向与水平面夹角为60°,在最高处正好到达着火位置,忽略空气阻力,则空中水柱的高度和水量分别是(重力加速度g 取10 m/s 2)( ) A .28.8 m 1.12×10-2 m 3B .28.8 m 0.672 m 3C .38.4 m 1.29×10-2 m 3D .38.4 m 0.776 m 3 答案 A解析 水离开喷口后做斜上抛运动,将运动分解为水平方向和竖直方向, 在竖直方向上:v y =v sin θ 代入数据可得v y =24 m/s 故水柱能上升的高度 h =v y 22g=28.8 m水从喷出到最高处着火位置所用的时间:t =v yg代入数据可得t =2.4 s 故空中水柱的水量为:V =2.4×0.2860 m 3=1.12×10-2 m 3A 项正确.8.(多选)如图1所示,在地面上方某一高度处将A 球以初速度v 1水平抛出,同时在A 球正下方地面处将B 球以初速度v 2斜向上抛出,结果两球在空中相遇,不计空气阻力,则两球从抛出到相遇过程中( )图1A .A 和B 的初速度大小关系为v 1<v 2 B .A 和B 的加速度大小关系为a 1>a 2C .A 做匀变速运动,B 做变加速运动D .A 和B 的速度变化量相同解析如图所示,设v2与水平方向夹角为θ,两球分别做平抛运动和斜抛运动,都只受重力作用,均做匀变速运动,加速度均为g,B、C错误;两球经过相等时间Δt在空中相遇,则水平位移相等,故v1Δt=v2cos θΔt,v1<v2,A正确;由加速度的定义式知Δv=gΔt,故两球从抛出到相遇过程中,A和B的速度变化量相同,D正确.9.(多选)有A、B两小球,B的质量为A的两倍.已知A的速率为v1,现将B以不同速率v2沿与v1同一方向抛出,不计阻力,图2中①为A的运动轨迹,则()图2A.若v2=v1,B的轨迹为①B.若v2>v1,B的轨迹可能为②C.若v2<v1,B的轨迹可能为③D.若v2<v1,B的轨迹可能为④答案AC解析若v1=v2,则两物体竖直分速度和水平分速度相等,且加速度均为重力加速度,则其运动轨迹相同,即B的运动轨迹为①,故A正确;若v2>v1,则B物体的竖直分速度和水平分速度均大于A物体的,由竖直方向做竖直上抛运动知,B物体运动的时间长,则回到地面时B物体的水平位移大于A物体的,故图中没有对应的图像,故B错误;若v2<v1,则B物体的竖直分速度和水平分速度均小于A物体的,由竖直方向做竖直上抛运动知,B物体的运动时间比A物体的短,上升高度比A物体的小,落回地面时B物体的水平位移比A物体的小,则轨迹可能为③,故C正确,D错误.10.(多选)如图3所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同.空气阻力不计,则()图3A.B的加速度比A的大B.B的飞行时间比A的长C .B 在最高点的速度比A 在最高点的大D .B 在落地时的速度比A 在落地时的大 答案 CD解析 由题可知,A 、B 两小球均做斜抛运动,由运动的分解可知:水平方向做匀速直线运动,竖直方向做竖直上抛运动,两球的加速度均为重力加速度,故A 错;设上升的最大高度为h ,在下落过程,由h =12gt 2,可知下落时间t =2hg,根据运动的对称性可知,两球上升时间和下落时间相等,故两小球的运动时间相等,故B 错;由x =v x t ,可知v xA <v xB ;由v y 2=2gh ,可知落地时,竖直方向的速度v yA =v yB ,再由v =v x 2+v y 2,可知B 在落地时的速度比A 在落地时的大,C 、D 对. 考点三 弹道曲线11.(多选)关于炮弹的弹道曲线,下列说法中正确的是( ) A .如果没有空气阻力,弹道曲线的升弧和降弧是对称的B .由于空气阻力的作用,弹道曲线的升弧短而弯曲,降弧长而平伸C .由于空气阻力的作用,炮弹落地时速度方向与水平面的夹角要比发射时大D .由于空气阻力的作用,在弹道曲线的最高点,炮弹的速度方向不是水平的 答案 AC解析 关于弹道曲线,由于要考虑空气阻力的影响,炮弹在水平方向不再做匀速运动,而是减速运动,在竖直方向上也不再是匀变速运动,而且炮弹所受的阻力与速度大小也有关系,因此弹道曲线在上升段会较长而平伸,而下降阶段则较短而弯曲,但轨迹在最高点仍只有水平方向的速度,否则就不会是最高点了. 二、非选择题12.(对斜抛运动的理解)小李以一定的初速度将石子向斜上方抛出去,石子所做的运动是斜抛运动,他想:怎样才能将石子抛得更远呢?于是他找来小王一起做了如下探究: 他们用如图4甲所示的装置来做实验,保持容器水平,让喷水嘴的位置和喷水方向不变(即抛射角不变)做了三次实验:第一次让水的喷出速度较小,这时水喷出后落在容器的A 点;第二次让水的喷出速度稍大,水喷出后落在容器的B 点;第三次让水的喷出速度最大,水喷出后落在容器的C 点.图4(1)小李和小王经过分析后得出的结论是_______________________________________ ________________________________________________________________________;小王回忆起上体育课时的情景,想起了几个应用上述结论的例子,其中之一就是为了将铅球推的更远,应尽可能_______________________________________________________ ________________________________________________________________________.(2)然后控制开关让水喷出的速度不变,让水沿不同方向喷出,又做了几次实验,如图乙所示,得到数据如下表:小李和小王对上述数据进行了归纳分析,得出的结论是:________________________________________________________________________ ________________________________________________________________________; 小李和小王总结了一下上述探究过程,他们明确了斜抛物体在水平方向飞行距离与初速度和抛射角的关系,他们感到这次探究成功得益于在探究过程中两次较好的运用了________法. 答案 (1)在抛射角一定时,当物体抛出的初速度越大物体抛出的距离越远 增大初速度 (2)在初速度一定时,随着抛射角的增大,抛出的距离先是越来越大,然后越来越小.当夹角为45°时,抛出的距离最大 控制变量13.(斜抛运动的规律及应用)从某高处以6 m/s 的初速度、30°抛射角斜向上抛出一石子,落地时石子的速度方向和水平方向的夹角为60°,求:(忽略空气阻力,g 取10 m/s 2) (1)石子在空中运动的时间; (2)石子的水平射程; (3)抛出点离地面的高度.答案 (1)1.2 s (2)1835m (3)3.6 m解析 (1)如图所示:石子落地时的速度方向和水平方向的夹角为60°, 则v yv x=tan 60°= 3 即:v y =3v x =3v 0cos 30°=3×6×32m/s =9 m/s取向上为正方向,落地时竖直速度向下, 则-v y =v 0sin 30°-gt ,得t=1.2 s(2)石子在水平方向上做匀速直线运动x=v0cos 30°·t=6×32×1.2 m=1835m(3)由竖直方向位移公式:h=v0sin 30°·t-12gt2=6×12×1.2 m-12×10×1.22 m=-3.6 m,负号表示落地点比抛出点低,故抛出点离地面的高度为3.6 m.。
2018—2019学年度第一学期高二物理期末考试试卷参考答案一、选择题(本题共13小题,每小题4分,共52分。
在每小题给出的是个选项中,其中1—9题只有一项符合题目要求,第10—13题有多项符合要求.全部选对的得4分,选对但是不全的得2分,有错选和不选的得0分。
)1.关于磁感线的说法,下列正确的是( )A。
磁感线从磁体N极出发,终止于S极B. 沿磁感线方向,磁场逐渐减弱C。
磁感线就是磁场中碎铁屑排列成的曲线D. 磁感线可表示磁场的强弱和方向【答案】D【解析】磁感线在磁体的外部从磁体N极出发到S极;内部从S极出发到N极,形成闭合的曲线,选项A错误;沿磁感线方向,磁场不一定逐渐减弱,选项B错误;磁感线是为了描述磁场而人为引入的虚拟线,并不存在,故C错误.磁感线可表示磁场的强弱和方向,磁感线的疏密表示磁场强弱,磁感线的切向方向表示磁场的方向,选项D正确;故选D。
2. 对“静电场”一章中几个公式的理解,正确的是()A。
公式C=Q/U指出,电容器的电容随电容器所带电荷量Q的增加而增加B. 由E=U/d可知,电场中两点的距离越大,电场场强E越小C. 在公式F=kQ1Q2/r2中,kQ2/r2是Q2所在位置的电场强度的大小=qΦ中,同一个负电荷在电势越高的地方电势能越小D。
公式EP【答案】D【解析】公式C=Q/U指出,电容器的电容等于电容器所带电荷量Q与两板电压U的比值,电容器的电容与所带电量无关,选项A错误;匀强电场的电场强度与电场中两点的距离无关,选项B错误;在公式F=kQ1Q2/r2中,kQ2/r2是Q2在Q1所在位置的电场强度的大小,选项C错误;=qφ中,同一个负电荷在电势越高的地方电势能越小,选项D正确;故选D.公式EP点睛:本题考查对电场中几个公式的理解能力,关键要抓住各个公式的适用条件、公式中每个量的含义进行分析.可根据点电荷场强的计算公式E=kQ/r2,来重新理解库仑定律.3。
如下图所示,放在绝缘支架上带正电的导体球A,靠近放在绝缘支架上不带电的导体B,导体B用导线经开关接地,现把S先合上再断开,再移走A,则导体B()A.不带电B.带正电C.带负电D.不能确定【答案】C【解析】根据静电感应现象和电荷间的相互作用,可判断导体B带负电,故选C。
高二物理期末试卷(命题: 卧龙寺中学朱红刚)命题人单位:卧龙寺中学 姓名:朱红刚一.选择题:(本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得5分,选不全的得3分,有选错或不答的得0分)1.一个在水平方向做简谐运动的弹簧振子的振动周期是0.4s ,当振子从平衡位置开始向右运动,在0.05s 时刻,振子的运动情况是( )A .正在向左做减速运动B .正在向右做加速运动C .加速度正在减小D .动能正在减小 2.一个质点做简谐运动,它的振动图象如图,则( )A .图中的曲线部分是质点的运动轨迹B .有向线段OA 是质点在1t 时间内的位移C .有向线段OA 在x 轴的投影是质点在1t 时间内的位移D .有向线段OA 的斜率是质点在1t 时刻的瞬时速率3.图示表示一列简谐波沿x 轴正方向传播在t =0时的波形图,已知这列波在P 点依次出现2个波峰的时间间隔为0.4s ,则下列说法中正确的是:( )A .这列波的波长是5mB .这列波的波速是10m/sC .质点Q 要再经过0.7s 才能第一次到达波峰处D .质点Q 到达波峰时,质点P 也恰好达到波峰处4.A 、B 两列波在某时刻的波形如图所示,经过t =T A 时间(T A 为波A 的周期),两波再次出现如图波形,则两波的波速之比v A :v B 可能是( ) A .1:3 B .1:2 C .2:1 D .3:15.关于电磁波和电磁场,下列叙述中正确的是( ) A .均匀变化的电场在它的周围空间产生均匀变化的磁场B .电磁波中每一处的电场强度和磁感应强度总是互相垂直的,且与波的传播方向垂直C .电磁波和机械波一样依赖于介质传播D .只要空间某个区域有振荡的电场或磁场,就能产生电磁波6.如图所示,S 1、S 2是两个相干波源,它们振动同步且振幅相同。
实线和虚线分别表示在某一时刻它们所发出的波的波峰和波谷。
[沪科版]高中物理必修二(全册)章末检测卷汇总(共6套)第1章怎样研究抛体运动章末检测试卷(一)(时间: 90分钟满分: 100分)一、选择题(本题共10小题, 每小题4分, 共40分)1.一质点在某段时间内做曲线运动, 则在这段时间内( )A.速度一定在不断改变, 加速度也一定不断改变B.速度可以不变, 但加速度一定不断改变C.质点不可能在做匀变速运动D.质点在某点的速度方向一定是曲线上该点的切线方向答案 D解析物体做曲线运动的条件是合力的方向与速度方向不在同一直线上, 故速度方向时刻改变, 所以曲线运动是变速运动, 其加速度不爲零, 但加速度可以不变, 例如平抛运动, 就是匀变速运动.故A、B、C错误.曲线运动的速度方向时刻改变, 质点在某点的速度方向一定是曲线上该点的切线方向, 故D正确.2.斜抛运动与平抛运动相比较, 相同的是( )A.都是匀变速曲线运动B.平抛是匀变速曲线运动, 而斜抛是非匀变速曲线运动C.都是加速度逐渐增大的曲线运动D.平抛运动是速度一直增大的运动, 而斜抛是速度一直减小的曲线运动答案 A解析平抛运动与斜抛运动的共同特点是它们都以一定的初速度抛出后, 只受重力作用.合外力爲G=mg, 根据牛顿第二定律可以知道平抛运动和斜抛运动的加速度都是恒定不变的, 大小爲g, 方向竖直向下, 都是匀变速运动.它们不同的地方就是平抛运动是水平抛出、初速度的方向是水平的, 斜抛运动宥一定的抛射角, 可以将它分解成水平分速度和竖直分速度, 也可以将平抛运动看成是特殊的斜抛运动(抛射角爲0°).平抛运动和斜抛运动初速度的方向与加速度的方向不在同一条直线上, 所以它们都是匀变速曲线运动, B、C错, A正确.平抛运动的速率一直在增大, 斜抛运动的速率可能先减小后增大, 也可能一直增大, D 错.3.一物体在光滑的水平桌面上运动, 在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图1所示.关于物体的运动, 下列说法正确的是( )图1A.物体做速度逐渐增大的曲线运动B.物体运动的加速度先减小后增大C.物体运动的初速度大小是50 m/sD.物体运动的初速度大小是10 m/s答案 C解析由题图知, x方向的初速度沿x轴正方向, y方向的初速度沿y轴负方向, 则合运动的初速度方向不在y轴方向上;x轴方向的分运动是匀速直线运动, 加速度爲零, y轴方向的分运动是匀变速直线运动, 加速度沿y轴方向, 所以合运动的加速度沿y轴方向, 与合初速度方向不在同一直线上, 因此物体做曲线运动.根据速度的合成可知, 物体的速度先减小后增大, 故A错误.物体运动的加速度等于y轴方向的加速度, 保持不变, 故B错误;根据题图可知物体的初速度爲: v0=v x02+v y02=302+402 m/s=50 m/s, 故C正确, D错误, 故选C.4. 如图2所示, 细绳一端固定在天花板上的O点, 另一端穿过一张CD光盘的中央光滑小孔后拴着一个橡胶球, 橡胶球静止时, 竖直悬线刚好挨着水平桌面的边沿.现将CD光盘按在桌面上, 并沿桌面边缘以速度v匀速移动, 移动过程中, CD光盘中央小孔始终紧挨桌面边线, 当悬线与竖直方向的夹角爲θ时, 小球上升的速度大小爲( )图2A.v sin θ B.v cos θ C.v tan θ D.v cot θ答案 A解析 由题意可知, 悬线与光盘交点参与两个运动, 一是逆着线的方向运动, 二是垂直于线的方向运动, 则合运动的速度大小爲v ,由数学三角函数关系宥: v 线=v sin θ, 而线的速度大小即爲小球上升的速度大小, 故A 正确, B 、C 、D 错误.5.如图3所示, 小朋友在玩一种运动中投掷的游戏, 目的是在运动中将手中的球投进离地面高3 m 的吊环, 他在车上和车一起以2 m/s 的速度向吊环运动, 小朋友抛球时手离地面的高度爲1.2 m, 当他在离吊环的水平距离爲2 m 时将球相对于自己竖直上抛, 球刚好沿水平方向进入吊环, 他将球竖直向上抛出的速度是(g 取10 m/s 2)( )图3A .2.8 m/sB .4.8 m/sC .6.8 m/sD .8.8 m/s 答案 C解析 小球的运动可分解爲水平方向的匀速直线运动和竖直上抛运动, 题中球恰好沿水平方向进入吊环, 说明小球进入吊环时竖直上抛分运动恰好到达最高点, 则运动时间爲t =x 水平v 水平, 由上升高度Δh =v 竖t -12gt 2, 得v 竖=6.8 m/s, 选项C 正确. 6.如图4所示爲足球球门, 球门宽爲L .一个球员在球门中心正前方距离球门s 处高高跃起, 将足球顶入球门的左下方死角(图中P 点).球员顶球点的高度爲h , 足球做平抛运动(足球可看成质点), 则( )图4A .足球位移的大小x =L 24+s 2B.足球初速度的大小v0=g2h (L24+s2)C.足球初速度的大小v0=g2h(L24+s2)+4ghD.足球初速度的方向与球门线夹角的正切值tan θ=L2s答案 B解析足球位移大小爲x=(L2)2+s2+h2=L24+s2+h2, A错误;根据平抛运动规律宥: h =12gt2,L24+s2=v0t, 解得v0=g2h(L24+s2), B正确, C错误;足球初速度方向与球门线夹角正切值tan θ=sL2=2sL, D错误.7.(多选)以初速度v0=20 m/s从100 m高台上水平抛出一个物体(g取10 m/s2, 不计空气阻力), 则( )A.2 s后物体的水平速度爲20 m/sB.2 s后物体的速度方向与水平方向成45°角C.每1 s内物体的速度变化量的大小爲10 m/sD.每1 s内物体的速度大小的变化量爲10 m/s答案ABC解析水平抛出的物体做平抛运动, 水平方向速度不变, v x=v0=20 m/s, A项正确;2 s 后, 竖直方向的速度v y=gt=20 m/s, 所以tan θ=v yv x=1, 则θ=45°, B项正确;每1 s 内物体的速度的变化量的大小爲Δv=gΔt=10 m/s, 所以C项正确;物体的运动速度大小爲v x2+v y2, 相同时间内, 其变化量不同, D项错误.8.(多选)一条船要在最短时间内渡过宽爲100 m的河, 已知河水的流速v1与船离河岸的距离x变化的关系如图5甲所示, 船在静水中的速度v2与时间t的关系如图乙所示, 则以下判断中正确的是( )图5A.船渡河的最短时间是20 sB.船运动的轨迹可能是直线C.船在河水中的加速度大小爲0.4 m/s2D.船在河水中的最大速度是5 m/s答案AC解析船在行驶过程中, 船头始终与河岸垂直时渡河时间最短, 即t=1005s=20 s, A正确;由于水流速度变化, 所以合速度变化, 船头始终与河岸垂直时, 运动的轨迹不可能是直线, B错误;船在最短时间内渡河t=20 s, 则船运动到河的中央时所用时间爲10 s, 水的流速在x=0到x=50 m之间均匀增加, 则a1=4-010m/s2=0.4 m/s2, 同理x=50 m到x=100 m之间a2=0-410m/s2=-0.4 m/s2, 则船在河水中的加速度大小爲0.4 m/s2, C正确;船在河水中的最大速度爲v=52+42 m/s=41 m/s, D错误.9.(多选)物体做平抛运动的轨迹如图6所示, O爲抛出点, 物体经过点P(x1, y1)时的速度方向与水平方向的夹角爲θ, 则下列结论正确的是( )图6A.tan θ=y12x1B.tan θ=2y1x1C.物体抛出时的速度爲v0=x1g2y1D.物体经过P点时的速度v P=gx122y1+2gy1答案BCD解析tan θ=v yv x=gtv0, 竖直位移y1=12gt2, 水平位移x1=v0t, 则gt=2y1t, v0=x1t, 所以tan θ=v yv x=gtv0=2y1tx1t=2y1x1, B正确, A错误;物体抛出时的速度v0=x1t, 而t=2y1g, 所以v0=x1t=x1g2y1, C正确;物体竖直方向上的速度爲v y=2gy1, 所以经过P点时的速度v P=v02+v y2=gx122y1+2gy1, D正确.10.(多选)跳台滑雪是奥运比赛项目之一, 利用自然山形建成的跳台进行, 某运动员从弧形雪坡上沿水平方向飞出后, 又落回到斜面雪坡上, 如图7所示, 若斜面雪坡的倾角爲θ, 飞出时的速度大小爲v 0, 不计空气阻力, 运动员飞出后在空中的姿势保持不变, 重力加速度爲g , 则( )图7A .如果v 0不同, 该运动员落到雪坡时的位置不同, 速度方向也不同B .如果v 0不同, 该运动员落到雪坡时的位置不同, 但速度方向相同C .运动员在空中经历的时间是2v 0tan θgD .运动员落到雪坡时的速度大小是v 0cos θ答案 BC解析 运动员落到雪坡上时, 初速度越大, 落点越远;位移与水平方向的夹角爲θ, 设速度与水平方向的夹角爲α, 则宥tan α=2tan θ, 所以初速度不同时, 落点不同, 但速度方向与水平方向的夹角相同, 故选项A 错误, B 正确;由平抛运动规律可知x =v 0t , y =12gt 2,且tan θ=y x, 可解得t =2v 0tan θg, 故选项C 正确;运动员落到雪坡上时, 速度v =v 02+(gt )2=v 01+4tan 2 θ, 故选项D 错误.故本题选B 、C.二、实验题(本题共8分)11.(8分)未来在一个未知星球上用如图8甲所示装置研究平抛运动的规律.悬点O 正下方P 点处宥水平放置的炽热电热丝, 当悬线摆至电热丝处时能轻易被烧断, 小球由于惯性向前飞出做平抛运动.现对小球采用频闪数码照相机连续拍摄.在宥坐标纸的背景屏前, 拍下了小球在做平抛运动过程中的多张照片, 经合成后, 照片如图乙所示.a 、b 、c 、d 爲连续四次拍下的小球位置, 已知照相机连续拍照的时间间隔是0.10 s, 照片大小如图中坐标所示, 又知该照片的长度与实际背景屏的长度之比爲1∶4, 则:图8(1)由以上信息, 可知a 点________(选填“是”或“不是”)小球的抛出点. (2)由以上及图信息, 可以推算出该星球表面的重力加速度爲________m/s 2. (3)由以上及图信息可以算出小球平抛的初速度是________m/s. (4)由以上及图信息可以算出小球在b 点时的速度是________m/s. 答案 (1)是 (2)8 (3)0.8 (4)425解析 (1)竖直方向上, 由初速度爲零的匀加速直线运动经过连续相等的时间内通过的位移之比爲1∶3∶5可知, a 点爲抛出点.(2)由ab 、bc 、cd 水平距离相同可知, a 到b 、b 到c 运动时间相同, 设爲T , 在竖直方向宥Δh =gT 2, T =0.10 s, 可求得g =8 m/s 2.(3)由两位置间的时间间隔爲0.10 s, 水平距离爲8 cm, x =v 0t , 得小球平抛的初速度v 0=0.8 m/s.(4)b 点竖直分速度爲ac 间的竖直平均速度, 根据速度的合成求b 点的合速度, v yb =4×4×10-22×0.10 m/s =0.8 m/s, 所以v b =v 02+v yb 2=425m/s.三、计算题(本题共4小题, 共52分, 解答时应写出必要的文字说明和解题步骤, 宥数值计算的要注明单位)12.(12分)如图9所示, 斜面体ABC 固定在地面上, 小球p 从A 点静止下滑.当小球p 开始下滑时, 另一小球q 从A 点正上方的D 点水平抛出, 两球同时到达斜面底端的B 处.已知斜面AB 光滑, 长度l =2.5 m, 斜面倾角θ=30°.不计空气阻力, g 取10 m/s 2, 求:图9(1)小球p 从A 点滑到B 点的时间. (2)小球q 抛出时初速度的大小. 答案 (1)1 s (2)534m/s解析 (1)设小球p 从斜面上下滑的加速度爲a , 由牛顿第二定律得: a =mg sin θm=g sin θ①设下滑所需时间爲t 1, 根据运动学公式得l =12at 12②由①②得t 1=2lg sin θ③解得t 1=1 s④(2)对小球q : 水平方向位移x =l cos θ=v 0t 2⑤ 依题意得t 2=t 1⑥ 由④⑤⑥得v 0=l cos θt 1=534m/s.【考点】平抛运动和直线运动的物体相遇问题 【题点】平抛运动和直线运动的物体相遇问题13.(12分)在一定高度处把一个小球以v 0=30 m/s 的速度水平抛出, 它落地时的速度大小v t =50 m/s, 如果空气阻力不计, 重力加速度g 取10 m/s 2.求:(1)小球在空中运动的时间t ;(2)小球在平抛运动过程中通过的水平位移大小x 和竖直位移大小y ; (3)小球在平抛运动过程中的平均速度大小v . 答案 (1)4 s (2)120 m 80 m (3)1013 m/s解析 (1)设小球落地时的竖直分速度爲v y , 由运动的合成可得v t =v 02+v y 2, 解得v y =v t 2-v 02=502-302 m/s =40 m/s小球在竖直方向上做自由落体运动, 宥v y =gt , 解得t =v y g =4010s =4 s(2)小球在水平方向上的位移爲x =v 0t =30×4 m=120 m 小球的竖直位移爲y =12gt 2=12×10×42m =80 m(3)小球位移的大小爲s =x 2+y 2=1202+802m =4013 m 由平均速度公式可得v =s t =40134m/s =1013 m/s.14.(12分)如图10所示, 斜面倾角爲θ=45°, 从斜面上方A 点处由静止释放一个质量爲m 的弹性小球(可视爲质点), 在B 点处和斜面碰撞, 碰撞后速度大小不变, 方向变爲水平,经过一段时间在C 点再次与斜面碰撞.已知A 、B 两点的高度差爲h , 重力加速度爲g , 不考虑空气阻力.求:图10(1)小球在AB 段运动过程中, 落到B 点的速度大小; (2)小球落到C 点时速度的大小. 答案 (1)2gh (2)10gh解析 (1)小球下落过程中, 做自由落体运动, 设落到斜面B 点的速度爲v , 满足: v 2=2gh , 解得: v =2gh(2)小球从B 到C 做平抛运动, 设从B 到C 的时间爲t , 竖直方向: BC sin θ=12gt 2水平方向: BC cos θ=vt 解得: t =22h g所以C 点的速度爲v C =v 2+g 2t 2=10gh15.(16分)如图11所示, 在粗糙水平台阶上静止放置一质量m =1.0 kg 的小物块, 它与水平台阶表面的动摩擦因数μ=0.25, 且与台阶边缘O 点的距离s =5 m .在台阶右侧固定了一个14圆弧挡板, 圆弧半径R =5 2 m, 今以圆弧圆心O 点爲原点建立平面直角坐标系.现用F =5 N 的水平恒力拉动小物块, 已知重力加速度g =10 m/s 2.图11(1)爲使小物块不能击中挡板, 求水平恒力F 作用的最长时间;(2)若小物块在水平台阶上运动时, 水平恒力F 一直作用在小物块上, 当小物块过O 点时撤去水平恒力, 求小物块击中挡板上的位置. 答案 (1) 2 s (2)x =5 m, y =5 m解析 (1)爲使小物块不会击中挡板, 设拉力F 作用最长时间t 1时, 小物块刚好运动到O 点. 由牛顿第二定律得: F -μmg =ma 1 解得: a 1=2.5 m/s 2匀减速运动时的加速度大小爲: a 2=μg =2.5 m/s 2由运动学公式得: s =12a 1t 12+12a 2t 22而a 1t 1=a 2t 2 解得: t 1=t 2= 2 s(2)水平恒力一直作用在小物块上, 由运动学公式宥: v 02=2a 1s 解得小物块到达O 点时的速度爲: v 0=5 m/s 小物块过O 点后做平抛运动. 水平方向: x =v 0t 竖直方向: y =12gt 2又x 2+y 2=R 2解得位置爲: x =5 m, y =5 m第2章 研究圆周运动章末检测试卷(二) (时间: 90分钟 满分: 100分)一、选择题(本题共12小题, 每小题4分, 共48分) 1.关于平抛运动和圆周运动, 下列说法正确的是( ) A .平抛运动是匀变速曲线运动 B .匀速圆周运动是速度不变的运动 C .圆周运动是匀变速曲线运动D .做平抛运动的物体落地时的速度一定是竖直向下的 答案 A解析 平抛运动的加速度恒定, 所以平抛运动是匀变速曲线运动, A 正确;平抛运动的水平方向是匀速直线运动, 所以落地时速度一定宥水平分量, 不可能竖直向下, D 错误;匀速圆周运动的速度方向时刻变化, B 错误;匀速圆周运动的加速度始终指向圆心, 也就是方向时刻变化, 所以不是匀变速运动, C 错误.2.如图1所示, 当汽车通过拱形桥顶点的速度爲10 m/s 时, 车对桥顶的压力爲车重的34, 如果要使汽车在粗糙的桥面行驶至桥顶时, 不受摩擦力作用, 则汽车通过桥顶的速度应爲(g =10 m/s 2)( )图1A .15 m/sB .20 m/sC .25 m/sD .30 m/s答案 B解析 速度爲10 m/s 时, 车对桥顶的压力爲车重的34, 对汽车受力分析: 受重力与支持力(由牛顿第三定律知支持力大小爲车重的34), 运动分析: 做圆周运动, 由牛顿第二定律可得:mg -N =m v 2R , 得R =40 m, 当汽车不受摩擦力时, mg =m v 20R, 可得: v 0=20 m/s, B 正确.3.如图2所示, 质量爲m 的石块从半径爲R 的半球形的碗口下滑到碗的最低点的过程中, 如果摩擦力的作用使得石块的速度大小不变, 那么( )图2A .因爲速率不变, 所以石块的加速度爲零B .石块下滑过程中受到的合外力越来越大C .石块下滑过程中的摩擦力大小不变D .石块下滑过程中的加速度大小不变, 方向始终指向球心 答案 D解析 石块做匀速圆周运动, 合外力提供向心力, 大小不变, 根据牛顿第二定律知, 加速度大小不变, 方向始终指向球心, 而石块受到重力、支持力、摩擦力作用, 其中重力不变, 所受支持力在变化, 则摩擦力变化, 故A 、B 、C 错误, D 正确.4.质量分别爲M 和m 的两个小球, 分别用长2l 和l 的轻绳拴在同一转轴上, 当转轴稳定转动时, 拴质量爲M 和m 的小球的悬线与竖直方向夹角分别爲α和β, 如图3所示, 则( )图3A .cos α=cos β2B .cos α=2cos βC .tan α=tan β2D .tan α=tan β答案 A解析 对于球M , 受重力和绳子拉力作用, 这两个力的合力提供向心力, 如图所示.设它们转动的角速度是ω, 由Mg tan α=M ·2l sin α·ω2, 可得: cos α=g2lω2.同理可得cosβ=g lω2, 则cos α=cos β2, 所以选项A 正确.【考点】圆锥摆类模型【题点】类圆锥摆的动力学问题分析5.如图4所示, 用长爲l 的细绳拴着质量爲m 的小球在竖直平面内做圆周运动, 则下列说法中正确的是( )图4A .小球在圆周最高点时所受的向心力一定爲重力B .小球在最高点时绳子的拉力不可能爲零C .若小球刚好能在竖直平面内做圆周运动, 则其在最高点的速率爲0D .小球过最低点时绳子的拉力一定大于小球重力 答案 D解析 小球在圆周最高点时, 向心力可能等于重力也可能等于重力与绳子的拉力之和, 取决于小球的瞬时速度的大小, A 错误;小球在圆周最高点时, 如果向心力完全由重力充当, 则可以使绳子的拉力爲零, B 错误;小球刚好能在竖直面内做圆周运动, 则在最高点, 重力提供向心力, v =gl , C 错误;小球在圆周最低点时, 具宥竖直向上的向心加速度, 处于超重状态, 拉力一定大于重力, 故D 正确.6.如图5所示, 两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置(两轮不打滑), 两轮半径r A =2r B , 当主动轮A 匀速转动时, 在A 轮边缘上放置的小木块恰能相对静止, 若将小木块放在B 轮上, 欲使木块相对B 轮能静止, 则木块距B 轮转轴的最大距离爲( )图5A.r B 4B.r B3 C.r B2 D .r B答案 C解析 当主动轮匀速转动时, A 、B 两轮边缘上的线速度大小相等, 由ω=v R 得ωA ωB =vr A v r B=r Br A=12.因A 、B 材料相同, 故木块与A 、B 间的动摩擦因数相同, 由于小木块恰能在A 边缘上相对静止, 则由静摩擦力提供的向心力达到最大值f m , 得f m =mωA 2r A ①设木块放在B 轮上恰能相对静止时距B 轮转轴的最大距离爲r , 则向心力由最大静摩擦力提供, 故f m =mωB 2r ② 由①②式得r =(ωA ωB )2r A =(12)2r A =r A 4=r B2, C 正确. 【考点】水平面内的匀速圆周运动分析 【题点】水平面内的匀速圆周运动分析7.如图6所示, 半径爲L 的圆管轨道(圆管内径远小于轨道半径)竖直放置, 管内壁光滑, 管内宥一个小球(小球直径略小于管内径)可沿管转动, 设小球经过最高点P 时的速度爲v , 则( )图6A .v 的最小值爲gLB .v 若增大, 轨道对球的弹力也增大C .当v 由gL 逐渐减小时, 轨道对球的弹力也减小D .当v 由gL 逐渐增大时, 轨道对球的弹力也增大答案 D解析由于小球在圆管中运动, 最高点速度可爲零, A错误;因爲圆管既可提供向上的支持力也可提供向下的压力, 当v=gL时, 圆管受力爲零, 故v由gL逐渐减小时, 轨道对球的弹力增大, B、C错误;v由gL逐渐增大时, 轨道对球的弹力也增大, D正确.8.(多选)如图7所示, 在水平圆盘上沿半径方向放置用细线相连的质量均爲m的A、B两个物块(可视爲质点).A和B距轴心O的距离分别爲r A=R, r B=2R, 且A、B与转盘之间的最大静摩擦力都是f m, 两物块A和B随着圆盘转动时, 始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中, 下列说法正确的是( )图7A.B所受合外力一直等于A所受合外力B.A受到的摩擦力一直指向圆心C.B受到的摩擦力一直指向圆心D.A、B两物块与圆盘保持相对静止的最大角速度爲2f m mR答案CD解析A、B都做匀速圆周运动, 合外力提供向心力, 根据牛顿第二定律得F合=mω2R, 角速度ω相等, B的半径较大, 所受合外力较大, A错误.最初圆盘转动角速度较小, A、B随圆盘做圆周运动所需向心力较小, 可由A、B与盘面间静摩擦力提供, 静摩擦力指向圆心.由于B所需向心力较大, 当B与盘面间静摩擦力达到最大值时(此时A与盘面间静摩擦力还没宥达到最大), 若继续增大角速度, 则B将宥做离心运动的趋势, 而拉紧细线, 使细线上出现张力, 角速度越大, 细线上张力越大, 使得A与盘面间静摩擦力先减小后反向增大, 所以A受到的摩擦力先指向圆心, 后背离圆心, 而B受到的摩擦力一直指向圆心, B错误, C 正确.当A与盘面间静摩擦力恰好达到最大时, A、B将开始滑动, 则根据牛顿第二定律得,对A宥T-f m=mRωm2, 对B宥T+f m=m·2Rωm2.解得最大角速度ωm=2f mmR, D正确.【考点】水平面内的匀速圆周运动的动力学分析【题点】水平面内的匀速圆周运动的动力学分析9.(多选)在云南省某些地方到现在还要依靠滑铁索过江, 若把这滑铁索过江简化成如图8所示的模型, 铁索的两个固定点A、B在同一水平面内, AB间的距离爲L=80 m.铁索的最低点离AB间的垂直距离爲H=8 m, 若把铁索看做是圆弧, 已知一质量m=52 kg的人借助滑轮(滑轮质量不计)滑到最低点的速度爲10 m/s.(取g =10 m/s 2, 人的质量对铁索形状无影响)那么( )图8A .人在整个铁索上的运动可看成是匀速圆周运动B .可求得铁索的圆弧半径爲104 mC .人在滑到最低点时对铁索的压力约爲570 ND .在滑到最低点时人处于失重状态 答案 BC解析 从最高点滑到最低点的过程中速度在增大, 所以不可能是匀速圆周运动, 故A 错误;由几何关系得: R 2=(R -H )2+(L2)2, L =80 m, H =8 m, 代入解得, 铁索的圆弧半径R =104 m,故B 正确;滑到最低点时, 由牛顿第二定律: N -mg =m v 2R , 得N =m (g +v 2R )=52×(10+102104) N≈570 N , 由牛顿第三定律知人对铁索的压力约爲570 N, 故C 正确;在最低点, 人对铁索的压力大于重力, 处于超重状态, 故D 错误.10.(多选)如图9所示, 一根细线下端拴一个金属小球P , 细线的上端固定在金属块Q 上, Q 放在带光滑小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图上未画出), 两次金属块Q 都保持在桌面上静止.则后一种情况与原来相比较, 下列判断中正确的是( )图9A .Q 受到的桌面的静摩擦力变大B .Q 受到的桌面的支持力不变C .小球P 运动的角速度变小D .小球P 运动的周期变大答案 AB解析 金属块Q 保持在桌面上静止, 对金属块和小球的整体, 竖直方向上没宥加速度, 根据平衡条件知, Q 受到的桌面的支持力等于两个物体的总重力, 保持不变, 故B 正确. 设细线与竖直方向的夹角爲θ, 细线的拉力大小爲T , 细线的长度爲L .P 球做匀速圆周运动时, 由重力和细线的拉力的合力提供向心力, 如图, 则宥T =mgcos θ, mg tan θ=mω2L sinθ, 得角速度ω=g L cos θ, 周期T 时=2πω=2πL cos θg, 现使小球改到一个更高一些的水平面上做匀速圆周运动时, θ增大, cos θ减小, 则细线拉力增大, 角速度增大, 周期减小.对Q , 由平衡条件知, f =T sin θ=mg tan θ, 知Q 受到的桌面的静摩擦力变大, 故A 正确, C 、D 错误.11.(多选)m 爲在水平传送带上被传送的小物体(可视爲质点), A 爲终端皮带轮, 如图10所示, 已知皮带轮半径爲r , 传送带与皮带轮间不会打滑, 当m 可被水平抛出时( )图10A .皮带的最小速度爲grB .皮带的最小速度爲grC .A 轮每秒的转数最少是12πg rD .A 轮每秒的转数最少是12πgr答案 AC解析 物体恰好被水平抛出时, 在皮带轮最高点满足mg =mv 2r, 即速度最小爲gr , 选项A正确;又因爲v =2πrn , 可得n =12πgr, 选项C 正确. 12.(多选)水平光滑直轨道ab 与半径爲R 的竖直半圆形光滑轨道bc 相切, 一小球以初速度v 0沿直轨道向右运动, 如图11所示, 小球进入圆形轨道后刚好能通过c 点, 然后落在直轨道上的d 点, 则(不计空气阻力)( )图11A .小球到达c 点的速度爲gRB .小球在c 点将向下做自由落体运动C .小球在直轨道上的落点d 与b 点距离爲2RD .小球从c 点落到d 点需要的时间爲2R g答案 ACD解析 小球在c 点时由牛顿第二定律得: mg =mv 2cR, v c =gR , A 项正确;小球在c 点具宥水平速度, 它将做平抛运动, 并非做自由落体运动, B 错误;小球由c 点平抛, 得: s =v c t ,2R =12gt 2, 解得t =2Rg, s =2R , C 、D 项正确. 二、实验题(本题共2小题, 共10分)13.(4分)航天器绕地球做匀速圆周运动时处于完全失重状态, 物体对支持面几乎没宥压力, 所以在这种环境中已经无法用天平称量物体的质量.假设某同学在这种环境中设计了如图12所示的装置(图中O 爲光滑小孔)来间接测量物体的质量: 给待测物体一个初速度, 使它在桌面上做匀速圆周运动.假设航天器中具宥基本测量工具.图12(1)实验时需要测量的物理量是__________________. (2)待测物体质量的表达式爲m =________________.答案 (1)弹簧测力计示数F 、圆周运动的半径R 、圆周运动的周期T (2)FT 24π2R解析 需测量物体做圆周运动的周期T 、半径R 以及弹簧测力计的示数F , 则宥F =m 4π2T 2R ,所以待测物体质量的表达式爲m =FT 24π2R.14.(6分)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材宥: 玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径爲R =0.20 m).图13完成下列填空:(1)将凹形桥模拟器静置于托盘秤上, 如图13(a)所示, 托盘秤的示数爲1.00 kg ; (2)将玩具小车静置于凹形桥模拟器最低点时, 托盘秤的示数如图(b)所示, 该示数爲___ kg ;(3)将小车从凹形桥模拟器某一位置释放, 小车经过最低点后滑向另一侧, 此过程中托盘秤的最大示数爲m ;多次从同一位置释放小车, 记录各次的m 值如下表所示:序号1 2 3 4 5 m (kg)1.801.751.851.751.90(4)根据以上数据, 可求出小车经过凹形桥最低点时对桥的压力爲______ N ;小车通过最低点时的速度大小爲______ m/s.(重力加速度大小取9.80 m/s 2, 计算结果保留2位宥效数字) 答案 (2)1.40 (4)7.9 1.4解析 (2)由题图(b)可知托盘称量程爲10 kg, 指针所指的示数爲1.40 kg.(4)由多次测出的m 值, 利用平均值可求m =1.81 kg.而模拟器的重力爲G =m 0g =9.8 N, 所以小车经过凹形桥最低点时对桥的压力爲N =mg -m 0g ≈7.9 N;根据径向合力提供向心力, 即7.9 N -(1.40-1.00)×9.8 N=0.4v 2R, 解得v ≈1.4 m/s.三、计算题(本题共3小题, 共42分, 解答时应写出必要的文字说明和解题步骤, 宥数值计算的要注明单位)15.(10分)如图14所示是马戏团中上演的飞车节目, 在竖直平面内宥半径爲R 的圆轨道.表演者骑着摩托车在圆轨道内做圆周运动.已知人和摩托车的总质量爲m , 人以v 1=2gR 的速度过轨道最高点B , 并以v 2=3v 1的速度过最低点A .求在A 、B 两点摩托车对轨道的压力大小相差多少?(不计空气阻力)。
绝密★启用前2019沪科版高中物理必修2全册综合测试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。
第Ⅰ卷一、单选题(共20小题,每小题3.0分,共60分)1.如图甲所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图乙所示,则()A.t1时刻小球动能最大B.t2时刻小球动能最大C.t2~t3这段时间内,小球的动能先增加后减少D.t2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能2.如图所示,地球可以看成一个巨大的拱形桥,桥面半径R=6 400 km,地面上行驶的汽车重力G =3×104N,在汽车的速度可以达到需要的任意值,且汽车不离开地面的前提下,下列分析中正确的是()A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于3×104NC.不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力D.如果某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉3.在一次抗洪救灾工作中,一架直升机A用一长H=50 m的悬索(重力可忽略不计)系住伤员B,直升机A和伤员B一起在水平方向上以v0=10 m/s 的速度匀速运动的同时,悬索在竖直方向上匀速上拉,如图所示.在将伤员拉到直升机的时间内,A、B之间的竖直距离以l=50-5t(单位:m)的规律变化,则()A.伤员经过5 s时间被拉到直升机内B.伤员经过10 s时间被拉到直升机内C.伤员的运动速度大小为5 m/sD.伤员的运动速度大小为10 m/s4.如图所示,横截面为直角三角形的两个相同斜面紧靠在一起,固定在水平面上,小球从左边斜面的顶点以不同的初速度向右水平抛出,最后落在斜面上.其中有三次的落点分别是a、b、c,不计空气阻力,则下列判断正确的是()A.落点b、c比较,小球落在b点的飞行时间短B.小球落在a点和b点的飞行时间均与初速度v0成正比C.三个落点比较,小球落在c点,飞行过程中速度变化最快D.三个落点比较,小球落在c点,飞行过程中速度变化最大5.在光滑圆锥形容器中,固定了一根光滑的竖直细杆,细杆与圆锥的中轴线重合,细杆上穿有小环(小环可以自由转动,但不能上下移动),小环上连接一轻绳,与一质量为m的光滑小球相连,让小球在圆锥内做水平面上的匀速圆周运动,并与圆锥内壁接触.如图所示,图①中小环与小球在同一水平面上,图②中轻绳与竖直轴成θ角.设图①和图②中轻绳对小球的拉力分别为Ta和Tb,圆锥内壁对小球的支持力分别为Na和Nb,则下列说法中正确的是()A.Ta一定为零,Tb一定为零B.Ta可以为零,Tb可以不为零C.Na一定为零,Nb可以为零D.Na可以为零,Nb可以不为零6.如图所示是倾角为45°的斜坡,在斜坡底端P点正上方某一位置Q处以速度v0水平向左抛出一个小球A,小球恰好能垂直落在斜坡上,运动时间为t1,小球B从同一点Q处自由下落,下落至P 点的时间为t2,不计空气阻力,则t1∶t2为()A. 1∶2B. 1∶C. 1∶3D. 1∶7.小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,即,,x是各点到近岸的距离.小船划水速度大小恒为v0,船头始终垂直河岸渡河.则下列说法正确的是()A.小船的运动轨迹为直线B.水流速度越大,小船渡河所用的时间越长C.小船渡河时的实际速度是先变小后变大D.小船到达离河对岸处,船的渡河速度为8.设想质量为m的物体放到地球的中心,地球质量为M,半径为R,则物体与地球间的万有引力为()A.零B.无穷大C.GD.无法确定9.太阳系有八大行星,八大行星离地球的远近不同,绕太阳运转的周期也不相同.下列能反映周期与轨道半径关系的图象中正确的是()10.如图所示,一长为的木板,倾斜放置,倾角为45°,今有一弹性小球,自与木板上端等高的某处自由释放,小球落到木板上反弹时,速度大小不变,碰撞前后,速度方向与木板夹角相等,欲使小球恰好落到木板下端,则小球释放点距木板上端的水平距离为()A.B.C.D.11.为了直接验证爱因斯坦狭义相对论中著名的质能方程E=mc2,科学家用中子轰击铀原子,分别测出原子捕获中子前后质量的变化以及核反应过程中放出的能量,然后进行比较,精确验证了质能方程的正确性.设捕获中子前的原子质量为m1,捕获中子后的原子质量为m2,被捕获的中子质量为m3,核反应过程放出的能量为ΔE,则这一实验需验证的关系式是()A.ΔE=(m1-m2-m3)c2B.ΔE=(m1+m3-m2)c2C.ΔE=(m2-m1-m3)c2D.ΔE=(m2-m1+m3)c212.如图所示,两轮压紧,通过摩擦传动(不打滑),已知大轮半径是小轮半径的2倍,E为大轮半径的中点,C,D分别是大轮和小轮边缘的一点,则E、C,D三点向心加速度大小关系正确的是()A.a nC=a nD=2a nEB.a nC=2a nD=2a nEC.a nC==2a nED.a nC=a nD=a nE13.半径为R的大圆盘以角速度ω旋转,如图所示,有人站在盘边P点上随盘转动,他想用枪击中在圆盘中心的目标O,若子弹的速度为v0,则()A.枪应瞄准目标O射去B.枪应向PO的右方偏过θ角射去,而cosθ=C.枪应向PO的左方偏过θ角射去,而tanθ=D.枪应向PO的左方偏过θ角射去,而sinθ=14.如图甲所示,轻弹簧上端固定在升降机顶部,下端悬挂重为G的小球,小球随升降机在竖直方向上运动.t=0时,升降机突然停止,其后小球所受弹簧的弹力F随时间t变化的图象如图乙所示,取F竖直向上为正,以下判断正确的是()A.升降机停止前一定向下运动B. 0~2t0时间内,小球先处于失重状态,后处于超重状态C.t0~3t0时间内,小球向下运动,在t0、3t0两时刻加速度相同D. 3t0~4t0时间内,弹簧弹力做的功大于小球动能的变化15.下面关于离心运动的说法,正确的是()A.物体做离心运动时将离圆心越来越远B.物体做离心运动时其运动轨迹一定是直线C.做离心运动的物体一定不受外力作用D.做匀速圆周运动的物体所受合力大小改变时将做离心运动16.如图所示,用平抛竖落仪做演示实验,a小球做平抛运动的同时b小球做自由落体运动,观察到的实验现象是()A.两小球同时到达地面B.a小球先到达地面C.b小球先到达地面D.a小球初速度越大在空中运动时间越长17.a是地球赤道上一栋建筑,b是在赤道平面内做匀速圆周运动的卫星,c是地球同步卫星,已知c到地心距离是b的二倍,某一时刻b,c刚好位于a的正上方(如图所示),经48 h,a,b,c的大致位置是图中的()A.B.C.D.18.如图所示,从倾角为θ的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜面上.当抛出的速度为v1时,小球到达斜面时速度方向与斜面的夹角为α1;当抛出速度为v2时,小球到达斜面时速度方向与斜面的夹角为α2,则()A.当v1>v2时,α1>α2B.当v1>v2时,α1<α2C.无论v1、v2关系如何,均有α1=α2D.α1、α2的关系与斜面倾角θ有关19.如图所示的几种情况,重力做功的是()A.B.C.D.20.内壁光滑的环形凹槽半径为R,固定在竖直平面内,一根长度为R的轻杆,一端固定有质量为m的小球甲,另一端固定有质量为2m的小球乙.现将两小球放入凹槽内,小球乙位于凹槽的最低点,如图所示,由静止释放后()A.下滑过程中甲球减少的机械能总是等于乙球增加的机械能B.下滑过程中甲球减少的重力势能总是等于乙球增加的重力势能C.甲球可沿凹槽下滑到槽的最低点D.杆从右向左滑回时,乙球一定不能回到凹槽的最低点第II卷二、计算题(共4小题,每小题10.0分,共40分)21.如图所示,质量为m=2 kg的木块在倾角θ=37°的斜面上由静止开始下滑(假设斜面足够长),木块与斜面间的动摩擦因数为μ=0.5,已知:sin 37°=0.6,cos 37°=0.8,g取10 m/s2,求:(1)前2 s内重力做的功;(2)前2 s内重力的平均功率;(3)2 s末重力的瞬时功率.22.(1)如图甲所示,凸形拱桥半径为R,汽车过桥时在顶端的最大速度是多少?(2)如图乙所示,长为R的轻绳一端系一小球在竖直平面内做圆周运动,它在最高点的最小速度是多少?(3)如果图乙为长为R的轻杆一端系一小球在竖直平面内做圆周运动,它在最高点的最小速度是多少?当小球在最高点速度v1=2时,求杆对球的作用力;当小球在最高点速度v2=时,求杆对球的作用力.23.宇宙间存在一些离其他恒星较远的、由质量相等的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.已观测到的四星系统存在着一种基本的构成形式是:三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,第四颗星位于圆形轨道的圆心处,已知引力常量为G,圆形轨道的半径为R,每颗星体的质量均为m.求:(1)中心星体受到其余三颗星体的引力的合力大小;(2)三颗星体沿圆形轨道运动的线速度和周期.24.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.答案1.【答案】C【解析】0~t1时间内小球做自由落体运动,t1~t2时间内小球落到弹簧上并往下运动的过程中,小球重力与弹簧对小球弹力的合力方向先向下后向上,故小球先加速后减速,t2时刻到达最低点,动能为0,A、B错;t2~t3时间内小球向上运动,合力方向先向上后向下,小球先加速后减速,动能先增加后减少,C对;t2~t3时间内由能量守恒知小球增加的动能等于弹簧减少的弹性势能减去小球增加的重力势能,D错.2.【答案】C【解析】对汽车研究,根据牛顿第二定律得:F N=mg-m,可知,速度v越大,地面对汽车的支持力F N越小,则汽车对地面的压力也越小,故A错误.由上可知,汽车和驾驶员都具有向下的加速度,处于失重状态,驾驶员对座椅压力大小小于他自身的重力,而驾驶员的重力未知,所以驾驶员对座椅压力范围无法确定,故B错误,C正确.如果某时刻速度增大到使汽车对地面压力为零,驾驶员具有向下的加速度,处于失重状态,故D错误.故选C.3.【答案】B【解析】①伤员在竖直方向的位移为h=H-l=5t m,所以伤员的竖直分速度为v1=5 m/s;②由于竖直方向做匀速运动,所以伤员被拉到直升机内的时间为t=s=10 s,故A错误,B正确;③伤员在水平方向的分速度为v0=10 m/s,所以伤员的速度为v==m/s=5m/s,故C,D均错误.4.【答案】B【解析】从图中可以发现b点的位置最低,即此时在竖直方向上下落的距离最大,由h=gt2,可知,时间t=,此时运动的时间最长,所以A错误;设第一个斜面的倾角为θ,则t=,则,t=,所以小球落在a点和b点的飞行时间均与初速度v0成正比,故B正确;速度变化的快慢是指物体运动的加速度的大小,由于物体做的都是平抛运动,运动的加速度都是重力加速度,所以三次运动速度变化的快慢是一样的,所以C错误;小球做的是平抛运动,平抛运动在水平方向的速度是不变的,所以小球的速度的变化都发生在竖直方向上,竖直方向上的速度的变化为△v=g△t,所以,运动的时间短的小球速度变化的小,所以c球的速度变化最小,所以D错误;5.【答案】B【解析】对图①中的小球进行受力分析,小球所受的重力,支持力合力的方向可以指向圆心提供向心力,所以Ta可以为零,选项A错误.若Na等于零,则小球所受的重力及绳子拉力的合力方向不能指向圆心而提供向心力,所以Na一定不为零,选项C,D错误.对图②中的小球进行受力分析,若Tb为零,则小球所受的重力,支持力合力的方向可以指向圆心提供向心力,所以Tb可以为零,若Nb等于零,则小球所受的重力及绳子拉力的合力方向也可以指向圆心而提供向心力,所以可以为零,选项B正确.Nb6.【答案】D【解析】对小球A,设垂直落在斜坡上对应的竖直高度为h,则有h=,==,解得小球A的水平位移为2h,所以小球B运动时间t2对应的竖直高度为3h,即3h=,t1∶t2=1∶.7.【答案】D【解析】小船在沿河岸方向上做匀速直线运动,在垂直于河岸方向上做变速运动,合加速度的方向与合速度方向不在同一条直线上,做曲线运动,A错误;水流不能帮助小船渡河,渡河时间与水流速度无关,B错误;小船的实际速度是划行速度与水流速度的矢量和,即,而先增大后减小,所以小船渡河时的实际速度是先变大后变小,C错误;小船到达离河对岸处,即离河岸水流速为,则,D正确;故选D.8.【答案】A【解析】设想把物体放到地球的中心,此时F=G已不适用.地球的各部分对物体的吸引力是对称的,故物体与地球间的万有引力是零.9.【答案】D【解析】由开普勒第三定律知=k,所以r3=kT2,D正确.10.【答案】D【解析】根据平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,有.则平抛运动的时间t=.物体自由下落的时间为.根据h=知,平抛运动在竖直方向上的位移和自由落体运动的位移之比为4:1,木板在竖直方向上的高度为L,则碰撞点竖直方向上的位移为.所以小球释放点距木板上端的水平距离为.故D正确,A,B,C错误.故选D.11.【答案】B【解析】释放能量,质量一定减少―→质量的减少量,Δm=m1+m3-m2―→由质能关系式得,ΔE=(m1+m3-m2)c212.【答案】C【解析】同轴转动,C,E两点的角速度相等,由a n=ω2r,有=2,即a nC=2a nE;两轮边缘点的线速度大小相等,由a n=,有=,即a nC=a nD,故选C.13.【答案】D【解析】连接PO,圆盘的线速度为v=ωR.当子弹从P点射出时,会有垂直于PO向右的线速度v =ωR以及向PO的左方偏过θ角的速度v0;子弹要射中O点,则其合速度的方向要沿着PO方向在垂直于PO向左的分速度要与线速度v=ωR相抵消.v0sinθ=ωR所以sinθ=.故选D14.【答案】D【解析】由图象看出,t=0时刻,弹簧的弹力为G,升降机停止后弹簧的弹力变小,可知升降机停止前在向上运动,故A错误;0~2t0时间内拉力小于重力,小球处于失重状态,加速度的方向向下,2t0~3t0时间内,拉力大于重力,加速度的方向向上,故B、C错误;3t0~4t0时间内,弹簧的弹力减小,小球向上加速运动,重力做负功,重力势能增大,弹力做正功,弹性势能减小,动能增大,根据系统机械能守恒知,弹簧弹性势能变化量大于小球动能变化量,弹簧弹力做的功大于小球动能的变化,故D正确.15.【答案】A【解析】物体远离圆心的运动就是离心运动,故A正确;物体做离心运动时其运动轨迹可能是曲线,故B错误;当做圆周运动的物体所受合外力提供的向心力不足时就做离心运动,合外力等于零仅是物体做离心运动的一种情况,故C错误;当物体所受指向圆心的合力增大时,将做近心运动,故D错误.16.【答案】A【解析】平抛运动在竖直方向上的运动规律为自由落体运动,可知两球同时落地,故B,C错误,A正确;平抛运动的时间由高度决定,与初速度无关,故D错误.故选:A.17.【答案】B【解析】b,c都是地球的卫星,由地球对它们的万有引力提供向心力,是可以比较的.a,c是在同一平面内以相同角速度转动的,也是可以比较的.在某时刻c在a的正上方,则以后永远在a的正上方,对b和c,根据G=m r,推知Tc=2Tb,又由2Tc=nbTb,得nb=2×2≈5.66圈,所以B正确.18.【答案】C【解析】物体从斜面顶端抛出后落到斜面上,物体的位移与水平方向的夹角等于斜面倾角θ,即tanθ=,物体落到斜面上时速度方向与水平方向的夹角的正切值tanφ=,故可得tanφ=2tanθ.只要小球落到斜面上,位移方向与水平方向夹角就总是θ,则小球的速度方向与水平方向的夹角也总是φ,故速度方向与斜面的夹角就总是相等,与v1、v2的关系无关,C选项正确.19.【答案】C【解析】杠铃不动时,有力但没有位移,故重力不做功,故A错误;木箱水平运动,没有竖直方向上的位移,故重力不做功,故B错误;人沿雪坡滑下时,高度下降,故重力做正功,故C正确;水桶未被提起,则水桶没有竖直方向上的位移,故重力不做功,故D错误.20.【答案】A【解析】环形凹槽光滑,甲、乙组成的系统在运动过程中只有重力做功,故系统机械能守恒,下滑过程中甲减少的机械能总是等于乙增加的机械能,甲、乙系统减少的重力势能等于系统增加的动能;甲减少的重力势能等于乙增加的势能与甲、乙增加的动能之和;由于乙的质量较大,系统的重心偏向乙一端,由机械能守恒,知甲不可能滑到槽的最低点,杆从右向左滑回时乙一定会回到槽的最低点.21.【答案】(1)48 J(2)24 W(3)48 W【解析】(1)木块所受的合外力F合=mg sinθ-μmg cosθ=mg(sinθ-μcosθ)=2×10×(0.6-0.5×0.8) N=4 N木块的加速度a==m/s2=2 m/s2前2 s内木块的位移l=at2=×2×22m=4 m所以,重力在前2 s内做的功为W=mgl sinθ=2×10×4×0.6 J=48 J(2)重力在前2 s内的平均功率为==W=24 W(3)木块在2 s末的速度v=at=2×2 m/s=4 m/s2 s末重力的瞬时功率P=mgv sinθ=2×10×4×0.6 W=48 W22.【答案】(1)(2)(3)03mg,方向竖直向下,方向竖直向上【解析】(1)汽车在桥顶,受重力mg和支持力F N作用,两力的合力作为向心力,则mg-F N=,F N=mg-,v越大,F N越小,当F N=0时,v max=,若汽车在桥顶速度超过此值,将飞离桥面.(2)小球在最高点时,受重力mg和绳子拉力F T作用,两力的合力作为向心力,即mg+F T=,F T=-mg,v越小,F T越小,当F T=0时,v min=,若小球速度小于该速度,将在到顶点之前就下落而不能做完整的圆周运动.(3)当小球在最高点速度小于时,小球所需向心力小于mg,杆对球的作用力F竖直向上,mg -F=,故球在最高点的速度可以为零.当v1=2时,mg+F1=,F1=3mg.当v2=时,mg-F2=,F2=.23.【答案】(1)零(2)2πR【解析】四星系统的圆周运动示意图如图所示(1)中心星体受到其余三颗星体的引力大小相等,方向互成120°.根据力的合成法则,中心星体受到其他三颗星体的引力的合力为零.(2)对圆形轨道上任意一颗星体,根据万有引力定律和牛顿第二定律有G+2G cos 30°=m,r=2R cos 30°.由以上两式可得三颗星体运动的线速度为v=,三颗星体运动的周期为T==2πR.24.【答案】(1)5 m/s(2)3 s(3)360 J【解析】(1)设选手放开抓手时的速度为v1,由动能定理得-mg(L-L cosθ)=mv-mv,代入数据解得:v1=5 m/s.(2)设选手放开抓手时的水平速度为v2,则v2=v1cosθ①选手在传送带上减速过程中a=-μg②v=v2+at1③x1=t1④设匀速运动的时间为t2,则s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥解得t=3 s.(3)由动能定理得W f=mv2-mv,解得:W f=-360 J,即克服摩擦力做功为360 J.。
模块综合试卷(时间:90分钟 满分:100分)一、选择题(本题共12小题,每小题4分,共48分)1.一个物体在光滑水平面上以初速度v 0做曲线运动,已知在此过程中物体只受一个恒力F 作用,运动轨迹如图1所示.则由M 到N 的过程中,物体的速度大小将()图1A .逐渐增大B .逐渐减小C .先增大后减小D .先减小后增大答案D解析 判断做曲线运动的物体速度大小的变化情况时,应从下列关系入手:当物体所受合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率增大;当物体所受合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率减小;当物体所受合外力方向与速度方向的夹角始终为直角时,物体做曲线运动的速率不变.在本题中,合力F 的方向与速度方向的夹角先为钝角,后为锐角,故D 选项正确.2.火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆.已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比()A .火卫一距火星表面较近B .火卫二的角速度较大C .火卫一的运动速度较小D .火卫二的向心加速度较大答案A解析 由GMm r2=ma =mv2r =m 4π2T2r 得:a =GM r2,v =GM r ,r =3GMT24π2,则T 大时,r 大,a 小,v 小,且由ω=2πT知,T 大,ω小,故正确选项为A.3.如图2所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D 点(D 点是曲线的拐点)时速度方向与加速度方向恰好互相垂直,则质点从A 点运动到E 点的过程中,下列说法中正确的是()图2A .质点经过C 点的速率比D 点的大B .质点经过A 点时的加速度方向与速度方向的夹角小于90°C .质点经过D 点时的加速度比B 点的大D .质点从B 到E 的过程中加速度方向与速度方向的夹角先增大后减小答案A解析 因为质点做匀变速运动,所以加速度恒定,C 项错误.在D 点时加速度与速度垂直,故知加速度方向向上,合力方向也向上,所以质点从C 到D 的过程中,方向与速度方向夹角大于90°,合力做负功,动能减小,v C >v D ,A 项正确,B 项错误.从B 至E 的过程中,加速度方向与速度方向夹角一直减小,D 项错误.4.把甲物体从2h 高处以速度v 0水平抛出,落地点与抛出点的水平距离为L ,把乙物体从h 高处以速度2v 0水平抛出,落地点与抛出点的水平距离为s ,不计空气阻力,则L 与s 的关系为()A .L =s 2B .L =2sC .L =22s D .L =2s 答案C解析 根据2h =12gt 12,得t 1=2h g , 则L =v 0t 1=2v 0h g . 由h =12gt 22, 得t 2=2h g ,则s =2v 0t 2=2v 02h g , 所以L =22s ,故选项C 正确.5.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图3所示),记录了我们祖先的劳动智慧.若A 、B 、C 三齿轮半径的大小关系为r A >r B >r C ,则()图3A .齿轮A 的角速度比C 的大B .齿轮A 、B 的角速度大小相等C .齿轮B 与C 边缘的线速度大小相等D .齿轮A 边缘的线速度比齿轮C 边缘的线速度大答案D解析 齿轮A 边缘的线速度v A 与齿轮B 边缘的线速度v B 相等,齿轮B 、C 的角速度ωB =ωC .由v A =ωA r A ,v B =ωB r B ,v C =ωC r C ,v A =v B ,r A >r B >r C ,ωB =ωC 可得:ωA <ωB ,ωA <ωC ,v B >v C ,v A >v C ,故选项D 正确.6.2015年9月23日,在江苏省苏州市进行的全国田径锦标赛上高兴龙获得男子跳远冠军,在一次试跳中,他(可看成质点)水平距离达8 m ,最高处高达1 m .设他离开地面时的速度方向与水平面的夹角为α,若不计空气阻力,则tan α等于()A.18B.14C.12D .1 答案C解析 从起点A 到最高点B 可看成平抛运动的逆过程,如图所示,运动员做平抛运动,初速度方向与水平方向夹角的正切值为tan α=2tan β=2×h x 2=2×14=12,选项C 正确.7.引力波现在终于被人们用实验证实,爱因斯坦的预言成为科学真理.早在70年代就有科学家发现,高速转动的双星可能由于辐射引力波而使星体质量缓慢变小,观测到周期在缓慢减小,则该双星间的距离将()A .变大B .变小C .不变D .可能变大也可能变小答案B。
高一第二学期期末检测题一、选择题1.关于匀速圆周运动,下列说法不正确的是()A.线速度不变B.角速度不变C.频率不变D.周期不变2.某星球与地球的质量比为a,半径比为b,则该行星表面与地球表面的重力加速度之比为()A. B.ab2 C. D.ab3.一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行,从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内水平力做功为()A.0B.8JC.16JD.32J4.船在静水中的航速是1m/s,河岸笔直,河宽恒定,河水靠近岸边的流速为2m/s,河中间的流速为3m/s.以下说法中正确的是()A.因船速小于流速,船不能到达对岸B.船不能沿一直线过河C.船不能垂直河岸过河D.船过河的最短时间是一定的5.质量为1kg的物体被人用手由静止向上提高1m,这时物体的速度是2m/s,g取10m/s2,则下列说法中不正确的是()A.手对物体做功12JB.合外力对物体做功12JC.合外力对物体做功2JD.物体克服重力做功10J6.如图所示,木块A.B叠放在光滑水平面上,A、B之间不光滑,用水平力F拉B,使A、B一起沿光滑水平面加速运动,设A对B的摩擦力为F1,B对A的摩擦F2,则以下说法正确的是()A.F1对B做正功,F2对A不做功B.F1对B做负功,F2对A做正功C.F2对A做正功,F1对B不做功D.F2对A不做功,F1对A做正功7.长度为L=0.5m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率为2.0m/s,不计空气阻力,g取10m/s2,则此时细杆OA受到()A.6.0N的拉力B.6.0N的压力C.24N的拉力D.24N的压力8.如图是“嫦娥一号”奔月的示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测.下列说法正确的是()A.发射“嫦娥一号”的速度必须达到第三宇宙速度B.在绕月圆轨道上,卫星周期与卫星质量有关C.卫星受月球的引力与它到月球中心距离的平方成反比D.在绕月轨道上,卫星受地球的引力大于受月球的引力9.关于同步卫星(它相对于地面静止不动),下列说法中正确的是()A.它可以定位在我们伟大的首都北京的正上空B.世界各国发射的同步卫星的高度和速率,数值分别都是相同的C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度一定介于第一宇宙速度和第二宇宙速度之间10.关于重力和万有引力的关系,下列认识错误的是()A.地面附近物体所受的重力就是万有引力B.重力是由于地面附近的物体受到地球的吸引而产生的C.在不太精确的计算中,可以认为物体的重力等于万有引力D.严格来说重力并不等于万有引力,除两极处物体的重力等于万有引力外,在地球其他各处的重力都略小于万有引力11.如图为测定运动员体能的装置,轻绳拴在腰间沿水平线跨过定滑轮(不计滑轮的质量与摩擦),下悬重为G的物体.设人的重心相对地面不动,人用力向后蹬传送带,使水平传送带以速率v逆时针转动.则()A.人对重物做功,功率为GvB.人对传送带的摩擦力大小等于G,方向水平向左C.在时间t内人对传送带做功消耗的能量为GvtD.若增大传送带的速度,人对传送带做功的功率不变12.质量为m的物体沿着半径为r的半球形金属球壳滑到最低点时的速度大小为v,如图所示,若物体与球壳之间的摩擦因数为μ,则物体在最低点时的()A.向心加速度为B.向心力为m(g+)C.对球壳的压力为D.受到的摩擦力为μm(g+)二、填空题13.如图所示为一小球做平抛运动的闪光照相照片的一部分,图中背景方格的边长均为5cm,如果取g=10m/s2,那么:(1)照相机的闪光周期为s,频率为Hz;(2)小球运动中水平分速度的大小是m/s。
模块质量评估(90分钟100分)一、选择题(本大题共12小题,每小题4分,共48分,其中1~6题为单选,7~12题为多选)1.下面所示的实验示意图中,用于探究电磁感应现象的是( )【解析】选B。
A选项是奥斯特实验,该实验证明了通电导线周围存在着磁场,利用电生磁现象制成了电磁铁,故A错误;B选项磁铁在进入线圈的过程中,由于磁通量的变化,产生感应电流,这是用来探究电磁感应现象的,故B正确;C选项线圈中有电流通过时,它就会运动起来,即说明通电导线在磁场中受力的作用,即是电动机的制作原理,故C错误;D选项闭合开关,导线中有电流通过时,导体棒就会运动起来,即说明通电导线在磁场中受力的作用,是电动机的制作原理,故D错误。
2.如图所示,等腰三角形内分布有垂直于纸面向外的匀强磁场,它的底边在x轴上且长为2L,高为L。
纸面内一边长为L的正方形导线框沿x轴正方向做匀速直线运动穿过匀强磁场区域,在t=0时刻恰好位于图中所示的位置。
规定顺时针方向为导线框中电流的正方向,在下面的图中能够正确表示电流—位移(I-x)关系的是( )【解析】选A。
线框向x轴正方向运动位移L的过程中,有效切割长度均匀增加;在位移大于L且小于2L的过程中,线框右边有效切割长度均匀减小,线框左边有效切割长度均匀增加,因此整个线框有效切割长度先减小后增大,且变化率为前一段时间的两倍;在位移大于2L且小于3L的过程中,与第一段运动中线框产生的感应电流等大反向,故A项对。
3.物理实验中,常用一种叫作“冲击电流计”的仪器测定通过电路的电量。
如图所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度。
已知线圈的匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R。
若将线圈放在被测匀强磁场中,开始线圈平面与磁场垂直,现把探测圈翻转180°,冲击电流计测出通过线圈的电量为q,由上述数据可测出被测磁场的磁感应强度为( )A. B. C. D.【解析】选C。
2.1 怎样描述圆周运动[学习目标]1.知道什么是匀速圆周运动,知道它是变速运动.2.记住线速度的定义式,理解线速度的大小、方向的特点.3.记住角速度的定义式,知道周期、转速的概念.4.理解并掌握v =ωr 和ω=2πn 等公式.一、线速度1.定义:物体做圆周运动通过的弧长与通过这段弧长所用时间的比值,v =s t. 2.意义:描述做圆周运动的物体运动的快慢.3.方向:线速度是矢量,方向沿着圆周的切线方向.4.匀速圆周运动:沿着圆周运动,且在相等的时间里通过的圆弧长度相等的运动.二、角速度1.定义:物体做圆周运动时,连接它与圆心的半径转过的角度Δθ跟所用时间t 的比值.ω=Δθt. 2.意义:描述物体做圆周运动的快慢.3.单位:弧度每秒,符号是rad/s.三、周期和转速1.周期T :物体沿圆周运动一周的时间,单位为秒(s).周期与角速度的关系:ω=2πT. 2.转速n :物体在单位时间内完成圆周运动的圈数,单位为每秒(s -1)或转每分(r/min).四、角速度与线速度的关系v =ωR .[即学即用]1.判断下列说法的正误.(1)匀速圆周运动是一种匀速运动.(×)(2)做匀速圆周运动的物体,相同时间内的位移相同.(×)(3)做匀速圆周运动的物体,其线速度不变.(×)(4)做匀速圆周运动的物体,其角速度大小不变.(√)(5)做匀速圆周运动的物体,周期越大,角速度越小.(√)2.A 、B 两个质点,分别做匀速圆周运动,在相等时间内它们通过的弧长之比s A ∶s B =2∶3,转过的圆心角之比θA ∶θB =3∶2,那么它们的线速度大小之比v A ∶v B =________,角速度大小之比ωA ∶ωB =________.答案 2∶3 3∶2解析 由v =s t 知v A v B =23;由ω=Δθt 知ωA ωB =32.一、线速度和匀速圆周运动[导学探究] 如图1所示为自行车的车轮,A 、B 为辐条上的两点,当它们随轮一起转动时,回答下列问题:图1(1)A 、B 两点的速度各沿什么方向?(2)如果B 点在任意相等的时间内转过的弧长相等,B 点做匀速运动吗?(3)匀速圆周运动的线速度是不变的吗?匀速圆周运动的“匀速”同“匀速直线运动”的“匀速”一样吗?(4)A 、B 两点哪个运动得快?答案 (1)两点的速度均沿各自圆周的切线方向.(2)B 运动的方向时刻变化,故B 做非匀速运动.(3)质点做匀速圆周运动时,线速度的大小不变,方向时刻在变化,因此,匀速圆周运动只是速率不变,是变速曲线运动.而“匀速直线运动”中的“匀速”指的是速度不变,是大小、方向都不变,二者并不相同.(4)B 运动得快.[知识深化]1.对线速度的理解(1)线速度是物体做圆周运动的瞬时速度,线速度越大,物体运动得越快.(2)线速度是矢量,它既有大小,又有方向,线速度的方向在圆周各点的切线方向上.(3)线速度的大小:v =s t,s 代表在时间t 内通过的弧长. 2.对匀速圆周运动的理解(1)匀中有变:由于匀速圆周运动是曲线运动,其速度方向沿着圆周的切线方向,所以物体做匀速圆周运动时,速度的方向时刻在变化.(2)匀速的含义:①速度的大小不变,即速率不变;②转动快慢不变,即角速度大小不变.(3)运动性质:线速度的方向时刻改变,所以匀速圆周运动是一种变速运动.例1 (多选)某质点绕圆轨道做匀速圆周运动,下列说法中正确的是( )A .因为它的速度大小始终不变,所以它做的是匀速运动B .该质点速度大小不变,但方向时刻改变,是变速运动C .该质点速度大小不变,因而加速度为零,处于平衡状态D .该质点做的是变速运动,具有加速度,故它所受合力不等于零答案 BD二、角速度、周期和转速[导学探究] 如图2所示,钟表上的秒针、分针、时针以不同的角速度做圆周运动.图2(1)秒针、分针、时针它们转动的快慢相同吗?如何比较它们转动的快慢?(2)秒针、分针和时针的周期分别是多大?答案 (1)不相同.根据角速度公式ω=Δθt知,在相同的时间内,秒针转过的角度最大,时针转过的角度最小,所以秒针转得最快.(2)秒针周期为60s ,分针周期为60min ,时针周期为12h.[知识深化]1.对角速度的理解(1)角速度描述做圆周运动的物体绕圆心转动的快慢,角速度越大,物体转动得越快.(2)角速度的大小:ω=Δθt,Δθ代表在时间t 内物体与圆心的连线转过的角度.(3)在匀速圆周运动中,角速度大小不变.2.对周期和频率(转速)的理解(1)周期描述了匀速圆周运动的一个重要特点——时间周期性.其具体含义是:描述匀速圆周运动的一些变化的物理量,每经过一个周期时,大小和方向与初始时刻完全相同,如线速度等.(2)当单位时间取1s 时,f =n .频率和转速对匀速圆周运动来说在数值上是相等的,但频率具有更广泛的意义,两者的单位也不相同.3.周期、频率和转速间的关系:T =1f =1n . 例2 (多选)一精准转动的机械钟表,下列说法正确的是( )A .秒针转动的周期最长B .时针转动的转速最小C .秒针转动的角速度最大D .秒针的角速度为π30rad/s 答案 BCD解析 秒针转动的周期最短,角速度最大,A 错误,C 正确;时针转动的周期最长,转速最小,B 正确;秒针的角速度为ω=2π60rad/s =π30rad/s ,D 正确. 三、描述匀速圆周运动的各物理量之间的关系[导学探究] 线速度、角速度、周期都是用来描述圆周运动快慢的物理量,它们的物理含义不同,但彼此间却相互联系.(1)线速度与周期及转速的关系是什么?(2)角速度与周期及转速的关系是什么?(3)线速度与角速度什么关系?答案 (1)物体转动一周的弧长s =2πR ,转动一周所用时间为t =T ,则v =s t =2πR T=2πRn . (2)物体转动一周转过的角度为Δθ=2π,用时为T ,则ω=2πT=2πn . (3)v =ωR .[知识深化]1.描述匀速圆周运动的各物理量之间的关系(1)v =s t =2πR T=2πnR (2)ω=Δθt =2πT =2πn。
4.1 势能的变化与机械功[学习目标] 1.认识重力做功与物体运动的路径无关的特点,理解重力势能的概念.2.理解重力做功与重力势能变化的关系.3.知道重力势能具有相对性,知道重力势能是物体和地球所组成的系统所共有的.一、研究重力做功跟重力势能变化的关系1.重力势能(1)定义:物体由于被举高而具有的能量.(2)公式:E p =mgh ,式中h 是物体重心到参考平面的高度.(3)单位:焦耳;符号:J.2.重力做功与重力势能的变化:(1)表达式:W =E p1-E p2=-ΔE p . (2)两种情况:①物体由高处到低处,重力做正功,重力势能减少; ②物体由低处到高处,重力做负功,重力势能增加.二、重力做功与路径无关 1.重力做功的表达式:W =mgh ,h 指初位置与末位置的高度差.2.重力做功的特点:物体运动时,重力对它做的功只跟它的初位置和末位置的高度有关,而跟物体运动的路径无关.三、弹性势能1.定义:物体发生弹性形变时具有的势能叫做弹性势能.2.大小:弹簧的劲度系数为k ,弹簧的伸长量或压缩量为x ,则弹簧的弹性势能E p =12kx 2.[即学即用]1.判断下列说法的正误.(1)重力做功与物体沿直线或曲线运动有关.(×)(2)物体只要运动,其重力一定做功.(×)(3)同一物体在不同位置的重力势能分别为E p1=3J,E p2=-10J,则E p1<E p2.(×)(4)物体由高处到低处,重力一定做正功,重力势能一定减少.(√)(5)重力做功一定与路径无关,只与初、末位置的高度差有关.(√)(6)只要发生形变的物体就一定具有弹性势能.(×)2.将质量为m的物体从地面上方H高处由静止释放,物体落在地面后地面出现一个深度为h的坑,如图1所示,重力加速度为g,在此过程中,重力对物体做功为________,重力势能______(填“减少”或“增加”)了________.图1答案mg(H+h)减少mg(H+h)一、重力做功的特点[导学探究]如图2所示,一个质量为m的物体,从高度为h1的位置A分别按下列三种方式运动到高度为h2的位置B,在这个过程中思考并讨论以下问题:(1)根据功的公式求出甲、乙两种情况下重力做的功;(2)求出丙中重力做的功;(3)重力做功有什么特点?图2答案(1)甲中W=mgh=mgh1-mgh2乙中W′=mgl cosθ=mgh=mgh1-mgh2(2)把整个路径AB分成许多很短的间隔AA1、A1A2…,由于每一段都很小,每一小段都可以近似地看做一段倾斜的直线,设每段小斜线的高度差分别为Δh 1、Δh 2…,则物体通过每段小斜线时重力做的功分别为mg Δh 1、mg Δh 2….物体通过整个路径时重力做的功W ″=mg Δh 1+mg Δh 2+…=mg (Δh 1+Δh 2+…)=mgh=mgh 1-mgh 2(3)物体运动时,重力对它做的功只跟它的起点和终点的位置有关,而跟物体运动的路径无关.[知识深化]1.重力做功大小只与重力和物体高度变化有关,与物体受其他力及物体的运动状态均无关.2.物体下降时重力做正功,物体上升时重力做负功.3.在一些往复运动或多个运动过程的复杂问题中求重力做功时,利用重力做功的特点,可以省去大量中间过程,一步求解.例1 在同一高度,把三个质量相同的球A 、B 、C 分别以相等的速率竖直上抛、竖直下抛和平抛,它们都落到同一水平地面上.三个球在运动过程中,重力对它们做的功分别为W A 、W B 、W C ,重力的平均功率分别为P A 、P B 、P C ,则它们的大小关系为( )A .W A >WB =WC ,P A >P B =P CB .W A =W B =WC ,P A =P B =P CC .W A =W B =W C ,P B >P C >P AD .W A >W B >W C ,P A >P B >P C答案 C解析 由重力做功特点知:W A =W B =W C ;由运动学知识知,从抛出到落地的时间:t B <t C <t A ,由P =W t得,P B >P C >P A ,故C 对. 二、重力势能[导学探究] 如图3所示,质量为m 的物体自高度为h 2的A 处下落至高度为h 1的B 处.求下列两种情况下,重力做的功和重力势能的变化量,并分析它们之间的关系.图3(1)以地面为零势能参考面;(2)以B 处所在的平面为零势能参考面.答案 (1)重力做的功W =mg Δh =mg (h 2-h 1),选地面为零势能参考面,E p A =mgh 2,E p B =mgh 1,重力势能的变化量ΔE p =mgh 1-mgh 2=-mg Δh .(2)选B处所在的平面为零势能参考面,重力做功W=mgΔh=mg(h2-h1).物体的重力势能E p A=mg(h2-h1)=mgΔh,E p B=0,重力势能的变化量ΔE p=0-mgΔh=-mgΔh.综上两次分析可见W=-ΔE p,即重力做的功等于重力势能的变化量的负值,而且重力势能的变化与零势能参考面的选取无关.[知识深化]1.重力做功与重力势能变化的关系:W=E p1-E p2=-ΔE p2.重力势能的相对性物体的重力势能总是相对于某一水平参考面,选取不同的参考面,物体重力势能的数值是不同的.故在计算重力势能时,必须首先选取参考平面.3.重力势能是标量,但有正负之分,物体在零势能面上方,物体的重力势能是正值,表示物体的重力势能比在参考平面上时要多,物体在零势能面下方,物体的重力势能是负值,表示物体的重力势能比在参考平面上时要少.4.重力势能的变化量与参考平面的选择无关.例2如图4所示,质量为m的小球,从离桌面H高处由静止下落,桌面离地高度为h.若以桌面为参考平面,那么小球落地时的重力势能及整个过程中重力势能的变化分别是(重力加速度为g)()图4A.mgh,减少mg(H-h)B.mgh,增加mg(H+h)C.-mgh,增加mg(H-h)D.-mgh,减少mg(H+h)答案 D解析以桌面为参考平面,落地时小球的重力势能为-mgh,即末状态的重力势能为-mgh,初状态的重力势能为mgH,重力势能的变化即为-mgh-mgH=-mg(H+h),重力势能减少了mg(H+h),故选D.三、重力做功与重力势能变化的关系例3如图5所示,质量为m的小球,用一长为l的细线悬于O点,将悬线拉直成水平状态,并给小球一个向下的速度让小球向下运动,O点正下方D处有一钉子,小球运动到B处时会。
章末检测试卷(一)(时间:90分钟满分:100分)一、选择题(本题共10小题,每小题4分,共40分)1.一质点在某段时间内做曲线运动,则在这段时间内()A.速度一定在不断改变,加速度也一定不断改变B.速度可以不变,但加速度一定不断改变C.质点不可能在做匀变速运动D.质点在某点的速度方向一定是曲线上该点的切线方向答案 D解析物体做曲线运动的条件是合力的方向与速度方向不在同一直线上,故速度方向时刻改变,所以曲线运动是变速运动,其加速度不为零,但加速度可以不变,例如平抛运动,就是匀变速运动.故A、B、C错误.曲线运动的速度方向时刻改变,质点在某点的速度方向一定是曲线上该点的切线方向,故D正确.2.斜抛运动与平抛运动相比较,相同的是()A.都是匀变速曲线运动B.平抛是匀变速曲线运动,而斜抛是非匀变速曲线运动C.都是加速度逐渐增大的曲线运动D.平抛运动是速度一直增大的运动,而斜抛是速度一直减小的曲线运动答案 A解析平抛运动与斜抛运动的共同特点是它们都以一定的初速度抛出后,只受重力作用.合外力为G=mg,根据牛顿第二定律可以知道平抛运动和斜抛运动的加速度都是恒定不变的,大小为g,方向竖直向下,都是匀变速运动.它们不同的地方就是平抛运动是水平抛出、初速度的方向是水平的,斜抛运动有一定的抛射角,可以将它分解成水平分速度和竖直分速度,也可以将平抛运动看成是特殊的斜抛运动(抛射角为0°).平抛运动和斜抛运动初速度的方向与加速度的方向不在同一条直线上,所以它们都是匀变速曲线运动,B、C错,A正确.平抛运动的速率一直在增大,斜抛运动的速率可能先减小后增大,也可能一直增大,D错.3.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图1所示.关于物体的运动,下列说法正确的是()图1A.物体做速度逐渐增大的曲线运动B.物体运动的加速度先减小后增大C.物体运动的初速度大小是50 m/sD.物体运动的初速度大小是10 m/s答案 C解析由题图知,x方向的初速度沿x轴正方向,y方向的初速度沿y轴负方向,则合运动的初速度方向不在y轴方向上;x轴方向的分运动是匀速直线运动,加速度为零,y轴方向的分运动是匀变速直线运动,加速度沿y轴方向,所以合运动的加速度沿y轴方向,与合初速度方向不在同一直线上,因此物体做曲线运动.根据速度的合成可知,物体的速度先减小后增大,故A错误.物体运动的加速度等于y轴方向的加速度,保持不变,故B错误;根据题图可知物体的初速度为:v0=v x02+v y02=302+402m/s=50 m/s,故C正确,D错误,故选C.4. 如图2所示,细绳一端固定在天花板上的O点,另一端穿过一张CD光盘的中央光滑小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD光盘按在桌面上,并沿桌面边缘以速度v匀速移动,移动过程中,CD光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为()图2A.v sin θB.v cos θC.v tan θD.v cot θ答案 A解析由题意可知,悬线与光盘交点参与两个运动,一是逆着线的方向运动,二是垂直于线的方向运动,则合运动的速度大小为v,由数学三角函数关系有:v线=v sin θ,而线的速度大小即为小球上升的速度大小,故A正确,B、C、D错误.5.如图3所示,小朋友在玩一种运动中投掷的游戏,目的是在运动中将手中的球投进离地面高3 m的吊环,他在车上和车一起以2 m/s的速度向吊环运动,小朋友抛球时手离地面的高度为1.2 m,当他在离吊环的水平距离为2 m时将球相对于自己竖直上抛,球刚好沿水平方向进入吊环,他将球竖直向上抛出的速度是(g取10 m/s2)()图3A .2.8 m/sB .4.8 m/sC .6.8 m/sD .8.8 m/s 答案 C解析 小球的运动可分解为水平方向的匀速直线运动和竖直上抛运动,题中球恰好沿水平方向进入吊环,说明小球进入吊环时竖直上抛分运动恰好到达最高点,则运动时间为t =x 水平v 水平,由上升高度Δh =v 竖t -12gt 2,得v 竖=6.8 m/s ,选项C 正确.6.如图4所示为足球球门,球门宽为L .一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角(图中P 点).球员顶球点的高度为h ,足球做平抛运动(足球可看成质点),则( )图4A .足球位移的大小x =L 24+s 2 B .足球初速度的大小v 0=g 2h (L 24+s 2) C .足球初速度的大小v 0=g 2h (L 24+s 2)+4gh D .足球初速度的方向与球门线夹角的正切值tan θ=L2s答案 B解析 足球位移大小为x =(L2)2+s 2+h 2=L 24+s 2+h 2,A 错误;根据平抛运动规律有:h =12gt 2,L 24+s 2=v 0t ,解得v 0=g 2h (L 24+s 2),B 正确,C 错误;足球初速度方向与球门线夹角正切值tan θ=s L 2=2sL ,D 错误.7.(多选)以初速度v 0=20 m/s 从100 m 高台上水平抛出一个物体(g 取10 m/s 2,不计空气阻力),则( )A .2 s 后物体的水平速度为20 m/sB .2 s 后物体的速度方向与水平方向成45°角C .每1 s 内物体的速度变化量的大小为10 m/sD .每1 s 内物体的速度大小的变化量为10 m/s 答案 ABC解析 水平抛出的物体做平抛运动,水平方向速度不变,v x =v 0=20 m/s ,A 项正确;2 s 后,竖直方向的速度v y =gt =20 m/s ,所以tan θ=v yv x =1,则θ=45°,B 项正确;每1 s 内物体的速度的变化量的大小为Δv =g Δt =10 m/s ,所以C 项正确;物体的运动速度大小为v x 2+v y 2,相同时间内,其变化量不同,D 项错误.8.(多选)一条船要在最短时间内渡过宽为100 m 的河,已知河水的流速v 1与船离河岸的距离x 变化的关系如图5甲所示,船在静水中的速度v 2与时间t 的关系如图乙所示,则以下判断中正确的是( )图5A .船渡河的最短时间是20 sB .船运动的轨迹可能是直线C .船在河水中的加速度大小为0.4 m/s 2D .船在河水中的最大速度是5 m/s 答案 AC解析 船在行驶过程中,船头始终与河岸垂直时渡河时间最短,即t =1005 s =20 s ,A 正确;由于水流速度变化,所以合速度变化,船头始终与河岸垂直时,运动的轨迹不可能是直线,B 错误;船在最短时间内渡河t =20 s ,则船运动到河的中央时所用时间为10 s ,水的流速在x =0到x =50 m 之间均匀增加,则a 1=4-010 m/s 2=0.4 m/s 2,同理x =50 m 到x =100 m 之间a 2=0-410 m/s 2=-0.4 m/s 2,则船在河水中的加速度大小为0.4 m/s 2,C 正确;船在河水中的最大速度为v =52+42 m/s =41 m/s ,D 错误.9.(多选)物体做平抛运动的轨迹如图6所示,O 为抛出点,物体经过点P (x 1,y 1)时的速度方向与水平方向的夹角为θ,则下列结论正确的是( )图6A .tan θ=y 12x 1B .tan θ=2y 1x 1C .物体抛出时的速度为v 0=x 1g 2y 1D .物体经过P 点时的速度v P =gx 122y 1+2gy 1 答案 BCD解析 tan θ=v y v x =gt v 0,竖直位移y 1=12gt 2,水平位移x 1=v 0t ,则gt =2y 1t ,v 0=x 1t ,所以tan θ=v y v x =gt v 0=2y 1t x 1t =2y 1x 1,B 正确,A 错误;物体抛出时的速度v 0=x 1t,而t =2y 1g ,所以v 0=x 1t=x 1g2y 1,C 正确;物体竖直方向上的速度为v y =2gy 1,所以经过P 点时的速度v P =v 02+v y 2=gx 122y 1+2gy 1,D 正确. 10.(多选)跳台滑雪是奥运比赛项目之一,利用自然山形建成的跳台进行,某运动员从弧形雪坡上沿水平方向飞出后,又落回到斜面雪坡上,如图7所示,若斜面雪坡的倾角为θ,飞出时的速度大小为v 0,不计空气阻力,运动员飞出后在空中的姿势保持不变,重力加速度为g ,则( )图7A .如果v 0不同,该运动员落到雪坡时的位置不同,速度方向也不同B .如果v 0不同,该运动员落到雪坡时的位置不同,但速度方向相同C .运动员在空中经历的时间是2v 0tan θgD .运动员落到雪坡时的速度大小是v 0cos θ答案 BC解析 运动员落到雪坡上时,初速度越大,落点越远;位移与水平方向的夹角为θ,设速度与水平方向的夹角为α,则有tan α=2tan θ,所以初速度不同时,落点不同,但速度方向与水平方向的夹角相同,故选项A 错误,B 正确;由平抛运动规律可知x =v 0t ,y =12gt 2,且tan θ=yx ,可解得t =2v 0tan θg ,故选项C 正确;运动员落到雪坡上时,速度v =v 02+(gt )2=v 01+4tan 2 θ,故选项D 错误.故本题选B 、C. 二、实验题(本题共8分)11.(8分)未来在一个未知星球上用如图8甲所示装置研究平抛运动的规律.悬点O 正下方P 点处有水平放置的炽热电热丝,当悬线摆至电热丝处时能轻易被烧断,小球由于惯性向前飞出做平抛运动.现对小球采用频闪数码照相机连续拍摄.在有坐标纸的背景屏前,拍下了小球在做平抛运动过程中的多张照片,经合成后,照片如图乙所示.a 、b 、c 、d 为连续四次拍下的小球位置,已知照相机连续拍照的时间间隔是0.10 s ,照片大小如图中坐标所示,又知该照片的长度与实际背景屏的长度之比为1∶4,则:图8(1)由以上信息,可知a 点________(选填“是”或“不是”)小球的抛出点. (2)由以上及图信息,可以推算出该星球表面的重力加速度为________m/s 2. (3)由以上及图信息可以算出小球平抛的初速度是________m/s. (4)由以上及图信息可以算出小球在b 点时的速度是________m/s. 答案 (1)是 (2)8 (3)0.8 (4)425解析 (1)竖直方向上,由初速度为零的匀加速直线运动经过连续相等的时间内通过的位移之比为1∶3∶5可知,a 点为抛出点.(2)由ab 、bc 、cd 水平距离相同可知,a 到b 、b 到c 运动时间相同,设为T ,在竖直方向有Δh =gT 2,T =0.10 s ,可求得g =8 m/s 2.(3)由两位置间的时间间隔为0.10 s ,水平距离为8 cm ,x =v 0t ,得小球平抛的初速度v 0=0.8 m/s. (4)b 点竖直分速度为ac 间的竖直平均速度,根据速度的合成求b 点的合速度,v yb =4×4×10-22×0.10m/s =0.8 m/s ,所以v b =v 02+v yb 2=425 m/s.三、计算题(本题共4小题,共52分,解答时应写出必要的文字说明和解题步骤,有数值计算的要注明单位)12.(12分)如图9所示,斜面体ABC 固定在地面上,小球p 从A 点静止下滑.当小球p 开始下滑时,另一小球q 从A 点正上方的D 点水平抛出,两球同时到达斜面底端的B 处.已知斜面AB 光滑,长度l =2.5 m ,斜面倾角θ=30°.不计空气阻力,g 取10 m/s 2,求:图9(1)小球p 从A 点滑到B 点的时间. (2)小球q 抛出时初速度的大小. 答案 (1)1 s (2)534m/s解析 (1)设小球p 从斜面上下滑的加速度为a ,由牛顿第二定律得:a =mg sin θm =g sin θ①设下滑所需时间为t 1,根据运动学公式得 l =12at 12② 由①②得 t 1=2lg sin θ③ 解得t 1=1 s ④(2)对小球q :水平方向位移x =l cos θ=v 0t 2⑤ 依题意得t 2=t 1⑥ 由④⑤⑥得v 0=l cos θt 1=534m/s.【考点】平抛运动和直线运动的物体相遇问题 【题点】平抛运动和直线运动的物体相遇问题13.(12分)在一定高度处把一个小球以v 0=30 m/s 的速度水平抛出,它落地时的速度大小v t =50 m/s ,如果空气阻力不计,重力加速度g 取10 m/s 2.求: (1)小球在空中运动的时间t ;(2)小球在平抛运动过程中通过的水平位移大小x 和竖直位移大小y ; (3)小球在平抛运动过程中的平均速度大小v . 答案 (1)4 s (2)120 m 80 m (3)1013 m/s解析 (1)设小球落地时的竖直分速度为v y ,由运动的合成可得v t =v 02+v y 2,解得v y =v t 2-v 02=502-302 m/s =40 m/s小球在竖直方向上做自由落体运动,有v y =gt ,解得t =v y g =4010 s =4 s(2)小球在水平方向上的位移为x =v 0t =30×4 m =120 m 小球的竖直位移为y =12gt 2=12×10×42 m =80 m(3)小球位移的大小为s =x 2+y 2=1202+802 m =4013 m 由平均速度公式可得v =s t =40134m/s =1013 m/s.14.(12分)如图10所示,斜面倾角为θ=45°,从斜面上方A 点处由静止释放一个质量为m 的弹性小球(可视为质点),在B 点处和斜面碰撞,碰撞后速度大小不变,方向变为水平,经过一段时间在C 点再次与斜面碰撞.已知A 、B 两点的高度差为h ,重力加速度为g ,不考虑空气阻力.求:图10(1)小球在AB 段运动过程中,落到B 点的速度大小; (2)小球落到C 点时速度的大小. 答案 (1)2gh (2)10gh解析 (1)小球下落过程中,做自由落体运动,设落到斜面B 点的速度为v ,满足:v 2=2gh ,解得:v =2gh(2)小球从B 到C 做平抛运动,设从B 到C 的时间为t , 竖直方向:BC sin θ=12gt 2水平方向:BC cos θ=v t 解得:t =22h g所以C 点的速度为v C =v 2+g 2t 2=10gh15.(16分)如图11所示,在粗糙水平台阶上静止放置一质量m =1.0 kg 的小物块,它与水平台阶表面的动摩擦因数μ=0.25,且与台阶边缘O 点的距离s =5 m .在台阶右侧固定了一个14圆弧挡板,圆弧半径R =5 2 m ,今以圆弧圆心O 点为原点建立平面直角坐标系.现用F =5 N 的水平恒力拉动小物块,已知重力加速度g =10 m/s 2.图11(1)为使小物块不能击中挡板,求水平恒力F 作用的最长时间;(2)若小物块在水平台阶上运动时,水平恒力F 一直作用在小物块上,当小物块过O 点时撤去水平恒力,求小物块击中挡板上的位置. 答案 (1) 2 s (2)x =5 m ,y =5 m解析 (1)为使小物块不会击中挡板,设拉力F 作用最长时间t 1时,小物块刚好运动到O 点. 由牛顿第二定律得:F -μmg =ma 1 解得:a 1=2.5 m/s 2匀减速运动时的加速度大小为:a 2=μg =2.5 m/s 2 由运动学公式得:s =12a 1t 12+12a 2t 22而a 1t 1=a 2t 2 解得:t 1=t 2= 2 s(2)水平恒力一直作用在小物块上,由运动学公式有:v 02=2a 1s 解得小物块到达O 点时的速度为:v 0=5 m/s 小物块过O 点后做平抛运动. 水平方向:x =v 0t 竖直方向:y =12gt 2又x 2+y 2=R 2解得位置为:x =5 m ,y =5 m。